

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

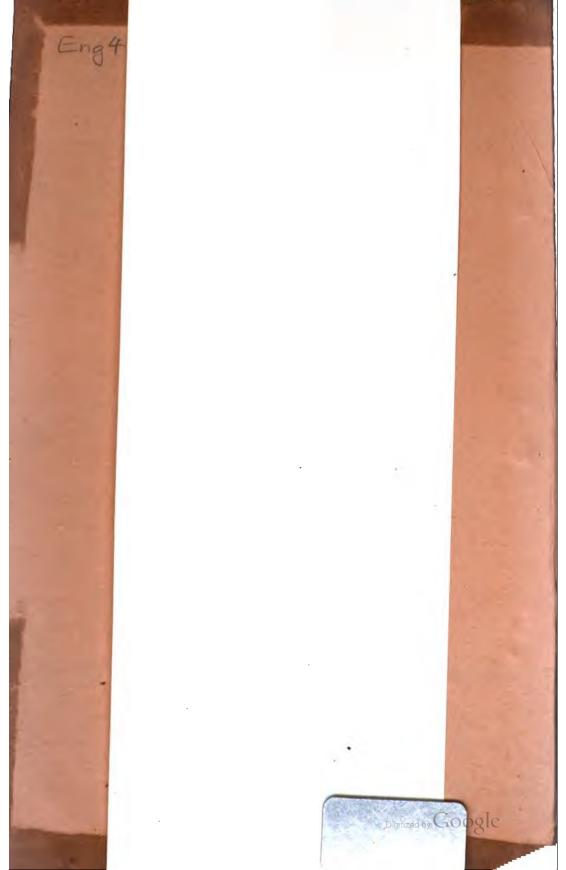
Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

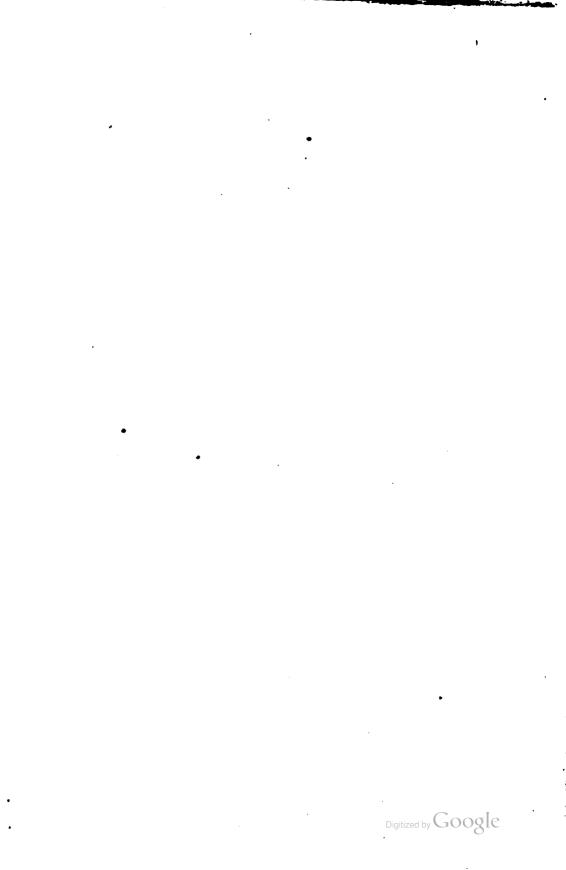
We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + *Refrain from automated querying* Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + Keep it legal Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/



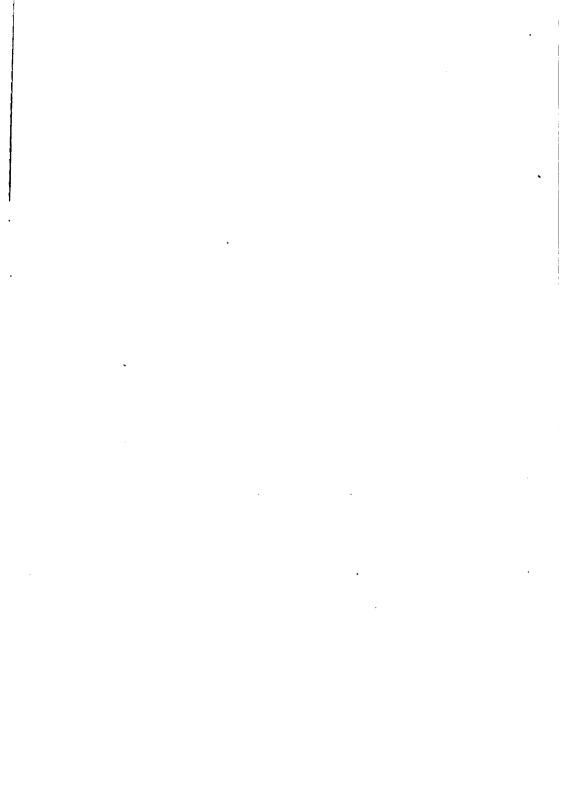

GODFREY LOWELL CABOT SCIENCE LIBRARY of the Harvard College Library

This book is FRAGILE

and circulates only with permission. Please handle with care and consult a staff member before photocopying.

Thanks for your help in preserving Harvard's library collections.

.


•

•

.

•

.

•

-

.

•

•

٠

.

•

SMITHSONIAN INSTITUTION.

WASHINGTON CITY, November, 1894.

This work (No. 854), SMITHSONIAN GEOGRAPHICAL TA-BLES, forms the second part of Volume XXXV, Smithsonian Miscellaneous Collections. The "Smithsonian Meteorological Tables," issued in 1893, formed the first part of this volume, and the third or concluding part, "Smithsonian Physical Tables," is in preparation.

LIBRARY CATALOGUE SLIPS.

Smithsonian Institution.

Smithsonian Geographical tables. Prepared by R. S. Woodward. City of Washington, published by the Smithsonian Institution, 1894. 8°. cv +182 pp.

From Smithsonian Miscellaneous Collections, vol. 35. (Number 854.)

Woodward, R. S.

Smithsonian Geographical tables. Prepared by R. S. Woodward. City of Washington, published by the Smithsonian Institution, 1894. 8°. cv +182 pp.

From Smithsonian Miscellaneous Collections, vol. 35. (Number 854.)

.

.....

Smithsonian Geographical tables. Prepared by R. S. Woodward. City of Washington, published by the Smithsonian Institution, 1894. 8°. cv + 182 pp.

From Smithsonian Miscellaneous Collections, vol. 35. (Number 854-)

.

Smithsonian Miscellaneous Collections

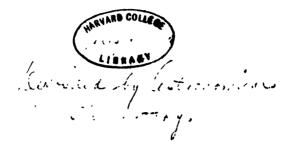
854

SMITHSONIAN

0.

GEOGRAPHICAL TABLES

PREPARED BY


R. S. WOODWARD

CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION 1894

Eng 498. 9-.5

.

The Riverside Press, Cambridge, Mass., U. S. A. Electrotyped and Printed by H. O. Houghton & Co.

ADVERTISEMENT.

IN connection with the system of meteorological observations established by the Smithsonian Institution about 1850, a series of meteorological tables was compiled by Dr. Arnold Guyot, at the request of Secretary Henry, and was published in 1852 as a volume of the Miscellaneous Collections.

A second edition was published in 1857, and a third edition, with further amendments, in 1859.

Though primarily designed for meteorological observers reporting to the Smithsonian Institution, the tables were so widely used by meteorologists and physicists that, after twenty-five years of valuable service, the work was again revised, and a fourth edition was published in 1884.

In a few years the demand for the tables exhausted the edition, and it appeared to me desirable to recast the work entirely, rather than to undertake its revision again. After careful consideration I decided to publish the new work in three parts: Meteorological Tables, Geographical Tables, and Physical Tables, each representative of the latest knowledge in its field, and independent of the others; but the three forming a homogeneous series.

Although thus historically related to Doctor Guyot's Tables, the present work is so entirely changed with respect to material, arrangement, and presentation, that it is not a fifth edition of the older tables, but essentially a new publication.

The first volume of the new series of Smithsonian Tables (the Meteorological Tables) appeared in 1893. The present volume, forming the second of the series, the Geographical Tables, has been prepared by Professor R. S. Woodward, formerly of the United States Coast and Geodetic Survey, but now of Columbia College, New York, who has brought to the work a very wide experience both in field work and in the reduction of extensive geodetic observations.

S. P. LANGLEY, Secretary.

.

PREFACE.

In the preparation of the following work two difficulties of quite different kinds presented themselves. The first of these was to make a judicious selection of matter suited to the needs of the average geographer, and at the same time to keep the volume within prescribed limits. Of the vast amount of material available, much must be omitted from any work of limited dimensions, and it was essential to adopt some rule of discrimination. The rule adopted and adhered to, so far as practicable, was to incorporate little material already accessible in good form elsewhere. Accordingly, while numerous references are made in the volume to such accessible material, an attempt has been made wherever feasible to introduce new matter, or matter not hitherto generally available.

The second difficulty arose from the present uncertainty in the relation of the British and metric units of length, or rather from the absence of any generally adopted ratio of the British yard to the metre. The dimensions of the earth adopted for the tables are those of General Clarke, published in 1866, and now most commonly used in geodesy. These dimensions are expressed in English feet, and in order to convert them into metres it is necessary to adopt a ratio of the foot to the metre. The ratio used by General Clarke, and hitherto generally used, is now known to be erroneous by about one one hundred thousandth part. The ratio used in this volume is that adopted provisionally by the Office of Standard Weights and Measures of the United States and legalized by Act of Congress in 1866. But inasmuch as a precise determination of this ratio is now in progress under the auspices of the International Bureau of Weights and Measures, and inasmuch as the value for the ratio found by this Bureau will doubtless be generally adopted, it has been thought best in the present edition to restrict quantities expressed in metric measures to limits which will require no change from the uncertainty in question. In conformity with this decision the dimensions of the earth are given in feet only, and, with a few unimportant exceptions, to which attention is called in the proper places, tables giving quantities in metres are limited to such a number of figures as are definitely known.

It is a matter of regret that, owing to the cause just stated, less prominence has been given in the tables to metric than to British units of length. On the other hand, it seems probable that the more general use of British units will meet the approval of the majority of those for whose use the volume is designed.

The introductory part of the volume is divided into seven sections under the heads, Useful Formulas, Mensuration, Units, Geodesy, Astronomy, Theory of Errors, and Explanation of Source and Use of Tables, respectively. In presenting the subjects embraced under the first six of these headings an attempt was made to give only those features leading directly to practical applications of the principles involved. It is hoped, however, that enough has been given of each subject to render the work of value in a broader sense to those who may desire to go beyond mere applications.

The most of the calculations required in the preparation of the tables were made by Mr. Charles H. Kummell and Mr. B. C. Washington, Jr. Their work was done with skill and fidelity, and it is believed that the systematic checks applied by them have rendered the tables they computed entirely trustworthy. Mention of the particular tables computed by each of them is made in the Explanation of Source and Use of Tables, where full credit is given also for data not specially prepared for the volume.

The Appendix to the present volume is that prepared by Mr. George E. Curtis for the Meteorological Tables. Its usefulness to the geographer is no less obvious and general than to the meteorologist.

The proofs have been read independently by Mr. Charles H. Kummell and the editor. The plate proofs, also, have been read by the editor; and while it is difficult to avoid errors in a first edition of a work containing many formulas and figures, it is believed that few, if any, important errata remain in this volume.

R. S. WOODWARD.

COLUMBIA COLLEGE, New York, N. Y., June 15, 1894

CONTENTS.

.

~

USEFUL FORMULAS.

1. Algebraic Formulas				xiii
a. Arithmetic and geometric means	•			xiii
b. Arithmetic progression				xiii
c. Geometric progression	•			xiii
d. Sums of special series	•			xiii
e. The binomial series and applications	•			xiv
f. Exponential and logarithmic series				xiv
g. Relations of natural logarithms to other logarithms .				xv
2. TRIGONOMETRIC FORMULAS			•	xv
a. Signs of trigonometric functions	•		•	xv
b. Values of functions for special angles		•	•	xv
c. Fundamental formulas			•	xv
d. Formulas involving two angles			•	xvi
e. Formulas involving multiple angles				xvi
f. Exponential values. Moivre's formula				xvi
g. Values of functions in series				xvii
h. Conversion of arcs into angles and angles into arcs .	•		•	xvii
3. FORMULAS FOR SOLUTION OF PLANE TRIANGLES	•	•	•	xviii
4. FORMULAS FOR SOLUTION OF SPHERICAL TRIANGLES	•		•	xx
a. Right angled spherical triangles	•			xx
b. Oblique angled triangles		•		xx
5. ELEMENTARY DIFFERENTIAL FORMULAS			•	xxi
a. Algebraic	•		•	xxi
b. Trigonometric and inverse trigonometric				xxi
6. TAYLOR'S AND MACLAURIN'S SERIES	•	•		xxii
a. Taylor's series			•	xxii
b. Maclaurin's series			•	xxii
c. Example of Taylor's series	•	•		xxii
d. Example of Maclaurin's series	•	•	•	xxiii
7. ELEMENTARY FORMULAS FOR INTEGRATION		•		xxiii
a. Indefinite integrals	•	•	•	xxiii
b. Definite integration		•	•	xxvi
MENSURATION.				
_				
1. LINES	•	•	•	xxviii

•••		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	TU A 111
	a. In a circle					•												•	•	xxviii
	b. In regular	pol	ygo	on							•			•	•	•	•			xxviii
	c. In ellipse.	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	xxix

CONTENTS.

2.	Areas		•			•			•		•	•	•		xxix
	a. Area of plane triangle .			•	•							•	•	•	xxix
	b. Area of trapezoid														xxix
	c. Area of regular polygon														XXX
	d. Area of circle, circular an														XXX
	e. Area of ellipse														XXX
	f. Surface of sphere, etc														xxxi
	g. Surface of right cylinder														xxxi
	h. Surface of right cone .														xxxi
	i. Surface of spheroid													•	xxxi
-	Volumes.													•	xxxii
3.														•	
	a. Volume of prism													•	xxxii
	b. Volume of pyramid														xxxii
	c. Volume of right circular c	ylin	deı	r	•	•	•	•	•	•	•	•			xxxii
	d. Volume of right cone with	ı cir	cul	lar	ba	se		•				•	•		xxxii
	e. Volume of sphere and sph	erio	cal	seg	rme	ent	s								xxxii
	f. Volume of ellipsoid .														xxxiii
									•		•		•	•	
		UI	NIT	ГS.											
1.	STANDARDS OF LENGTH AND N	A AS	5												xxxiv
	BRITISH MEASURES AND WEIG														xxxvii
	a. Linear measures														xxxvii
	b. Surface or square measure														
	c. Measures of capacity														xxxviii

	d. Measures of weight	•	•	•	•	•	•	•	•	•	•	•	•	XXXIX
3.	METRIC MEASURES AND WEIGHTS	•	•	•		•			•	•		•	•	xl
4.	THE C. G. S. SYSTEM OF UNITS .	•	•	•	•	•	•	•	•	•	•	•	•	xlii

GEODESY.

1. Form of the Earth. The Earth's Spheroid. The Geoid.	xli
2. Adopted Dimensions of Earth's Spheroid	xli
3. AUXILIARY QUANTITIES	xl i
4. EQUATIONS TO GENERATING ELLIPSE OF SPHEROID	xl
5. LATITUDES USED IN GEODESY	xl
6. RADII OF CURVATURE	X
7. LENGTHS OF ARCS OF MERIDIANS AND PARALLELS OF LATITUDE .	x
a. Arcs of meridian	x
b. Arcs of parallel	x
8. RADIUS-VECTOR OF EARTH'S SPHEROID	
9. AREAS OF ZONES AND QUADRILATERALS OF THE EARTH'S SURFACE	
10. SPHERES OF EQUAL VOLUME AND EQUAL SURFACE WITH EARTH'S	
Spheroid	
11. CO-ORDINATES FOR THE POLYCONIC PROJECTION OF MAPS	1
12. LINES ON A SPHEROID]
a. Characteristic property of curves of vertical section	1
b. Characteristic property of geodesic line	h

•

•	
13. SOLUTION OF SPHEROIDAL TRIANGLES	h
a. Spherical or spheroidal excess	lv
14. GEODETIC DIFFERENCES OF LATITUDE, LONGITUDE, AND AZIMUTH	lv
a. Primary triangulation	lvi
b. Secondary triangulation	
15. TRIGONOMETRIC LEVELING	1
a. Computation of heights from observed zenith distances	1
b. Coefficients of refraction	lxi
c. Dip and distance of sea horizon	lx
16. MISCELLANEOUS FORMULAS	lx
a. Correction to observed angle for eccentric position of instrument	lx
b. Reduction of measured base to sea level	lx
c. The three-point problem	lx
17. SALIENT FACTS OF PHYSICAL GEODESY	b
a. Area of earth's surface, areas of continents, area of oceans	b
b. Average heights of continents and depths of oceans	b
c. Volume, surface density, mean density, and mass of earth	lx
d. Principal moments of inertia and energy of rotation of earth .	lx
a. Thespar moments of mertia and energy of totation of cartin .	14

ASTRONOMY.

-

.

1. THE CELESTIAL SPHERE. PLANES AND CIRCLES OF REFERENCE	. lxvii
2. Spherical Co-ordinates	. lxvii
a. Notation	. lxvii
b. Altitude and azimuth in terms of declination and hour angle	. lxviii
c. Declination and hour angle in terms of altitude and azimuth	
d. Hour angle and azimuth in terms of zenith distance	. lxix
e. Formulas for parallactic angle	
f. Hour angle, azimuth, and zenith distance of a star at elongation	
g. Hour angle, zenith distance, and parallactic angle for transit of	
a star across prime vertical	
h. Hour angle and azimuth of a star when in the horizon, or at th	e
time of rising or setting	. lxxi
i. Differential formulas	. lxxii
3. Relations of Different Kinds of Time used in Astronomy	. lxxii
a. The sidereal and solar days	. lxxii
b. Relation of apparent and mean time	. lxxiii
c. Relation of sidereal and mean solar intervals of time	. lxxiii
d. Interconversion of sidereal and mean solar time	. lxxiii
e. Relation of sidereal time to the right ascension and hour angle	e
of a star	. lxxiv
4. DETERMINATION OF TIME	. lxxiv
a. By meridian transits	. lxxiv
b. By a single observed altitude of a star	. lxxvi
c. By equal altitudes of a star	. lxxvii
5. DETERMINATION OF LATITUDE	. lxxvii
a. By meridian altitudes	. lxxvii
b. By the measured altitude of a star at a known time	. l xxv iii
c. By the zenith telescope	lxxix
c. By the zenith telescope	UUSIC

ix

6. DETERMINATION OF AZIMUTH	•	•	•		•	•	•	•	•		•	•	•	lxxix
a. By observation of a star at	a	kno	wn	tir	ne		•	•		•				lxxix
b. By an observed altitude of	a	star		•		•	•	•		•	•		•	lxxxi
c. By equal altitudes of a star	r	•	•	•	•	•	•	•	•	•	•	•	•	lxxxi

THEORY OF ERRORS.

1. Law	's o	of]	Err	OR	•	•	•	•	•	•		•		•			•	•		•	•	•	lxxxiii
a	. P	rob	able	e, n	nea	n, a	ınd	lav	era	age	eri	ror	S			•	•	•		•		•	lxxxiv
ь	. P																err						
		pol	late	d lo	oga	rith	ms	i, tI	rigo	ono	me	trio	c fu	nc	tior	ıs,	etc.		•		•	•	lxxxv
2. THE																							
																	•						
b	. F	Rela	tion	of	pro	obal	ble	, n	iea	n, a	ınd	a	vera	ıge	er	rors	3.	•		•	• •	•	lxxxviii
																	•						
																							xc
																	es						xciii
f.	C	Com	puta	atio	n d	of n	nea	ın a	ınd	pr	oba	bl	e e	rro	rs	of	func	cti	ons	o	εo	b-	
		sei	rved	l qı	ian	titie	es				•	•	•				•	•	•			•	xcv
	1	EXF	PLA	NA	TI	ON	C)F	SC	DU	RC	E	AN	D	U	SE	OF	•	TA	BL	ES	•	
Tables 1	a	nd 2	:.										•										xcix
Table 3															•							•	xcix
Table 4																							xcix
Tables g																							xcix
Tables 7	, nai	nd 8	3.																		•		с
Table 9			•					•												•			с
Tables	0	and	II								•		•				•					•	С
Table 12	2										•	•											С
Tables 1																							с
Tables 1																							ci
Table 1																							ci
Table 18																							cii
Tables 1																							cii
Tables 2																							ciii
Table 30	ວັ		•														•	•			•		ciii
Table 3:	t		•												•					•			civ
Tables g	32 :	and	33											•		•		•		•	•	•	civ
Tables 3	34 8	and	35						•				•					•					civ
Tables g	36 :	and	37														•	•					civ
Table 3	ŝ										,					•	•					•	civ
Table 30	3									•							•	•				•	civ
Table 4	5								•				•						•				civ
Table 4	r																	•	•	•	•	•	cv
Table 4																							cv

CONTENTS. .

.

.

TABLES.

TABLE		PAGE
1.	For converting U. S. Weights and Measures — Customary to Metric.	
2.	For converting U. S. Weights and Measures — Metric to Cus-	2
4.	tomary	3
3.	Values of reciprocals, squares, cubes, square roots, cube roots,	3
5.	and common logarithms of natural numbers	4-22
4.	Circumference and area of circle in terms of diameter d	23
5.	Logarithms of numbers, 4-place	24-25
Ğ .	Antilogarithms, 4-place	26-27
7.	Natural sines and cosines	28–29
8.	Natural tangents and cotangents	30-31
9.	Traverse table (differences of latitude and departure)	32-47
10.	Logarithms of meridian radius of curvature in English feet	48-56
11.	Logarithms of radius of curvature of normal section in English feet	57-65
12.	Logarithms of radius of curvature (in metres) of sections oblique	•••••
	to meridian	66-67
13.	Logarithms of factors for computing spheroidal excess of triangles	-
	(unit = English foot) 	68
14.	Logarithms of factors for computing spheroidal excess of triangles	
	(unit = the metre) 	69
15.	Logarithms of factors for computing differences of latitude, longi-	
	tude, and azimuth in secondary triangulation (unit = English	
	foot) • • • • • • • • • • • • • • • • • • •	70-73
16.	Logarithms of factors for computing differences of latitude, longi-	
	tude, and azimuth in secondary triangulation (unit = the metre)	74-77
17.	Lengths of terrestrial arcs of meridian (in English feet)	78–80
18.	Lengths of terrestrial arcs of parallel (in English feet)	81–83
19.	Co-ordinates for projection of maps, scale = $1/250000$	84–91
20.	Co-ordinates for projection of maps, scale = $1/125000$	2
21.	Co-ordinates for projection of maps, scale = $1/126720$	
22.	Co-ordinates for projection of maps, scale = $1/63360$	
23.	Co-ordinates for projection of maps, scale = $1/200000$	
24.	Co-ordinates for projection of maps, scale = $1/80000$	132-141
25.	Areas of quadrilaterals of the earth's surface of 10° extent in lati-	
	tude and longitude	142
26.		
	tude and longitude	144-145
27.	•	69
~8	tude and longitude	146–148
28.		
20	Areas of quadrilaterals of the earth's surface of 10' extent in lati-	150-154
29.		156-159
20	Determination of heights by the barometer (formula of Babinet).	150-159
30. 31.		100
J-1		-
	Digitized by G	oogle

.

CONTENTS.

32.	Conversion of arc into time	162
33.	Conversion of time into arc	163
34.	Conversion of mean time into sidereal time	164
35.	Conversion of sidereal time into mean time	165
36.	Length of 1° of the meridian at different latitudes (in metres, statute miles, and geographic miles).	166
37.	Length of 1° of the parallel at different latitudes (in metres, stat- ute miles, and geographic miles)	167
38.	Interconversion of nautical and statute miles	168
-	Continental measures of length, with their metric and English equivalents	168
40.	Acceleration (g) of gravity on surface of earth and derived func- tions	169
A 1.	Linear expansions of principal metals	170
	Fractional change in a number corresponding to a change in its	-7-
	logarithm	170
	APPENDIX.	
Nume	rical Constants	171
	etical Constants	
	nomical Constants	172
	cal Constants	172
	otic conversion of English and Metric Units -	•
-) 1	English to Metric	173
	Metric to English	174
Dime	nsions of physical quantities	175
INDE	X	177

.

USEFUL FORMULAS.

1. Algebraic.

a. Arithmetic and geometric means. The arithmetic mean of n quantities a, b, c, \ldots is

$$\frac{1}{n}(a+b+c+\dots);$$

their geometric mean is

$$(a \ b \ c \ldots)^{\frac{1}{n}}$$

A case of special interest is

$$\sqrt{a\ b} = \frac{1}{2} (a+b) \left\{ 1 - \left(\frac{a-b}{a+b}\right)^2 \right\}^{\frac{1}{2}}$$

b. Arithmetic progression. If a is the first term, and a + d, a + 2 d, a + 3 d, ... are the successive terms, the *n*th or last term s is

$$s = a + (n - 1) d$$

The sum s of the n terms of this series is

$$s = \frac{1}{2} (a + z) n = \{a + \frac{1}{2} (n - 1) d\} n$$

= $\{z - \frac{1}{2} (n - 1) d\} n$
= $\frac{1}{2} (a + z) \left(\frac{z - a}{d} + 1\right).$

c. Geometric progression. If a is the first term, and $a r, a r^3, \ldots$ are the successive terms, the *n*th or last term z is

$$s = a r^{n-1}$$

The sum of the n terms is

$$s = \frac{a (r^{n} - 1)}{r - 1} = \frac{r \cdot s - a}{r - 1} = \frac{z (r^{n} - 1)}{(r - 1) r^{n-1}}$$
$$r < 1 \text{ and } n = \infty,$$
$$s = \frac{a}{1 - r}.$$

d. Sums of special series.

$$\begin{array}{l} \mathbf{I} + 2 + 3 + 4 + \dots + n &= \frac{1}{2}n(n+1) \\ \mathbf{2} + 4 + 6 + 8 + \dots + 2n &= n(n+1) \\ \mathbf{I} + 3 + 5 + 7 + \dots + (2n-1) &= n^2 \\ \mathbf{I}^2 + 2^2 + 3^2 + 4^2 + \dots + n^2 &= \frac{1}{6}n(n+1)(2n+1) \\ \mathbf{I}^8 + 2^8 + 3^8 + 4^8 + \dots + n^8 &= \frac{1}{4}n^2(n+1)^2 \\ &= \frac{$$

If

e. The binomial series and applications.
For
$$a > b$$
,
 $(a \pm b)^n = a^n \pm n \ a^{n-1} \ b + \frac{n \ (n-1)}{1 \cdot 2} \ a^{n-2} \ b^3$
 $\pm \frac{n \ (n-1) \ (n-2)}{1 \cdot 2 \cdot 3} \ a^{n-3} \ b^3 + \cdots$
For $x < 1$,
 $(1 \pm x)^n = 1 \pm n \ x + \frac{n \ (n-1)}{1 \cdot 2} \ x^3 \pm \frac{n \ (n-1) \ (n-2)}{1 \cdot 2 \cdot 3} \ x^3 + \cdots$
 $\frac{1}{1 + x} = 1 - x + x^3 - x^3 + x^4 - \cdots$
 $\frac{1}{1 - x} = 1 + x + x^3 + x^3 + x^4 + \cdots$
 $\frac{1}{(1 - x)^3} = 1 + 2 \ x + 3 \ x^2 + 4 \ x^3 + 5 \ x^4 + \cdots$
 $(1 + x)^{\frac{1}{3}} = 1 + \frac{1}{2} \ x - \frac{1}{8} \ x^2 - \frac{1}{16} \ x^3 - \frac{5}{128} \ x^4 - \cdots$
 $\frac{1}{(1 + x)^{\frac{1}{3}}} = 1 - \frac{1}{2} \ x + \frac{3}{8} \ x^2 - \frac{5}{18} \ x^4 + \frac{35}{128} \ x^4 - \cdots$
 $\frac{1}{(1 - x)^3} = 1 + \frac{1}{2} \ x + \frac{3}{8} \ x^2 - \frac{5}{18} \ x^4 + \frac{35}{128} \ x^4 - \cdots$

f. Exponential and logarithmic series.

For
$$-\infty < x < \infty$$
,
 $e^x = 1 + \frac{x}{1} + \frac{x^2}{1 \cdot 2} + \frac{x^3}{1 \cdot 2 \cdot 3} + \frac{x^4}{1 \cdot 2 \cdot 3 \cdot 4} + \cdots$

The number e is the base of the natural or "Napierian" system of logarithms. For x = + 1, the above series gives

e == 2.718281828459

In the natural system the following series hold with the limitations indicated :

$$a^{x} = \mathbf{i} + \frac{\log a}{\mathbf{i}} x + \frac{(\log a)^{2}}{\mathbf{i} \cdot 2} x^{3} + \frac{(\log a)^{3}}{\mathbf{i} \cdot 2 \cdot 3} x^{4} \dots$$
$$- \infty < x < \infty;$$
$$\log (\mathbf{i} + x) = x - \frac{x^{3}}{2} + \frac{x^{8}}{3} - \frac{x^{4}}{4} + \frac{x^{5}}{5} - \dots$$
$$x \le \mathbf{i};$$
$$\log (\mathbf{i} - x) = -x - \frac{x^{3}}{2} - \frac{x^{8}}{3} - \frac{x^{4}}{4} - \frac{x^{5}}{5} - \dots$$
$$x < \mathbf{i};$$
$$\log x = 2 \left\{ \frac{x - \mathbf{i}}{x + \mathbf{i}} + \frac{1}{3} \left(\frac{x - \mathbf{i}}{x + \mathbf{i}} \right)^{8} + \frac{1}{3} \left(\frac{x - \mathbf{i}}{x + \mathbf{i}} \right)^{5} + \frac{1}{3} \left(\frac{x - \mathbf{i}}{x + \mathbf{i}} \right)^{7} + \dots \right\}$$
$$0 < x < \infty;$$
$$\log \frac{x + y}{x} = 2 \left\{ \frac{y}{2x + y} + \frac{1}{3} \left(\frac{y}{2x + y} \right)^{8} + \frac{1}{3} \left(\frac{y}{2x$$

B = base of any system, N = any number, $L = \log N \text{ to base } B = \log_B N,$ $l = \log N \text{ to base } e = \log_e N.$

Then

$$N = e^{l} = B^{L},$$

$$L = l \log_{B} e = l / \log_{e} B,$$

 $\log_{B^{\ell}} = 1/\log_{\ell} B = \mu$, say, which is called the *modulus* of the system whose base is B. In the common, or Briggean system,

$$\mu = \log_{10} e = 0.43429448 \dots$$
$$\log \mu = 9.6377843 - 10.$$

2. TRIGONOMETRIC FORMULAS.

Function.	ıst Quadrant.	2d Quadrant.	3d Quadrant.	4th Quadrant.
sine	+	+	-	-
cosine	+	-	-	+
tangent	+	-	+	-
cotangent	+	_	+	-

a. Signs of trigonometric functions.

b. Values of functions for special angles.

	o°	90°	180°	2 70 ⁰	360°	30°	45°	60°
sine	0	+ 1	o	— 1	0	1/2	$\frac{1}{2}\sqrt{2}$	<u></u> ¹ √3
cosine	+ 1	o	— I	o	+ 1	1 √3	$\frac{1}{2}\sqrt{2}$]
tangent	o	~~~	o	8	o	⅓ √3	I	√ 3
cotangent	8	o	~	o	œ	√ 3	I	<u></u> ¹ √3

c. Fundamental formulas.

 $\sin^{2} a + \cos^{2} a \equiv I, \qquad \tan a \cot a \equiv I, \\ \cos a \sec a \equiv I, \qquad \sin a \csc a \equiv I, \\ \tan a \equiv \frac{\sin a}{\cos a}, \qquad \cot a \equiv \frac{\cos a}{\sin a}, \\ I + \tan^{2} a \equiv \frac{I}{\cos^{2} a} \equiv \sec^{2} a, \qquad I + \cot^{2} a \equiv \frac{I}{\sin^{2} a} \equiv \csc^{2} a, \\ \operatorname{versed sin} a \equiv I - \cos a.$

USEFUL FORMULAS.

d. Formulas involving two angles. $\sin (a \pm \beta) = \sin a \cos \beta \pm \cos a \sin \beta$ $\cos (a \pm \beta) = \cos a \cos \beta \mp \sin a \sin \beta.$ $\tan (\alpha \pm \beta) = (\tan \alpha \pm \tan \beta)/(1 \mp \tan \alpha \tan \beta),$ $\cot (a \pm \beta) = (\cot a \cot \beta \mp 1)/(\cot a \pm \cot \beta).$ $\sin a + \sin \beta = 2 \sin \frac{1}{2}(a + \beta) \cos \frac{1}{2}(a - \beta),$ $\sin a - \sin \beta = 2 \cos \frac{1}{2}(a + \beta) \sin \frac{1}{2}(a - \beta).$ $\cos a + \cos \beta = 2 \cos \frac{1}{2}(a + \beta) \cos \frac{1}{2}(a - \beta),$ $\cos a - \cos \beta = -2 \sin \frac{1}{2}(a + \beta) \sin \frac{1}{2}(a - \beta).$ $\tan a \pm \tan \beta = \frac{\sin (a \pm \beta)}{\cos a \cos \beta}$ $\cot a \pm \cot \beta = \frac{\sin (\beta \pm a)}{\sin a \sin \beta}$ $2 \sin a \sin \beta = \cos (a - \beta) - \cos (a + \beta),$ $2 \cos a \cos \beta = \cos (a - \beta) + \cos (a + \beta)$ $2 \sin a \cos \beta = \sin (a - \beta) + \sin (a + \beta)$ $\frac{\sin a + \sin \beta}{\sin a - \sin \beta} = \tan \frac{1}{2}(a + \beta) \cot \frac{1}{2}(a - \beta),$ $\frac{\cos \alpha + \cos \beta}{\cos \alpha - \cos \beta} = -\cot \frac{1}{2}(\alpha + \beta) \cot \frac{1}{2}(\alpha - \beta).$

e. Formulas involving multiple angles.

 $\sin 2 a = 2 \sin a \cos a$ $\sin 3 a = 3 \sin a \cos^2 a - \sin^2 a$ $\cos 2 a = \cos^2 a - \sin^2 a = 1 - 2 \sin^2 a = 2 \cos^2 a - 1$ $\cos 3 a = \cos^8 a - 3 \sin^8 a \cos a$ $\tan \frac{1}{2}a = \frac{\sin a}{1 + \cos a} = \frac{1 - \cos a}{\sin a} = \left(\frac{1 - \cos a}{1 + \cos a}\right)^{\frac{1}{2}},$ $\tan 2 a = \frac{2 \tan a}{1 - \tan^2 a}, \qquad \cot 2 a = \frac{\cot^2 a - 1}{2 \cot a},$ $\sin a = \frac{2 \tan \frac{1}{2} a}{1 + \tan^2 \frac{1}{2} a}, \qquad \cos a = \frac{1 - \tan^2 \frac{1}{2} a}{1 + \tan^2 \frac{1}{2} a}$ $2 \cos^2 a = 1 + \cos 2 a,$ $4 \cos^2 a = 3 \cos a + \cos 3 a.$ $2 \sin^2 a = 1 - \cos 2 a$ $4 \sin^8 a = 3 \sin a - \sin 3 a$ f. Exponential values. Moivre's formula. e = base of natural logarithms, $i = \sqrt{-1}, i^2 = -1, i^3 = -i, i^4 = 1, \text{ etc.}$ $\sin x = \frac{1}{2i} \left(e^{ix} - e^{-ix} \right),$ $\cos x = \frac{1}{4} \left(e^{ix} + e^{-ix} \right).$ $\sin ix = \frac{1}{2i} (e^{-x} - e^{x}).$ $\cos ix = \frac{1}{2} \left(e^{-x} + e^{x} \right),$ $(\cos x \pm i \sin x)^m = \cos mx \pm i \sin mx.$ Digitized by Google

xvi

g. Values of functions in series.

For x in arc the following series hold within the limits indicated.

 $\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + \dots,$ $\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + \dots,$ $-\infty < x < +\infty$ $\tan x = x + \frac{1}{3} x^{5} + \frac{2}{15} x^{5} + \frac{17}{315} x^{7} + \dots,$ sec $x = 1 + \frac{1}{2}x^{2} + \frac{5}{24}x^{4} + \frac{61}{720}x^{6} + \dots$ $-\frac{1}{2}\pi < x < +\frac{1}{2}\pi$ $\cot x = \frac{1}{2} \left(1 - \frac{1}{3} x^2 - \frac{1}{45} x^4 - \frac{2}{945} x^6 - \dots \right),$ cosec $x = \frac{1}{2} (1 + \frac{1}{6} x^2 + \frac{1}{360} x^4 + \frac{31}{13120} x^6 + \dots),$ $-\pi < x < +\pi.$ $\arcsin x = x + \frac{1}{2} x^{2} + \frac{3}{20} x^{5} + \frac{1}{16} x^{7} + \dots$ arc tan $x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \dots,$ -1 < x < +1. $x = \sin x + \frac{1}{4} \sin^8 x + \frac{3}{40} \sin^5 x + \frac{1}{163} \sin^7 x + \dots$ $-\frac{1}{2}\pi < x < +\frac{1}{2}\pi$. $x = \tan x - \frac{1}{3} \tan^8 x + \frac{1}{3} \tan^6 x - \frac{1}{3} \tan^7 x + \dots$ $-\frac{1}{4}\pi < x < +\frac{1}{4}\pi$ $\log \sin x = \log x - \mu \left(\frac{1}{6} x^2 + \frac{1}{180} x^4 + \frac{1}{2835} x^6 + \dots \right),$ x positive and $< \pi$. $\mu =$ modulus of common logarithms. See p. xv. $\log \tan x = \log x + \mu \left(\frac{1}{3} x^2 + \frac{7}{30} x^4 + \frac{62}{2835} x^6 + \dots \right),$ x positive and $< \frac{1}{2} \pi$.

h. Conversion of arcs into angles and angles into arcs.

Denote by x° , x', and x'' respectively the angle (in degrees, minutes, or seconds) corresponding to the arc x. Then by equality of ratios

$$\frac{360^{\circ}}{x^{\circ}} = \frac{360 \times 60'}{x'} = \frac{360 \times 60 \times 60'}{x''} = \frac{2 \pi}{x},$$
$$x^{\circ} = x \frac{180^{\circ}}{\pi},$$
$$x' = x \frac{180 \times 60'}{\pi},$$
$$x'' = x \frac{180 \times 60 \times 60''}{\pi}.$$

whence

xviii Put

Then

Put
$$\frac{180^{\circ}}{\pi} = \rho^{\circ} = \text{number of degrees in the radius,}$$
$$\frac{180 \times 60'}{\pi} = \rho' = \text{number of minutes in the radius,}$$
$$\frac{180 \times 60 \times 60''}{\pi} = \rho'' = \text{number of seconds in the radius.}$$
Then
$$x^{\circ} = x \rho^{\circ}, \quad x' = x \rho', \quad x'' = x \rho''.$$
$$\rho^{\circ} = 57.^{\circ} 2957795, \quad \log \rho^{\circ} = 1.75812263, \\\rho' = 3437.'74677, \quad \log \rho' = 3.53627388, \\\rho'' = 205264.''806, \quad \log \rho'' = 5.31442513.$$
3. FORMULAS FOR SOLUTION OF PLANE TRIANGLES.
$$a, b, c = \text{sides of triangle,} \\a, b, c = \text{sides of triangle,} \\c = \text{radius of inscribed circle,} \\R = \text{radius of inscribed circle,} \\R = \text{radius of circumscribed circle,} \\s = \frac{1}{2}(a + b + c).$$
$$\frac{a}{\sin a} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2 R.$$

$$a = b \cos \gamma + c \cos \beta, \quad b = c \cos a + a \cos \gamma, \quad c = a \cos \beta + b \cos a.$$

$$r = 4 R \sin \frac{1}{2} a \sin \frac{1}{2} \beta \sin \frac{1}{2} \gamma = \frac{a b c}{4 R s}.$$

$$a^{\circ} = b^{\circ} + c^{\circ} - 2 b c \cos a = (b + c)^{\circ} - 4 b c \cos^{\circ} \frac{1}{2} a.$$

$$\sin \frac{1}{2} a = \sqrt{\frac{(s - b)(s - c)}{bc}}, \quad \cos \frac{1}{2} a = \sqrt{\frac{s(s - a)}{bc}}.$$

$$\tan \frac{1}{2} a = \sqrt{\frac{(s - b)(s - c)}{bc}} = \frac{r}{s - a}.$$

$$r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}.$$

 $A = \frac{1}{2} a b \sin \gamma = \frac{a^2 \sin \beta \sin \gamma}{2 \sin a} = 2 R^2 \sin a \sin \beta \sin \gamma$ $= r^{2} \cot \frac{1}{2} a \cot \frac{1}{2} \beta \cot \frac{1}{2} \gamma = \sqrt{s(s-a)(s-b)(s-c)}$ = $rs = \frac{1}{4} a b c / R.$

In right angled triangles let

$$a = \text{altitude,} b = base, c = hypothenuse, y = 90°.$$

Then

$$a = c \sin a = c \cos \beta = b \tan a = b \cot \beta,$$

$$b = c \sin \beta = c \cos a = a \tan \beta = a \cot a.$$

$$A = \frac{1}{2} a b = \frac{1}{2} a^2 \cot a = \frac{1}{2} b^2 \tan a = \frac{1}{4} c^4 \sin 2 a$$

Given.	Sought.	Formula.
a, b, c	a	$\sin \frac{1}{2} a = \sqrt{\frac{(s-b)(s-c)}{bc}}, s = \frac{1}{2} (a+b+c),$
		$\cos \frac{1}{2} a = \sqrt{\frac{s(s-a)}{bc}},$
		$\tan \frac{1}{2} \alpha = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}.$
	A	$A = \sqrt{s(s-a)(s-b)(s-c)}.$
<i>a</i> , <i>b</i> , a	β	$\sin \beta = b \sin a/a.$ When $a > b$, $\beta < go^{\circ}$ and but one value results. When $b > a$,
		β has two values. $\gamma = 180^{\circ} - (a + \beta).$
		$c = a \sin \gamma / \sin \alpha.$
		$A = \frac{1}{2} a b \sin \gamma.$
<i>a</i> , <i>α</i> , β	ь	$b = a \sin \beta / \sin a$.
	γ	$\gamma = 180^{\circ} - (a + \beta).$
	c	$c = a \sin \gamma / \sin a = a \sin (a + \beta) / \sin a$.
	<u>A</u>	$A = \frac{1}{2} a b \sin \gamma = \frac{1}{2} a^2 \sin \beta \sin \gamma / \sin a.$
a, b, y	a	$\tan a = \frac{a \sin \gamma}{b - a \cos \gamma}.$ $\frac{1}{2} (a + \beta) = 90^{\circ} - \frac{1}{2} \gamma,$
	α, β	$\frac{1}{2}(\alpha+\beta)=90^\circ-\frac{1}{2}\gamma,$
		$\tan \frac{1}{2}(a-\beta) = \frac{a-b}{a+b} \cot \frac{1}{2}\gamma.$
		$c = (a^2 + b^2 - 2 \ a \ b \cos \gamma)^i$
		$= \{(a + b)^2 - 4 \ a \ b \cos^2 \frac{1}{2} \gamma\}^{\frac{1}{2}},$
		$= \{(a - b)^{2} + 4 \ a \ b \sin^{2} \frac{1}{2} \gamma\}^{\frac{1}{2}},$
		$= (a - b)/\cos \phi, \text{ where } \tan \phi = 2 \sqrt{a b} \sin \frac{1}{2} \gamma/(a - b),$
		$= a \sin \gamma / \sin a$.
	A	$A = \frac{1}{2} a b \sin \gamma.$
		Digitized by GOOD

Table for solution of oblique triangles.

USEFUL FORMULAS.

4. FORMULAS FOR SOLUTION OF SPHERICAL TRIANGLES.

a. Right angled spherical triangles. a, b, c = sides of triangle, c being the hypotenuse, a, β , γ = angles opposite to a, b, c, respectively, $\gamma = 90^{\circ}$. $\sin a = \sin c \sin a$ $\sin b = \sin c \sin \beta$. $\tan a = \tan c \cos \beta$. $\tan b = \tan c \cos a$ $= \sin b \tan a$, $= \sin a \tan \beta$; $\cos\beta = \cos b \sin a$; $\cos a = \cos a \sin \beta$, $\cos c = \cos a \cos b = \cot a \cot \beta.$ b. Oblique angled triangles. a, b, c = sides of triangle, a, β , γ = angles opposite to a, b, c, respectively, $s = \frac{1}{2}(a+b+c),$ $\sigma = \frac{1}{2} (a + \beta + \gamma),$ $\epsilon = a + \beta + \gamma - 180^\circ =$ spherical excess. S = surface of triangle on sphere of radius r. $\frac{\sin a}{\sin a} = \frac{\sin b}{\sin B} = \frac{\sin c}{\sin \gamma}$ $\cos a = \cos b \cos c + \sin b \sin c \cos a$ $\sin^2 \frac{1}{2} a = \frac{-\cos \sigma \cos (\sigma - a)}{\sin \beta \sin \gamma}, \quad \cos^2 \frac{1}{2} a = \frac{\cos (\sigma - \beta) \cos (\sigma - \gamma)}{\sin \beta \sin \gamma},$ $\tan^{2} \frac{1}{2} a = \frac{-\cos \sigma \cos (\sigma - a)}{\cos (\sigma - \beta) \cos (\sigma - \gamma)}.$ $\sin^2 \frac{1}{2}a = \frac{\sin(s-b)\sin(s-c)}{\sin b\sin c}, \quad \cos^2 \frac{1}{2}a = \frac{\sin s\sin(s-a)}{\sin b\sin c},$ $\tan^2 \frac{1}{2} a = \frac{\sin (s-b) \sin (s-c)}{\sin s \sin (s-a)}.$ $\cot \frac{1}{2} \epsilon = \frac{\cot \frac{1}{2} a \cot \frac{1}{2} b + \cos \gamma}{\sin \gamma},$ $\tan^{\frac{a}{2}} \frac{1}{4} \epsilon = \tan \frac{1}{2} s \tan \frac{1}{2} (s-a) \tan \frac{1}{2} (s-b) \tan \frac{1}{2} (s-c).$ $S = \frac{\epsilon}{r^2 c^2} \pi r^2.$

Napier's analogies.

 $\tan \frac{1}{2} (a + b) = \frac{\cos \frac{1}{2} (a - \beta)}{\cos \frac{1}{2} (a + \beta)} \tan \frac{1}{2} c, \quad \tan \frac{1}{2} (a - b) = \frac{\sin \frac{1}{2} (a - \beta)}{\sin \frac{1}{2} (a + \beta)} \tan \frac{1}{2} c,$ $\tan \frac{1}{2} (a + \beta) = \frac{\cos \frac{1}{2} (a - b)}{\cos \frac{1}{2} (a + b)} \cot \frac{1}{2} \gamma, \quad \tan \frac{1}{2} (a - \beta) = \frac{\sin \frac{1}{2} (a - b)}{\sin \frac{1}{2} (a + b)} \cot \frac{1}{2} \gamma.$

Gauss's formulas.

$$\cos \frac{1}{2} (a + \beta) \cos \frac{1}{2} c = \cos \frac{1}{2} (a + b) \sin \frac{1}{2} \gamma,$$

$$\sin \frac{1}{2} (a + \beta) \cos \frac{1}{2} c = \cos \frac{1}{2} (a - b) \cos \frac{1}{2} \gamma,$$

$$\cos \frac{1}{2} (a - \beta) \sin \frac{1}{2} c = \sin \frac{1}{2} (a + b) \sin \frac{1}{2} \gamma,$$

$$\sin \frac{1}{2} (a - \beta) \sin \frac{1}{2} c = \sin \frac{1}{2} (a - b) \cos \frac{1}{2} \gamma,$$

5. ELEMENTARY DIFFERENTIAL FORMULAS.

a. Algebraic.

 $u, v, w, \ldots =$ variables subject to differentiation, $a, b, c, \ldots =$ constants.

$$d(a + u) = du, \quad d(a \ u) = a \ du,$$

$$d(u + v + w + \dots) = d \ u + d \ v + d \ w + \dots,$$

$$d(u \ v) = u \ dv + v \ du,$$

$$d(u \ v \ w \dots) = \left(\frac{du}{u} + \frac{dv}{v} + \frac{dw}{w} + \dots\right) u \ v \ w \dots,$$

$$d\left(\frac{u}{v}\right) = \frac{v \ du - u \ dv}{v^2} = \frac{du}{v} - \frac{u \ dv}{v^2},$$

$$d\left(\frac{a + b \ u}{h + g \ u}\right) = \frac{b \ h - a \ g}{(h + g \ u)^2} \ du.$$

$$dv^* = n \ v^{n-1} \ dv, \qquad d\sqrt{v} = \frac{dv}{2 \ \sqrt{v}},$$

$$da^v = a^v \ \log a \ dv, \qquad de^v = e^v \ dv$$

$$(e = base \ of natural \ logarithms),$$

$$d \ \log v = dv/v.$$

$$dF(u, v, w \dots) = \frac{\partial F}{\partial u} \ du + \frac{\partial F}{\partial v} \ dv + \frac{\partial F}{\partial w} \ dw + \dots$$

b. Trigonometric and inverse trigonometric.

$$d\sin x = \cos x \, dx, \qquad d\cos x = -\sin x \, dx,$$

$$d\tan x = \sec^2 x \, dx, \qquad d\cot x = -\csc^2 x \, dx,$$

$$d\sec x = \sec^2 x \sin x \, dx, \qquad d\cot x = -\csc^2 x \, dx,$$

$$d\log \sin x = \cot x \, dx, \qquad d\log \cos x = -\tan x \, dx.$$

$$d\log \sin x = \pm \frac{dx}{\sqrt{1 - x^2}} \qquad d\arg \cos x = \pm \frac{dx}{\sqrt{1 - x^2}},$$

$$d\arctan x = \frac{dx}{1 + x^2} \qquad d\arg \cot x = -\frac{dx}{1 + x^2}.$$

xxi

6. TAYLOR'S AND MACLAURIN'S SERIES.

a. Taylor's series.

If u = f(x + h), any finite and continuous function of x + h, h being an arbitrary increment to x; and if du/dx, $d^{2}u/dx^{2}$, . . . are finite and determinate,

$$u = f(x + h) = f(x) + f'(x)h + f''(x)\frac{h^2}{2} + f'''(x)\frac{h^3}{1 \cdot 2 \cdot 3} + \cdots$$

where $f(x), f'(x), f''(x), \ldots$ are the values of $f(x + h), \frac{du}{dx}, \frac{d^2u}{dx^2}, \ldots$ when h = 0. This is Taylor's series or theorem. The remainder after the first *n* terms in *h* is expressed by the definite integral

$$\frac{1}{1.2.3...n} \int_{0}^{h} f^{n+1} (x+h-z) \, s^n \, ds.$$

b. Maclaurin's series.

If in Taylor's series we make x = 0, and h = x, the result is

$$u = f(x) = f(0) + f'(0) x + f''(0) \frac{x^2}{1 \cdot 2} + f'''(0) \frac{x^3}{1 \cdot 2 \cdot 3} + \dots,$$

where f(0), f''(0), f''(0), ... are the values of f(x), du/dx, d^2u/dx^3 , ... when x = 0. This is Maclaurin's series or theorem. The remainder after the first *n* terms in *x* is expressed by the definite integral

$$\frac{1}{1\cdot 2\cdot 3\cdots n}\int_{0}^{x}f^{n+1}(x-s)\,s^{n}\,ds.$$

c. Example of Taylor's series.

$$u = f(x + h) = \log (x + h).$$

$$f(x) = \log x,$$

$$\frac{du}{dx} = \frac{1}{x + h}, \qquad f'(x) = +x^{-1},$$

$$\frac{d^{2}u}{dx^{3}} = -\frac{1}{(x + h)^{3}}, \qquad f''(x) = -x^{-2},$$

$$\frac{d^{3}u}{dx^{3}} = +\frac{2}{(x + h)^{3}}, \qquad f'''(x) = +2x^{-3},$$

....

Hence for common logarithms, μ being the modulus,

 $\log (x + h) = \log x + \mu (x^{-1}h - \frac{1}{2}x^{-2}h^2 + \frac{1}{2}x^{-3}h^3 - ...),$ and the sum of the remaining terms is

$$-\frac{\mu}{1\cdot 2\cdot 3}\int\limits_{0}^{h}\frac{2\cdot 3}{(x+h-z)^4}\,z^4\,dz.$$

Since x is the least value of (x + h - s) within the limits of this integral, the sum of the remaining terms is negative, and numerically

$$< \frac{1}{4}\mu\left(\frac{\hbar}{x}\right)^4$$
.

If, for example, (h/x) = 1/100, the remainder in question is less than $\frac{1}{4} \times 0.434 \times 10^{-8}$, or about one unit in the ninth place of decimals.

d. Example of Maclaurin's series.

 $u = f(x) = \sin x.$

$$f(o) = o,$$

$$\frac{du}{dx} = \cos x, \qquad f'(o) = + i,$$

$$\frac{d^{2}u}{dx^{3}} = -\sin x, \qquad f''(o) = o,$$

$$\frac{d^{3}u}{dx^{3}} = -\cos x, \qquad f'''(o) = - i,$$

....

Hence

$$f(x) = \sin x = x - \frac{x^8}{1 \cdot 2 \cdot 3} + \frac{x^6}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} - \dots,$$

and the sum of the remaining terms is

$$-\frac{1}{5}\int_{0}^{x}\sin(x-z)\,z^{5}\,dz.$$

If g is the greatest value of sin (x - s) within the limits of this integral the remainder in question is negative and numerically

$$< \frac{g}{6} \times \frac{1}{5!} x^{s}.$$

If, for example, $x = \pi/6$ (the arc of 30°), $g = \frac{1}{2}$, and the remainder is numerically less than 0.0000143.

7. ELEMENTARY FORMULAS FOR INTEGRATION.

a. Indefinite integrals.

$$\int a dx = a \int dx = ax + C.$$

$$\int f(x) dx + \int \phi(x) dx = \int \{f(x) + \phi(x)\} dx.$$

If $x = \phi(y)$, and $dx = \phi'(y) dy$, $\int f(x) dx = \int f \{\phi(y)\} \phi'(y) dy.$ $\frac{d}{dy} \int f(x, y) dx = \int \frac{df(x, y)}{dy} dx.$

.

Since
$$d(wv) = udv + vdu$$
,

$$\int udv = uv - \int vdu$$
; and
if $u = f(x)$ and $v = \phi(x)$,

$$\int f(x) \frac{d\phi(x)}{dx} dx = f(x) \phi(x) - \int \phi(x) \frac{df(x)}{dx} dx.^*$$

$$\int dx \int f(x, y) dy = \int dy \int f(x, y) dx.$$

$$\int dx \int f(x) dx = x \int f(x) dx - \int xf(x) dx.$$

$$\int x^n dx = \frac{x}{n+1} x^{n-1} + C.$$

$$\int \frac{dx}{x^n} = -\frac{x}{n-1} x^{-(n-1)} + C, \qquad n > 1.$$

$$\int (a + bx)^n dx = \frac{(a + bx)^{n+1}}{(n+1)b} + C.$$

$$\int \frac{dx}{x^1} = \log x + C, \qquad \int \frac{dx}{a + bx} = b^{-1} \log (a + bx).$$

$$\int \frac{dx}{x^1 + x^2} = \arctan x + C, \qquad \int \frac{-dx}{1 + x^2} = \arctan x + C.$$

$$\int \frac{dx}{1 + x^2} = \frac{1}{1} \log \frac{x}{1 - x} + C, \qquad \int \frac{dx}{x^2 - 1} = \frac{1}{2} \log \frac{x}{x+1} + C.$$

$$\int \frac{dx}{a + bx^2} = (ab)^{-1} \arctan (b/a)^3 x + C, \ for a and b both positive,$$

$$= \frac{1}{2} (-ab)^{-1} \log \frac{(-ab)^3 - b}{(-ab)^3 + bx} + C, \ for ab negative.$$

$$\int \frac{dx}{a + 2bx + cx^2} = (ac - b^5)^{-1} \arctan (\frac{b}{b^3 - ac})^{-1} - \frac{b}{b} - \frac{cx}{a} + C, \ for b^3 - ac > 0.$$

$$\int (a + x^5)^4 dx = \frac{1}{2} x (a^2 - x^5)^4 + \frac{1}{2} a^3 \arctan \frac{x}{a} + C.$$

* This is the formula for integration by parts.

† Natural logarithms are used in this and the following integrals. For relation of natural to common logarithms see section I, g.

xxiv

•

$$\begin{aligned} \int (a+a\ bx+cx^{3})^{a}\ dx = \frac{1}{2}\ (b+cx)\ (a+a\ bx+cx^{3})^{b}\ (a+a\ bx+cx^{3})^{-1}\ dx + C, \\ \int (a+bx)^{-1}\ dx = a\ (a+bx)^{b}\ b+C, \\ \int (a+bx)^{-1}\ dx = \frac{1}{2}\ (3\ ab-a\ ab+b\ bx)\ (a+bx)^{b}\ b^{a}+C, \\ \int (a+bx)^{-1}\ dx = \frac{1}{2}\ (3\ ab-a\ ab+b\ bx)\ (a+bx)^{b}\ b^{a}+C, \\ \int (a+bx)^{-1}\ dx = \frac{1}{2}\ (3\ ab-a\ ab+b\ x)\ (a+bx)^{b}\ b^{a}+C, \\ \int (a+bx)^{-1}\ dx = \frac{1}{2}\ (a+x^{3})^{-1}\ dx = \frac{1}{2}\ ab+cx\ bx+cx^{3}\ b^{3}\ b^{a}+C, \\ = a\ arc\ tan\ \left(\frac{a+x}{a-x}\right)^{1}\ +C, \\ \int (a+x^{3})^{-1}\ dx = \log\ \{x+(a+x^{3})\}\ +C, \\ \int (a+x^{3})^{-1}\ dx = \log\ \{x+(a+x^{3})\}\ +C, \\ \int (a+x^{3})^{-1}\ dx = \frac{1}{\sqrt{c}}\ \log\ \{x+(a+x^{3})^{2}\ +C, \\ \int (a+x^{3})^{-1}\ dx = \frac{1}{\sqrt{c}}\ \log\ \{x+(a+x^{3})^{2}\ +C, \\ \int (a+x^{3})^{-1}\ dx = \frac{1}{\sqrt{c}}\ \log\ \{x+(a+x^{3})^{2}\ +C, \\ \int (a+x)^{-1}\ dx = \frac{1}{\sqrt{c}}\ \log\ \{x+(a+x^{3})^{2}\ +C, \\ \int (a+x)^{-1}\ dx = \frac{1}{\sqrt{c}}\ \log\ \{x+(a+x^{3})^{2}\ +C, \\ \int (a+x)^{-1}\ dx = \frac{1}{\sqrt{c}}\ \log\ \{x+(a+x^{3})^{2}\ +C, \\ \int (a+x)^{-1}\ dx = \frac{1}{\sqrt{c}}\ \log\ \{x+(a+x^{3})^{2}\ +C, \\ \int (a+x)^{-1}\ dx = \frac{1}{\sqrt{c}}\ \log\ \{x+(a+x^{3})^{2}\ +C, \\ \int (a+x)^{-1}\ dx = \frac{1}{\sqrt{c}}\ \log\ x\ dx = x\ d$$

b. Definite Integration.

$$\int_{a}^{n} \phi(x) dx = \int_{a}^{b} \phi(x) dx + \int_{b}^{c} \phi(x) dx + \dots \int_{m}^{n} \phi(x) dx.$$
$$\int_{a}^{b} \phi(x) dx = -\int_{b}^{a} \phi(x) dx.$$
$$\int_{0}^{a} \phi(x) dx = \int_{0}^{a} \phi(a-x) dx.$$

If $\phi(x) = \phi(-x)$, an "even function" of x,

$$\int_{0}^{a} \phi(x) dx = \int_{-a}^{0} \phi(x) dx = \frac{1}{2} \int_{-a}^{a} \phi(x) dx.$$

If $\phi(x) = -\phi(-x)$, an "odd function" of x, $\int_{-a}^{0} \phi(x) dx = \int_{0}^{a} \phi(x) dx$, and $\int_{-a}^{0} \phi(x) dx = 0$.

If A be the greatest and B the least value of $\phi(x)$ within the limits a and b,

$$A(b-a) > \int_{a}^{b} \phi(x) dx > B(b-a),$$

a formula useful in determining approximate values of integrals. See, e. g., section 6, d.

If
$$u = \int_{a}^{b} \phi(x) dx$$
,

$$\frac{du}{da} = -\phi(a), \qquad \frac{du}{db} = \phi(b).$$

$$\int_{0}^{\infty} \frac{dx}{1+x^{2}} = \frac{1}{2}\pi.$$

$$\int_{0}^{1} \frac{dx}{1+x^{2}} = \int_{1}^{\infty} \frac{dx}{1+x^{2}} = \frac{1}{2}\pi.$$

$$\int_{0}^{\infty} \frac{dx}{a+bx^{2}} = \frac{1}{2}\pi/\sqrt{(ab)}, \qquad \int_{0}^{a} \frac{dx}{\sqrt{a^{2}-x^{2}}} = \frac{1}{2}\pi.$$

Digitized by Google

$$\int_{0}^{\infty} e^{-x^{2}} dx = \frac{1}{2} \sqrt{\pi}, \qquad \int_{0}^{\infty} e^{-a^{2}x^{2}} dx = \frac{1}{2} \sqrt{(\pi/a^{2})}.$$

$$\int_{0}^{\infty} e^{-a^{2}x^{2}} x^{2n} dx = 1 \cdot 3 \cdot 5 \dots (2 \ n-1) \ a^{-n} (2 \ a)^{-(n+1)} \sqrt{\pi}.$$

$$\int_{0}^{\infty} e^{-ax} x^{-\frac{1}{2}} dx = \sqrt{(\pi/a)}.$$

$$\int_{0}^{\pi} \sin mx \sin nx \ dx = \int_{0}^{\pi} \cos mx \cos nx \ dx = 0.$$

when *m* and *n* are unequal integers.

-

$$\int_{0}^{\pi} \sin mx \cos nx \, dx = \frac{2 \, m}{m^2 - n^{2p}} \text{ for } m \text{ and } n \text{ integers and } m - n \text{ odd,}$$
$$= 0, \text{ for } m \text{ and } n \text{ integers and } m - n \text{ even.}$$

$$\int_{0}^{\pi} \sin^{3} mx \, dx = \int_{0}^{\pi} \cos^{3} mx \, dx = \frac{1}{2} \pi, \text{ for } m \text{ an integer.}$$

$$\int_{0}^{\frac{1}{2}\pi} \sin^{n} x \, dx = \int_{0}^{\frac{1}{2}\pi} \cos^{n} x \, dx = \int_{0}^{I} (I - x^{2})^{\frac{1}{2}(n-1)} \, dx.$$

$$\int_{0}^{\infty} \frac{\sin x}{\sqrt{x}} \, dx = \int_{0}^{\infty} \frac{\cos x}{\sqrt{x}} \, dx = \sqrt{(\pi/2)}.$$

$$\int_{0}^{\infty} \sin x^{2} \, dx = \int_{0}^{\infty} \cos x^{2} \, dx = \frac{1}{2} \sqrt{(\pi/2)}.$$

$$\int_{0}^{\infty} e^{-\alpha^{2} x^{2}} \cos 2bx \, dx = \frac{1}{2} e^{-(0/\alpha)^{2}} \sqrt{(\pi/a)}.$$

$$\int_{0}^{\infty} e^{-\alpha^{2} x^{2}} \sin 2bx \, dx = 0.$$

xxvii

Digitized by Google

.

...

MENSURATION.

I. LINES.

a. In a circle.

r = radius of circle,

c = length of any chord,

s =arc subtended by c,

- a = angle corresponding to s,
- h = height of arc s above c, or perpendicular distance from middle point of arc to chord.

Circumference =
$$2 \pi r$$
,
 $\pi = 3.14 159 265$, $\log \pi = 0.49714987$,
 $2 \pi = 6.28318531$, $\log 2 \pi = 0.79817987$.

Length of perpendicular from center on chord

$$= r \cos \frac{1}{2} a$$

$$= (r^{2} - \frac{1}{4} c^{5})^{\frac{1}{2}}$$

$$= r \left\{ 1 - \frac{1}{2} \left(\frac{c}{2r} \right)^{\frac{3}{2}} - \frac{1}{8} \left(\frac{c}{2r} \right)^{\frac{4}{2}} - \frac{1}{18} \left(\frac{c}{2r} \right)^{\frac{6}{2}} - \dots \right\}$$

$$h = r \left(1 - \cos \frac{1}{2} a \right)$$

$$= 2 r \sin^{2} \frac{1}{4} a$$

$$= r - (r^{2} - \frac{1}{4} c^{5})^{\frac{1}{2}}$$

$$= \frac{1}{8} r \left\{ \left(\frac{c}{r} \right)^{\frac{6}{2}} + \frac{1}{16} \left(\frac{c}{r} \right)^{\frac{6}{2}} + \frac{1}{1^{\frac{1}{2}}8} \left(\frac{c}{r} \right)^{\frac{6}{2}} + \dots \right\}$$

$$s - c = \frac{1}{2^{\frac{1}{4}}} s \left(a^{2} - \frac{1}{80} a^{4} + \dots \right)$$

$$= \frac{8}{5} \frac{h^{2}}{s} \left\{ 1 + \frac{2}{8} \frac{8}{s} \left(\frac{h}{s} \right)^{\frac{6}{2}} + \dots \right\}$$

$$a = 8 \left\{ \frac{h}{s} + \frac{4}{3} \left(\frac{h}{s} \right)^{\frac{6}{2}} + \dots \right\}$$

b. In regular polygon.

- r = radius of inscribed circle,
- R = radius of circumscribed circle,
 - n = number of sides,
 - s = length of any side,
 - β = angle subtended by s,
 - p = perimeter of polygon.

 $\beta = 360^{\circ}/n,$ $s = 2 r \tan \frac{1}{2} \beta = 2 R \sin \frac{1}{2} \beta,$ $p = n s = 2 n r \tan \frac{1}{2} \beta = 2 n R \sin \frac{1}{2} \beta.$

See table under c, below.

c. In ellipse.

a = semi-axis major, b = semi-axis minor, $e = \text{eccentricity} = (1 - b^2/a^2)^4,$ P = perimeter of ellipse, n = (a - b)/(a + b) $= \frac{1 - \sqrt{1 - e^2}}{1 + \sqrt{1 - e^2}} = \frac{e^2}{4} + \frac{e^4}{8} + \frac{5e^6}{64} + \cdots$

Distance from centre to focus = a c, Distance from focus to extremity of major axis = a (1 - c), Distance from focus to extremity of minor axis = a.

 $P = \pi (a + b) (1 + \frac{1}{4}n^2 + \frac{1}{16}n^4 + \frac{1}{2b6}n^6 + \ldots)$

 $=\pi (a + b) q$, say, where q stands for the series in n. The values of q corresponding to a few values of n are: ---

n 	9	<i>n</i>	9			
0	1.0000	0.5	1.0635			
0.1	1.0025	0.6	1.0922			
0.2	1.0100	0.7	1.1267			
0.3	1.0226	0.8	1.1677			
0.4	1.0404	0.9	1.2155			
		1.0 ·	1.2732			

2. AREAS.

a. Area of plane triangle.

(See table on p. xix.)

b. Area of Trapezoid.

 $b_1 =$ upper base of trapezoid,

 $b_2 =$ lower base of trapezoid,

a = altitude of trapezoid, or perpendicular distance between bases.

Area = $\frac{1}{2}(b_1 + b_2) a$.

c. Area of regular polygon.

A = area, r, R = radii of inscribed and circumscribed circles, s = length of any side, n = number of sides, $\beta = \text{angle subtended by } s = 360^{\circ}/n.$

$$A = n r^{2} \tan \frac{1}{2} \beta = \frac{1}{2} n R^{2} \sin \beta = \frac{1}{2} n s^{2} \cot \frac{1}{2} \beta.$$

n	β	A	A	R	S
3	120°	0.4330 <i>s</i> ²	1.2990 R2	0.5774 s	1.7321 R
4	90	1.0000	2.0000	0.7071	1.4142
5	72	1.7205	2.3776	0.8507	1.1756
6	60	2.5981	2.5981	1.0000	1.0000
7	513	3.6339	2.7364	1.1524	0.8678
8	45	5.8284	2.8284	1.3066	0.7654
9	40	6.1818	2.8925	1.4619	0.6840
10	36	7.6942	2.9389	1.6180	0.6180
11	32 ⁸ 11	9.3656	2.9735	1.7747	0.5635
12	30	11.1962	3.0000	1.9319	0.5176
13	28 1 3	13.1858	3.0207	2.0893	0.4786
14	25 9	15.3345	3.0372	2.2470	0.4450
15	24	17.6424	3.0505	2.4049	0.4158
16	221	20.1094	3.0615	2.5629	0.3902
	1		i		

TABLE OF VALUES.

- d. Area of circle, circular annulus, etc.
 - r = radius of circle,
 - d =diameter,
 - a = angle of any sector,
- $r_1, r_2 =$ smaller and greater radii of an annulus.

Area of circle $= \pi r^2 = \frac{1}{4} \pi d^3$, $\pi = 3.14159265$, $\log \pi = 0.49714987$.

Area of sector = $a r^2$, for a in arc, = $\pi r^2 (a/360)$, for a in degrees.

Area of annulus $= \pi (r_3^2 - r_1^2).$

e. Area of ellipse.

a, b = semi axes respectively $e = \text{eccentricity} = (a^2 - b^2)^{\frac{1}{2}} = \{(a + b) (a - b)\}^{\frac{1}{2}} / a.$ Digitized by GOOS

Area of ellipse = $\pi a b$. $=\pi a^2 \sqrt{1-c^2}$ $= \pi a^{2} \cos \phi$, if $e = \sin \phi$. f. Surface of sphere, etc. r = radius of sphere. $\phi_1, \phi_2 =$ latitudes of parallels bounding a zone, $\epsilon =$ spherical excess of a spherical triangle = sum of spherical angles less 180°, Total surface = $4 \pi r^3$. Surface of zone = $2 \pi r^3 (\sin \phi_3 - \sin \phi_1)$, $= 4 \pi r^2 \cos \frac{1}{4} (\phi_0 + \phi_1) \sin \frac{1}{4} (\phi_0 - \phi_1).$ Surface of spherical triangle $= r^3 \epsilon$, for ϵ in arc, $= r^{2} \epsilon / \rho''$, for ϵ in seconds, $\rho'' = 206\ 264.8'', \qquad \log \rho'' = 5.31\ 442\ 513.$ g. Surface of right cylinder. r = radius of bases of cylinder, h = altitude of cylinder. Area cylindrical surface = $2 \pi r h$. Total surface = $2 \pi r (r + h)$. h. Surface of right cone. r = radius of base. h =altitude, s =slant height. Conical surface = $\pi r s = \pi r (h^2 + r^2)^{\frac{1}{2}}$ Total surface $= \pi r (s + r)$. i. Surface of spheroid. a, b = semi axes, $e = \text{eccentricity} = \{(a + b) (a - b)\}^{\frac{1}{2}}/a.$ Surface of oblate spheroid = $2 \pi a^2 \left\{ 1 + \frac{1-e^2}{2e} \log \left(\frac{1+e}{1-e} \right) \right\}^*$ $= 4 \pi a^2 (1 - \frac{1}{3} e^2 - \frac{1}{15} e^4 - \frac{1}{35} e^6 - \dots).$

Surface of prolate spheroid = $2 \pi a b \left\{ (1 - e^2)^{b} + \frac{\operatorname{arc sin} e}{e} \right\}$ = $4 \pi a b (1 - \frac{1}{6}e^2 - \frac{1}{40}e^4 - \frac{1}{112}e^6 - \dots).$

• The logarithm in this formula refers to the natural or "Napierian" system. For areas of zones and quadrilaterals of an oblate spheroid, see pp. 1-lii.

.

Digitized by Google

MENSURATION.

3. VOLUMES.

a. Volume of prism.

A =area of base, h =altitude, V =volume.

V = A h.

For an oblique triangular prism whose edges a, b, c are inclined at an angle a to the base,

 $V = \frac{1}{3} (a + b + c) A \sin a$.

b. Volume of pyramid.

A =area of base, h =altitude, V =volume.

 $V = \frac{1}{3} A h.$

For a truncated pyramid whose parallel upper and lower bases have areas A_1 and A_2 respectively and whose distance apart is h,

$$V = \frac{1}{3} h \left(A_2 + \sqrt{A_2 A_1} + A_1 \right).$$

The volume of a wedge and obelisk may be expressed by means of the volumes of pyramids and prisms.

c. Volume of right circular cylinder. r = radius of base, h = altitude, V = volume. $V = \pi r^2 h$.

$$\pi = 3.14159265, \log \pi = 0.49714987.$$

For an obliquely truncated cylinder (having a circular base) whose shortest and longest elements are h_1 and h_2 respectively,

$$V = \frac{1}{2} \pi r^2 (h_2 + h_1).$$

For a hollow cylinder the radii of whose inner and outer surfaces are r_1 and r_2 respectively, and whose altitude is h,

$$V = \pi h (r_{\frac{3}{2}} - r_{\frac{3}{2}})$$

d. Volume of right cone with circular base.

r = radius of base, h = altitude, V = volume.

 $V = \frac{1}{3} \pi r^3 h.$

For a right truncated cone the radii of whose upper and lower parallel bases are r_1 and r_2 respectively, and whose altitude is h,

$$V = \frac{1}{3} \pi h (r_{\frac{3}{2}} + r_{2} r_{1} + r_{\frac{3}{2}}).$$

e. Volume of sphere and spherical segments.

r = radius of sphere, h = altitude of segment, V = volume.

Digitized by Google

xxxii

For the entire sphere

 $V = \frac{4}{3} \pi r^3 = 4.1888 r^3 \text{ approximately.}$ (For π and log π see c above.)

For a spherical segment of height h

 $V = \pi h^2 \left(r - \frac{1}{3} h \right).$

For a zone, or difference in volume of two segments whose altitudes are h_1 and h_2 respectively $V = \pi r (h_2^2 - h_1^2) - 1 \pi (h_2^2 - h_1^2)$

$$V = \pi r (h_2^3 - h_1^3) - \frac{1}{3} \pi (h_2^3 - h_1^3)$$

= $\frac{1}{6} \pi \Delta h (3 r_2^3 + 3 r_1^3 + \Delta h^3),$

where r_1 and r_2 are the radii of the bases of the zone and $\Delta h = h_2 - h_1$.

f. Volume of ellipsoid.

$$V = \frac{1}{3}\pi a b c.$$

For an ellipsoid of revolution about

the *a*-axis, $V = \frac{4}{3} \pi a b^2$, the *b*-axis, $V = \frac{4}{3} \pi a^2 b$.

UNITS.

I. STANDARDS OF LENGTH AND MASS.

THE only systems of units used extensively at the present day are the British and metric. The fundamental units in these systems are those of time, length, and mass. From these all other units are derived. The unit of time, the mean solar second, is common to both systems.

The standard unit of length in the British system is the Imperial Yard, which is defined to be the distance between two marks on a metallic bar, kept in the Tower of London, when the temperature of the bar is 60° F.

The standard unit of mass in the British system is the Imperial Pound Avoirdupois. It is a cylindrical mass of platinum marked "P. S. 1844, 1 lb.," preserved in the office of the Exchequer at Westminster.

In the metric system the standard unit of length is the Metre, now represented by numerous platinum iridium Prototypes prepared by the International Bureau of Weights and Measures.

The standard of mass in the metric system is the Kilogramme, now represented by numerous platinum iridium Prototypes prepared by the International Bureau of Weights and Measures.

Both systems of units have been legalized by the United States. Virtually, however, the material standards of length and mass of the United States are certain Prototype Metres and certain Prototype Kilogrammes. The present status of the two systems of units so far as it relates to the United States is set forth in the following statement from the Superintendent of Standard Weights and Measures, bearing the date April 5, 1893.

FUNDAMENTAL STANDARDS OF LENGTH AND MASS.*

"While the Constitution of the United States authorizes Congress to 'fix the standard of weights and measures,' this power has never been definitely exercised, and but little legislation has been enacted upon the subject. Washington regarded the matter of sufficient importance to justify a special reference to it in his first annual message to Congress (January, 1790), and Jefferson, while Secretary of State, prepared a report at the request of the House of Representatives, in which he proposed (July, 1790) 'to reduce every branch to the decimal ratio already established for coins, and thus bring the calculation of the principal affairs of life within the arithmetic of every man who can multiply and divide.' The consideration of the subject being again urged by Washington, a committee

* Bulletin 26, U. S. Coast and Geodetic Survey. Washington: Government Printing Office, 1893. Published here by permission of Dr. T. C. Mendenhall, Superintendent Coast and Geodetic Survey.

of Congress reported in favor of Jefferson's plan, but no legislation followed. In the mean time the executive branch of the Government found it necessary to procure standards for use in the collection of revenue and other operations in which weights and measures were required, and the Troughton 82-inch brass scale was obtained for the Coast and Geodetic Survey in 1814, a platinum kilogramme and metre, by Gallatin, in 1821, and a Troy pound from London in 1827, also by Gallatin. In 1828 the latter was, by act of Congress, made the standard of mass for the Mint of the United States, and although totally unfit for such purpose it has since remained the standard for coinage purposes.

"In 1830 the Secretary of the Treasury was directed to cause a comparison to be made of the standards of weight and measure used at the principal customhouses, as a result of which large discrepancies were disclosed in the weights and measures in use. The Treasury Department, being obliged to execute the constitutional provision that all duties, imposts, and excises shall be uniform throughout the United States, adopted the Troughton scale as the standard of length; the avoirdupois pound to be derived from the Troy pound of the Mint as the unit of mass. At the same time the Department adopted the wine gallon of 231 cubic inches for liquid measure and the Winchester bushel of 2150.42 cubic inches for dry measure. In 1836 the Secretary of the Treasury was authorized to cause a complete set of all weights and measures, adopted as standards by the Department for the use of custom-houses and for other purposes, to be delivered to the Governor of each State in the Union for the use of the States respectively, the object being to encourage uniformity of weights and measures throughout the Union. At this time several States had adopted standards differing from those used in the Treasury Department, but after a time these were rejected, and finally nearly all the States formally adopted by act of legislature the standards which had been put in their hands by the National Government. Thus a good degree of uniformity was secured, although Congress had not adopted a standard of mass or of length other than for coinage purposes as already described.

"The next and in many respects the most important legislation upon the subject was the Act of July 28, 1866, making the use of the metric system lawful throughout the United States, and defining the weights and measures in common use in terms of the units of this system. This was the first *general* legislation upon the subject, and the metric system was thus the first, and thus far the only system made generally legal throughout the country.

"In 1875 an International Metric Convention was agreed upon by seventeen governments, including the United States, at which it was undertaken to establish and maintain at common expense a permanent International Bureau of Weights and Measures, the first object of which should be the preparation of a new international standard metre and a new international standard kilogramme, copies of which should be made for distribution among the contributing governments. Since the organization of the Bureau, the United States has regularly contributed to its support, and in 1889 the copies of the new international prototypes were ready for distribution. This was effected by lot, and the United States received metres Nos. 21 and 27, and kilogrammes Nos. 4 and 20. The metres and kilogrammes are made from the same material, which is an alloy of platinum with ten per cent of iridium.

.

Digitized by Google

"On January 2, 1890, the seals which had been placed on metre No. 27 and kilogramme No. 20, at the International Bureau of Weights and Measures near Paris, were broken in the Cabinet room of the Executive Mansion by the President of the United States, in the presence of the Secretary of State and the Secretary of the Treasury, together with a number of invited guests. They were thus adopted as the National Prototype Metre and Kilogramme.

"The Troughton scale, which in the early part of the century had been tentatively adopted as a standard of length, has long been recognized as quite unsuitable for such use, owing to its faulty construction and the inferiority of its graduation. For many years, in standardizing length measures, recourse to copies of the imperial yard of Great Britain had been necessary, and to the copies of the metre of the archives in the Office of Weights and Measures. The standard of mass originally selected was likewise unfit for use for similar reasons, and had been practically ignored.

"The recent receipt of the very accurate copies of the International Metric Standards, which are constructed in accord with the most advanced conceptions of modern metrology, enables comparisons to be made directly with those standards, as the equations of the National Prototypes are accurately known. It has seemed, therefore, that greater stability in weights and measures, as well as much higher accuracy in their comparison, can be secured by accepting the international prototypes as the fundamental standards of length and mass. It was doubtless the intention of Congress that this should be done when the International Metric Convention was entered into in 1875; otherwise there would be nothing gained from the annual contributions to its support which the Government has constantly made. Such action will also have the great advantage of putting us in direct relation in our weights and measures with all civilized nations, most of which have adopted the metric system for exclusive use. The practical effect upon our customary weights and measures is, of course, nothing. The most careful study of the relation of the yard and the metre has failed thus far to show that the relation as defined by Congress in the Act of 1866 is in error. The pound as there defined, in its relation to the kilogramme, differs from the imperial pound of Great Britain by not more than one part in one hundred thousand, an error, if it be so called, which utterly vanishes in comparison with the allowances in all ordinary transactions. Only the most refined scientific research will demand a closer approximation, and in scientific work the kilogramme itself is now universally used, both in this country and in England.*

* NOTE. - Reference to the Act of 1866 results in the establishment of the following : -

Equations.
1 yard
$$= \frac{3600}{3937}$$
 metre.
1 pound avoirdupois $= \frac{1}{2\cdot 2046}$ kilo.

A more precise value of the English pound avoirdupois is $\frac{I}{2^{\circ}20462}$ kilo., differing from the above by about one part in one hundred thousand, but the equation established by law is sufficiently accurate for all ordinary conversions.

As already stated, in work of high precision the kilogramme is now all but universally used, and no conversion is required.

xxxvi

UNITS.

xxxvii

"In view of these facts, and the absence of any material normal standards of customary weights and measures, the Office of Weights and Measures, with the approval of the Secretary of the Treasury, will in the future regard the International Prototype Metre and Kilogramme as fundamental standards, and the customary units, the yard and the pound, will be derived therefrom in accordance with the Act of July 28, 1866. Indeed, this course has been practically forced upon this office for several years, but it is considered desirable to make this formal announcement for the information of all interested in the science of metrology or in measurements of precision.

> T. C. MENDENHALL, Superintendent of Standard Weights and Measures.

"Approved : J. G. CARLISLE, Secretary of the Treasury. April 5, 1893."

No ratios of the yard to the metre and of the pound to the kilogramme have as yet been adopted by international agreement; but precise values of these ratios will doubtless be determined and adopted within a few years by the International Bureau of Weights and Measures. In the mean time, it will suffice for most purposes to use the values of the ratios adopted provisionally by the Office of Standard Weights and Measures of the United States. These values are —

 $1 \text{ yard} = \frac{3}{3}\frac{3}{3}\frac{9}{3} \text{ metres}, \text{ or } 1 \text{ metre} = \frac{3}{3}\frac{3}{3}\frac{3}{3} \text{ yards},$ $1 \text{ pound} = \frac{1}{3}\frac{9}{3}\frac{3}{3}\frac{1}{3} \text{ kilogrammes}, \text{ or } 1 \text{ kilogramme} = \frac{2}{3}\frac{3}{3}\frac{3}{3}\frac{1}{3} \text{ pounds}.$

These ratios were legalized by Act of Congress in 1866. Expressed decimally these values are * --

I yard = 0.914 402 metres, I metre = 1.093 611 yards, I pound = 0.45 359 kilogrammes, I kilogramme = 2.20462 pounds.

The above values of the relations of the standards of the British and Metric systems of units are adopted in this work. Tables 1 and 2 give the equivalents of multiples of the standard units and also equivalents of multiples of the derived units of surface and volume. These tables are published by the Office of Standard Weights and Measures of the United States, and are here republished by permission of the Superintendent of that Office.

2. BRITISH MEASURES AND WEIGHTS.

a. Linear measures.

The unit of linear measure is the yard. Its principal sub-multiples and multiples are the inch; the foot; the rod, perch, or pole; the furlong; and the mile. The following table exhibits the relations among these measures: —

* The actual error of the relation of the yard to the metre may be as great as 1/200 000th part, and the actual error of the relation of the pound to the kilogramme as great as 1/100 000th part. xxxviii

UNITS.

Inches.	Feet.	Yards.	Rods.	Furlongs.	Miles.		
I	0.083	0.028	0.00505	0.00012626	0.0000157828		
12	г.	0.333	0.06060	0.00151515	0.00018939		
36	3.	I.	0.1818	0.004545	0.00056818		
198	16.5	5-5	1.	0.025	0.003125		
7920	660.	220.	40.	I.	0.125		
63360	5280.	1760.	320.	8.	1.		

Other measures are the ---

Surveyor's or Gunter's chain = 4 rods = 66 feet = 100 links of 7.92 inches each.

Fathom = 6 feet; Cable length = 120 fathoms.

Hand = 4 inches; Palm = 3 inches; Span = 9 inches.

b. Surface or square measures.

The unit of square measure is the square yard. Its relations to the principal derived units in use are shown in the following table: —

Sq. feet.	Sq. yards.	Sq. rods.	Roods.	Acres.	Sq. miles.
I. 9.	0.1111 I.	0.00367309 0.000091827 0.0330579 0.000826448		0.000022957 0.000206612	
9. 272.25	30.25	0.0330579 1.	0.025	0.00625	
10890.	1210.	40. 160.	I.	0.25 I.	
43560. 27878400	4840. 3097600.	102400.	4. 2560.	1. 640.	1.

c. Measures of capacity.

The unit of capacity for dry measure is the bushel (2150.4 cubic inches about). The units of capacity for liquid measure are the British gallon (of 277.3 cubic inches about) and the wine gallon (of 231 cubic inches, nominally). The latter gallon is most commonly used in the United States. The following table shows the relations of the sub-multiples and multiples of the bushel and gallon :---

XXXI	x

Dry Measu	ires.		Liquids.		
Pint	= 51 bi	Gill	= 1 gall.		
Quart $= 2$ pints	و ر =	"	Pint $= 4$ gills	= । "	
Peck = 8 quarts	= ‡	"	Quart $= 2$ pints	= 1 "	
Bushel $=$ 4 pecks	= 1	"	Gallon $=$ 4 quarts	= I "	
			Barrel = $31\frac{1}{2}$ gallons	= 31} "	
			Hhd. = 2 barrels	= 63 "	

Besides the above measures of capacity the following volumetric units are used : —

Cubic foot = 1728 cubic inches.

Cubic yard = 27 cubic feet = 46656 cubic inches.

Board-measure foot = 1 square foot \times 1 inch thickness = 144 cubic inches.

Perch (of masonry) = 1 perch (16.5 feet) length \times 1 foot height \times 1.5 feet thickness = 24.75 cubic feet; 25 cubic feet are commonly called a perch for convenience.

Cord (of wood) = 8 feet length \times 4 feet breadth \times 4 feet height. = 128 cubic feet.

d. Measures of weight.

The unit of weight is the avoirdupois pound. One 7000th part of this is called a grain, and 5760 such grains make the troy pound. The sub-multiples and multiples of these two pounds are exhibited in the following table: —

1	Avoirdupois.				Troy.			
Dram		=	zła lb.	Grain		=	5780	lb.
Ounce	= 16 drs.	=	1 " 18	Pennyweig	ht = 20 grs.	=	ब्र्ये ज	"
Pound	= 16 ozs.	Ш	I"	Ounce	== 24 dwt.	=	L RT	"
Quarter	= 28 lbs.	=	28"	Pound	= 12 OZS.	=	I	"
Hundred-w	t. == 4 qrs.	=	112"					
Long ton	= 20 cwt.	=	2240 "					
Short ton	=	=	2000 "					

Digitized by Google

UNITS.

3. METRIC MEASURES AND WEIGHTS.

As explained in section 1 above, the standards of length and mass in the metric system are the metre and the kilogramme. Two material representatives of each of these standards are possessed by the United States and preserved at the Office of Standard Weights and Measures at Washington, D. C.

The standards of length are Prototype Metres Nos. 21 and 27. These are platinum iridium bars of X cross section, and their lengths are defined by lines ruled on their neutral surfaces. Their lengths at any temperature t Centigrade are given by the following equations :—

Prototype No. $21 = 1^m + 2.45 + 8.4665t + 0.400100t^2$, Prototype No. $27 = 1^m - 1.46 + 8.4657t + 0.400100t^2$,

where the symbol μ stands for one micron, or one millionth of a metre. The probable errors of these Prototypes may be taken as not exceeding ± 0.42 , or 1/5 000 000th of a metre for temperatures between 0° and 30° C.

The standards of mass are Prototype Kilogrammes Nos. 4 and 20. They are cylindrical masses of platinum iridium. Their masses and volumes are given by the following equations : —

	Mass.	Volume.
Prototype Kilogramme No. 4	$= 1^{kg} - 0.^{mg} 075,$	46. ^{m/} 418,
Prototype Kilogramme No. 20	$= 1^{ky} - 0.^{my} 039,$	46. ^{m2} 402,

where the ---

Symbol kg stands for one kilogramme, Symbol mg stands for one milligramme = 0.^{kg}000001, Symbol ml stands for one millilitre = one cubic centimetre.

The definitive probable error assigned to the Prototype Kilogrammes by the International Bureau is ± 0.5002 , or 1/5000000 ocoth of a kilogramme.

The act of Congress approved July 28, 1866, authorizing the use of the metric system in the United States, provides that the tables in a schedule annexed shall be recognized "as establishing, in terms of the weights and measures now in use in the United States, the equivalents of the weights and measures expressed therein in terms of the metric system; and said tables may be lawfully used for computing, determining, and expressing, in customary weights and measures, the weights and measures of the metric system." The following copy of that schedule gives the denominations of the multiples and sub-multiples of the measures of length, surface, capacity, and weight in the metric system as well as their legalized equivalents in British units.

Schedule annexed to Act of July 28, 1866.

Measures of Length.

	Me	trie	: E)e¤	on	ina	ıtic	ns.	•				Values in Metres.	Equivalents in Denominations in Use.
Myriametre Kilometre . Hectometre . Decametre . Decimetre . Centimetre . Millimetre .	•	· · ·	•	• • • • •	•	•	• • • • •	•	••••••	•	••••••	•	10000. 1000. 100. 10. 10. 1. 0.1 0.01 0.001	6.2137 miles. 0.62137 mile, or 3280 feet and 10 inches. 328 feet and 1 inch. 393.7 inches. 393.7 inches. 0.3337 inches. 0.3337 inch.

Measures of Surface.

.

	Metric Denominations.								208					Values in Square Metres.	Equivalents in Denominations in Use.	
Hectare Are . Centare	•	:	:	:	:		•	:	:	:	:	:	•	:	10000 100 I	2.471 acres. 119-6 square yards. 1550 square inches.

Measures of Capacity.

Metric Den	ominations a	nd Values.	Equivalents in Denominations in Use.			
Names.	No. of Litres.	Cubic Measure.	Dry Measure.	Liquid or Wine Measure.		
Kilolitre or stere Hectolitre Litre Decalitre Centilitre Millilitre	1000. 100. 10. 1. 0.1 0.01 0.01	1 cubic metre	1.308 cubic yards . a bus. and 3.35 pks 9.08 quarts 0.908 quarts 6.1022 cubic inches . 0.6702 cubic inch 0.0612 cubic inch	264.17 gallons. 26.417 gallons. 2.6417 gallons. 1.0567 quarts. 0.845 gill. 0.338 fluid-ounce. 0.337 fluid-ounce.		

Measures of Weight.

Metric	Equivalents in Denominations in Use.		
Names.	Number of Grammes.	Weight of what Quantity of Water at Maximum Density.	Avoirdupois Weight.
Millier or tonneau Myriagramme Kilogramme, or kilo Hectogramme Decagramme Gramme Centigramme Milligramme	1000000, 100000, 10000, 1000, 100, 10, 1	r cubic metre	2.2046 pounds. 3.5274 ounces. 0.3527 ounce. 15.432 grains. 1.5432 grains.

UNITS.

4. THE C. G. S. SYSTEM OF UNITS.

The C. G. S. system of units is a metric system in which the fundamental units are the centimetre, the gramme, and the mean solar second. It is the system now generally used for the expression of physical quantities.

The most important of the derived units in the C. G. S. system, their equivalents in terms of ordinary units, and their dimensions in terms of the fundamental units of length, mass, and time, are given in the Appendix to this volume.

For an elaborate consideration of the subject of units and their interrelations the reader may be referred to "Units and Physical Constants," by J. D. Everett, London, Macmillan & Co., 12mo, 4th ed., 1891.

1. FORM OF THE EARTH. THE EARTH'S SPHEROID. THE GEOID.

The shape of the earth is defined essentially by the sea surface, which embraces about three fourths of the entire surface. The sea surface is an equipotential surface due to the attraction of the earth's mass and to the centrifugal force of its rotation. We may imagine this surface to extend through the continents, and thus to be continuous. Its position at any continental point is the height at which water would stand if a canal connected the point with the ocean.

Geodetic measurements show that this surface is represented very closely by an oblate spheroid, whose shorter axis coincides with the rotation axis of the earth. This is called the earth's spheroid. The actual sea surface, on the other hand, is called the geoid. With respect to the spheroid the geoid is a wavy surface lying partly above and partly below; but the extent of the divergence of the two surfaces is probably confined to a few hundred feet.

2. Adopted Dimensions of Earth's Spheroid.

The dimensions of the earth's spheroid here adopted are those of General A. R. Clarke, published in 1866, to wit: ---

> Semi major axis, $a = 20\,926\,662$ English feet. Semi minor axis, $b = 20\,855\,121$ "

3. AUXILIARY QUANTITIES.

The following quantities are of frequent use in geodetic formulas : ---

 $e = \sqrt{\frac{a^3 - b^3}{a^2}}, \text{ the eccentricity of generating ellipse,}$ $f = \frac{a - b}{a}, \text{ the flattening, ellipticity, or compression,}$ $n = \frac{a - b}{a + b};$ $b = a\sqrt{1 - e^3} = a(1 - f) = a\frac{1 - n}{1 + n};$ $e^3 = 2f - f^3;$ $f = 1 - \sqrt{1 - e^2} = \frac{e^2}{2} + \frac{e^4}{8} + \frac{e^6}{16} + \frac{5}{128} + \dots$ $= \frac{2n}{1 + n} = 2(n - n^2 + n^3 - n^4 + \dots).$ Digitized by Google

$$n = \frac{f}{2-f} = (\frac{1}{2}f) + (\frac{1}{2}f)^2 + (\frac{1}{2}f)^8 + (\frac{1}{2}f)^4 + \dots$$

$$e^2 = \frac{4n}{(1+n)^2} = 4 (n-2n^2+3n^8-4n^4+\dots).$$

$$m = \frac{e^3}{2-e^2} = \frac{e^3}{2} + \frac{e^4}{4} + \frac{e^8}{8} + \frac{e^8}{16} + \dots$$

$$n = \frac{1-\sqrt{1-e^2}}{1+\sqrt{1-e^2}} = \frac{e^3}{4} + \frac{e^4}{8} + \frac{5e^8}{64} + \frac{7e^8}{128} + \dots$$

The numerical values of the most useful of these quantities and their logarithms are —

	log
a == 20 926 062 feet,	7.3206875,
b = 20855121 feet,	7.3192127,
e ² == 0.00676866,	7.8305030 — 10,
<i>m</i> == 0.00339583,	7.5309454 — 10,
n == 0.00169792,	7.2299162 — 10.

4. EQUATIONS TO GENERATING ELLIPSE OF SPHEROID.

With the origin at the centre of the ellipse, and with its axes as coördinate axes, the equation in Cartesian co-ordinates is

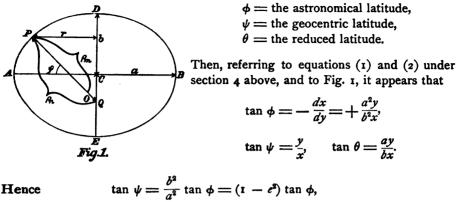
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \mathbf{I},$$
 (1)

a and b being the major and minor axes respectively, and x and y being parallel to those axes respectively.

For many purposes it is useful to replace equation (1) by the two following : ---

$$\begin{array}{l} x = a \cos \theta, \\ y = b \sin \theta, \end{array} \tag{2}$$

which give (1) by the elimination of θ . This angle is called the reduced latitude. See section 5.


5. LATITUDES USED IN GEODESY.

Three different latitudes are used in geodesy, namely: (1) Astronomical or geographical latitude; (2) geocentric latitude; (3) reduced latitude. The astronomical latitude of a place is the angle between the normal (or plumb line) at that place and the plane of the earth's equator; or when the plumb line at the place coincides with the normal to the generating ellipse, it is the angle between that normal and the major axis of the ellipse. The geocentric latitude of a place is the angle between the equator and a line drawn from the place to the earth's centre; or it is the angle between the radius-vector of the place and the equator. The reduced latitude is defined by equations (2) in section 4 above. The geometrical relations of these different latitudes are shown in Fig. 1 by the notation given below.

xliv

In order to express the analytical relations between the different latitudes let

$$\tan \theta = (\mathbf{I} - e^2)^{\mathbf{i}} \tan \phi = (\mathbf{I} - e^2)^{-\mathbf{i}} \tan \psi.$$
$$\phi - \psi = m \sin 2 \phi - m^2 \sin 4 \phi + \dots,$$

$$\phi - \theta = n \sin 2 \phi - \frac{1}{2} n^2 \sin 4 \phi + \dots$$

For the adopted spheroid

$$\log(1 - e^3) = 9.9970504$$

and

 $\phi - \psi \text{ (in seconds)} = 700.''44 \sin 2 \phi - 1.''19 \sin 4 \phi,$ $\phi - \theta \text{ (in seconds)} = 350.''22 \sin 2 \phi - 0.''30 \sin 4 \phi.$

6. RADII OF CURVATURE.

- $\rho_m = \text{radius of curvature of meridian section of spheroid at any point whose latitude is <math>\phi = PO$, Fig. 1,
- $\rho_n = \text{radius of curvature of normal section perpendicular to the meridian at the same point = <math>PQ$, Fig. 1,
- $\rho_a = \text{radius of curvature of normal section making angle a with the meridian}$ at same point.

$$\rho_{m} = a (1 - e^{2}) (1 - e^{2} \sin^{2} \phi)^{-\frac{1}{2}},$$

$$\rho_{n} = a (1 - e^{2} \sin^{2} \phi)^{-\frac{1}{2}},$$

$$\frac{1}{\rho_{a}} = \frac{\cos^{2} a}{\rho_{m}} + \frac{\sin^{2} a}{\rho_{n}}$$

$$= \frac{1}{a} (1 + \frac{e^{2}}{1 - e^{2}} \cos^{2} \phi \cos^{2} a) (1 - e^{2} \sin^{2} \phi)^{\frac{1}{2}},$$

$$\log (1 - e^{2} \sin^{2} \phi)^{-\frac{1}{2}} = + \log (1 + n)$$

$$- \mu n \cos 2\phi$$

$$+ \frac{1}{2} \mu n^{2} \cos 4\phi$$

$$- \frac{1}{3} \mu n^{3} \cos 6\phi$$

$$+ \dots$$

 $\mu =$ modulus of common logarithms and *n* is same as in section 3. For the adopted spheroid —

xlv

Digitized by Google

Radius of curvature of meridian section ρ_m in feet.

$$\log \rho_{m} = + 7.3199482 \\ - [4.34482] \cos 2000 \\ + [1.274] \cos 4000 \\ - \cdots$$

Radius of curvature of normal section ρ_n in feet.

$$\log \rho_{n} = + 7.3214243 - [3.86770] \cos 2\phi + [0.797] \cos 4\phi - \dots$$

The numbers in brackets in these formulas are logarithms to be added to the logarithms of $\cos 2\phi$ and $\cos 4\phi$. The numbers corresponding to the sums of these logarithms will be in units of the seventh decimal place of the first constant. Thus, for $\phi = 0$,

$$\log \rho_n = 7.3214243 - 7373.9 + 6.3 = 7.3206875 = \log a.$$

7. LENGTH OF ARCS OF MERIDIANS AND PARALLELS OF LATITUDE.

a. Arcs of Meridian.

For the computation of short meridional arcs lying between given parallels of latitude the following simple formulas suffice :

$$\begin{aligned} \Delta \phi &= \phi_3 - \phi_1, \\ \phi &= \frac{1}{2}(\phi_3 + \phi_1), \\ \Delta M &= \rho_m \Delta \phi. \end{aligned} \tag{1}$$

Digitized by Google

In these, ϕ_1 and ϕ_2 are the latitudes of the ends of the arc, ΔM is the required length, and ρ_m is the meridian radius of curvature for the latitude ϕ of the middle point of the arc. The formula for ΔM implies that $\Delta \phi$ is expressed in parts of the radius. If $\Delta \phi$ is expressed in seconds, minutes, or degrees of arc, the formula becomes —

Meridional distance ΔM in feet.

$$\Delta M = \frac{\rho_m \Delta \phi \text{ (in seconds)}}{206264.8},$$

$$= \frac{\rho_m \Delta \phi \text{ (in minutes)}}{3437.747},$$

$$= \frac{\rho_m \Delta \phi \text{ (in degrees)}}{57.29578};$$
 (2)

$$\log (1/206264.8) = 4.6855749 - 10,$$

$$\log (1/3437.747) = 6.4637261 - 10,$$

$$\log (1/57.29578) = 8.2418774 - 10.$$

$$\phi_1, \phi_2 = \text{end latitudes of arc,} \quad \Delta \phi = \phi_2 - \phi_1,$$

$$\rho_m = \text{meridian radius of curvature for } \phi = \frac{1}{2}(\phi_2 + \phi_1); \text{ for log } \rho_m \text{ see Table 10.}$$

xlvi

The relations (2) will answer most practical purposes when $\Delta\phi$ does not exceed 5°. A comparison with the precise formula (3) below shows in fact that the error of (2) is very nearly

$$\frac{1}{4} e^2 \Delta \phi^2 \cos 2\phi \cdot \Delta M$$
,

which vanishes for $\phi = 45^{\circ}$, and which for $\Delta \phi = 5^{\circ}$ is at most $\frac{1}{155000} \Delta M$, or about 11 feet.

Numerical example. Suppose ---

$$\phi_3 = 37^\circ 29' 48.''17, \phi_1 = 35^\circ 48' 29.''89.$$

Then

$$\begin{array}{rcl} \phi = \frac{1}{2}(\phi_2 + \phi_1) = 36^\circ 39' & 09.''03, \\ \Delta \phi = \phi_2 - \phi_1 = 1^\circ 41' & 18.''28, \\ = & 6078.''28. \end{array}$$

From the first of (2)

cons't. log	4.6855749 — 10
Table 10, log	o _m 7.3193112
log 4	Δφ 3.7837807
$\Delta M = 614705 \text{ feet, } \log A$	∆ <i>M</i> 5.7886668

The values of ΔM for intervals of 10", 20"...60", and for 10', 20'...60' are given in Table 17 for each degree of latitude from 0° to 90°.

For precise computation of long meridional arcs the following formula is adequate : ---

$$\Delta M = A_0 \Delta \phi - A_1 \cos 2\phi \sin \Delta \phi + A_2 \cos 4\phi \sin 2\Delta \phi - A_3 \cos 6\phi \sin 3\Delta \phi$$
(3)
+ A_4 \cos 8\phi \sin 4\Delta \phi
- \ldots \cdots

In this, ΔM , ϕ , and $\Delta \phi$ have the same meanings as above, and A_{0} , A_{1} , ... are functions of a and e or of a and n.

Thus, in terms of *a* and *n*,

$$A_{0} = a (1 + n)^{-1} (1 + \frac{1}{4}n^{2} + \frac{1}{64}n^{4} + \dots),$$

$$A_{1} = 3a (1 + n)^{-1} (n - \frac{1}{6}n^{3} - \dots),$$

$$A_{2} = \frac{1}{6}a (1 + n)^{-1} (n^{2} - \frac{1}{4}n^{4} - \dots),$$

$$A_{3} = \frac{3}{2}\frac{4}{4}a (1 + n)^{-1} (n^{3} - \dots),$$

$$A_{4} = \frac{3}{2}\frac{1}{6}\frac{6}{6}a (1 + n)^{-1} (n^{4} - \dots).$$

Introducing the adopted values of a and n, these constants become —

$$A_0 = 20$$
890606feet,7.3199510, $A_1 = 106$ 411feet,5.0269880, $A_2 = 113$ feet,2.0528, $A_8 = 0.15$ feet,9.174 - 10.

It appears, therefore, that the first three terms of (3) will give ΔM with an accuracy considerably surpassing that of the constant A_0 . In the use of (3) it will generally be most convenient to express $\Delta \phi$ in degrees, and in this case A_0 must be divided by the number of degrees in the radius, viz. : 57.2957795 [1.7581226]. Applying this value and writing the logarithms of A_0 , A_1 , etc., in rectangular brackets in place of A_0 , A_1 , etc., (3) becomes

Meridional distance ΔM in feet.

$$\Delta M = [5.5618284] \Delta \phi \text{ (in degrees)} - [5.0269880] \cos 2\phi \sin \Delta \phi \qquad (4) + [2.0528] \cos 4\phi \sin 2\Delta \phi - \dots 2\phi = \phi_s + \phi_\nu \qquad \Delta \phi = \phi_s - \phi_\nu \qquad \phi_\nu \phi_s = \text{ end latitudes of arc.}$$

Formula (4) will suffice for the calculation of any portion or the whole of a quadrant. The length of a quadrant is the value of the first term of (4) when $\phi = 45^{\circ}$ and $\Delta \phi = 90^{\circ}$, since all of the remaining terms vanish.

Numerical examples. — 1°. Suppose

 $\phi_1 = 0^\circ \text{ and } \phi_2 = 45^\circ.$ $2\phi = 45^\circ,$ $\Delta\phi = 45^\circ.$

		log.
	cons't	5.5618284
	45	1.6532125
1st term + 16 407 443 feet	ıst term	7.2150409
	cos 2¢	9.8494850 — 10
	sin Δφ	9.8494850 — 10
	cons't	5.0269880
2d term — 53 205.7 feet	2d term	4.7259580

The third term of the series vanishes by reason of the factor $\cos 4 \phi = \cos 90^{\circ}$ = 0. The sum of the first two terms, or length of a meridional arc from the equator to the parallel of 45°, is 16 354 237 feet.

2°. Suppose $\phi_1 = 45^\circ$ and $\phi_2 = 90^\circ$. Then $2\phi = 135^\circ$, $\Delta \phi = 45^\circ$.

The numerical values of the terms will be the same as in the previous example, but the sign of the second term will be *plus*. Hence the length of the meridional arc between the parallel of 45° and the adjacent pole is 16460649 feet. The sum of these two computed distances, or the length of a quadrant, is 32814886 feet.

Then

xlviii

This agrees as it should with the length given by (4) when $2\phi = 90^{\circ}$ and $\Delta\phi = 90^{\circ}$.*

b. Arcs of parallel.

The radius of any parallel of latitude is equal to the product of the radius of curvature of the normal section for the same latitude by the cosine of that latitude. That is, see FIG. 1, r being the radius of the parallel —

 $r = \rho_n \cos \phi$

and the entire length of the parallel is --

$$2 \pi r = 2 \pi \rho_n \cos \phi$$

Designate the portion of a parallel lying between meridians whose longitudes are λ_1 and λ_2 by ΔP , and call the difference of longitude $\lambda_2 - \lambda_1$, $\Delta \lambda$. Then ---

Arc of parallel
$$\Delta P$$
 in feet.

$$\Delta P = \frac{2 \pi \rho_n \cos \phi}{1296000} \Delta \lambda \text{ (in seconds),}$$

$$= \frac{2 \pi \rho_n \cos \phi}{21600} \Delta \lambda \text{ (in minutes),} \qquad (1)$$

$$= \frac{2 \pi \rho_n \cos \phi}{360} \Delta \lambda \text{ (in degrees).}$$

$$log (2 \pi/1296000) = 4.6855749 - 10, log (2 \pi/21600) = 6.4637261 - 10, log (2 \pi/360) = 8.2418774 - 10.$$

 $\lambda_{i}, \lambda_{j_{1}} =$ end longitudes of arc, $\Delta \lambda = \lambda_{j} - \lambda_{i}$, $\rho_{n} =$ radius of curvature of normal section for latitude of parallel; for log ρ_{n} see Table 11.

Numerical Example. — Suppose $\phi = 35^{\circ}$, and $\Delta \lambda = 72^{\circ}$. Then from the third of (9)

	iog.	
cons't	8.2418774 — 10	
Table 11,	ρ _n 7.3211716	
	cos \$\$ 9.9133645 - 10	
	Δλ 1.8573325	
$\Delta P = 21564827$ feet,	ΔP 7.3337460	

* The best formula for computing the entire length of a meridian curve is this :

$$\pi (a + b) (1 + \frac{1}{2}n^2 + \frac{1}{22}n^4 + \ldots),$$

in which a, b, and n are the same as defined in section 2. For the values here adopted -

$(1 + \frac{1}{2}n^2 + \ldots)$	log. 0.0000003
(a + b)	7.6209807
π	0.497 I 4 99
length	8.1181309

The length of the perimeter of the generating ellipse, or the meridian circumference of the earth, is, therefore —

Digitized by Google

xlix

The values of ΔP for intervals of 10", 20" . . . 60", and for 10', 20' . . . 60' are given in Table 18 for each degree of latitude from 0° to 90°.

8. RADIUS-VECTOR OF EARTH'S SPHEROID.

$$\rho = \text{radius-vector}$$

$$= \sqrt{x^2 + y^2}$$

$$= a \left(1 - 2\epsilon^2 \sin^2 \phi + \epsilon^4 \sin^2 \phi\right)^{\frac{1}{2}} \left(1 - \epsilon^2 \sin^2 \phi\right)^{-\frac{1}{2}}$$

$$\log \rho = \log \frac{a \left(2 - \epsilon^2\right)}{1 + \sqrt{1 - \epsilon^2}} + \mu \left(m - n\right) \cos 2\phi$$

$$- \frac{1}{3} \mu \left(m^3 - n^3\right) \cos 4\phi$$

$$+ \frac{1}{3} \mu \left(m^3 - n^3\right) \cos 6\phi$$

For the adopted spheroid

$$log (\rho in feet) = 7.3199520 + [3.86769] \cos 2\phi - [1.2737] \cos 4\phi,$$

the logarithms for the terms in ϕ corresponding to units of the seventh decimal place. Thus, for $\phi = 0$,

$$\log \rho = 7.3199520 + 7373.8 - 18.8 = 7.3206875 = \log a.$$

9. Areas of Zones and Quadrilaterals of the Earth's Surface.

An expression for the area of a zone of the earth's surface or of a quadrilateral bounded by meridians and parallels may be found in the following manner : —

The area of an elementary zone dZ, whose middle latitude is ϕ and whose width is $\rho_m d\phi$, is (see Fig. 1),

$$dZ = 2 \pi r \rho_m d\phi$$
$$= 2 \pi \rho_m \rho_n \cos \phi d\phi.$$

By means of the relations in section 6 this becomes

$$dZ = 2 \pi a^2 (1 - \epsilon^3) \frac{\cos \phi \, d\phi}{(1 - \epsilon^2 \sin^2 \phi)^3}$$

$$= 2 \pi a^2 \frac{1 - \epsilon^3}{\epsilon} \frac{d(\epsilon \sin \phi)}{(1 - \epsilon^2 \sin^2 \phi)^2}.$$
(1)

The integral of this between limits corresponding to ϕ_1 and ϕ_2 , or the area of a zone bounded by parallels whose latitudes are ϕ_1 and ϕ_2 respectively, is

$$Z = \pi a^2 \frac{\mathbf{I} - \epsilon^2}{\epsilon} \begin{cases} \frac{\epsilon \sin \phi_2}{\mathbf{I} - \epsilon^2 \sin^2 \phi_2} - \frac{\epsilon \sin \phi_1}{\mathbf{I} - \epsilon^2 \sin^2 \phi_1} \\ + \frac{1}{2} \operatorname{Nap.} \log \frac{(\mathbf{I} + \epsilon \sin \phi_2) (\mathbf{I} - \epsilon \sin \phi_1)}{(\mathbf{I} - \epsilon \sin \phi_2) (\mathbf{I} + \epsilon \sin \phi_1)} \end{cases}.$$
 (2)

1

To get the area of the entire surface of the spheroid, make $\phi_1 = -\frac{1}{2} \pi$ and $\phi_2 = +\frac{1}{2} \pi \text{ in } (2)$. The result is

Surface of spheroid =
$$2 \pi a^2 \left[1 + \frac{1-e^2}{2e} \operatorname{Nap.} \log \left(\frac{1+e}{1-e} \right) \right].$$
 (3)

For numerical applications it is most advantageous to express (3) in a series of powers of *e*. Thus, by Maclaurin's theorem,

Surface of spheroid =
$$4 \pi a^4 \left(1 - \frac{e^4}{3} - \frac{e^4}{15} - \frac{e^5}{35} - \dots\right)$$
. (4)

For the calculation of areas of zones and quadrilaterals it is also most advantageous to expand (2) in a series of powers of $e \sin \phi_1$ and $e \sin \phi_2$ and express the result in terms of multiples of the half sum and half difference of ϕ_1 and ϕ_2 . Thus, (2) readily assumes the form

$$Z = 2 \pi a^2 (1 - \epsilon^2) \left[(\sin \phi_2 - \sin \phi_1) + \frac{2}{3} \epsilon^2 (\sin^2 \phi_2 - \sin^2 \phi_1) + \dots \right].$$

From this, by substitution and reduction, there results

$$Z = 2 \pi \left\{ \begin{array}{c} C_1 \cos \phi \sin \frac{1}{2} \Delta \phi - C_2 \cos 3\phi \sin \frac{3}{2} \Delta \phi \\ + C_8 \cos 5\phi \sin \frac{4}{2} \Delta \phi - . \end{array} \right\}, \quad (5)$$

wherein

$$\phi = \frac{1}{2}(\phi_{2} + \phi_{1}),$$

$$\Delta \phi = \phi_{2} - \phi_{1},$$

$$C_{1} = 2 a^{2} \left(1 - \frac{e^{3}}{2} - \frac{e^{4}}{8} - \frac{e^{6}}{16} - \dots\right),$$

$$C_{2} = 2 a^{2} \left(\frac{e^{3}}{6} + \frac{e^{4}}{48} + \circ + \dots\right),$$

$$C_{3} = 2 a^{2} \left(\frac{3e^{4}}{80} + \frac{e^{6}}{40} + \dots\right).$$
(6)

If Q be the area of a quadrilateral bounded by the parallels whose latitudes are ϕ_1 and ϕ_2 and by meridians whose difference of longitude is $\Delta\lambda$,

$$Q = \frac{\Delta\lambda}{2\pi} Z.$$

Hence, using the English mile as unit of length, (5) and (6) give for the adopted spheroid —

Area of quadrilateral in square miles.

$$Q = \Delta\lambda \text{ (in degrees)} \begin{cases} c_1 \cos\phi \sin\frac{1}{2}\Delta\phi - c_2 \cos 3\phi \sin\frac{3}{2}\Delta\phi \\ + c_3 \cos 5\phi \sin\frac{4}{2}\Delta\phi - \dots \\ \log c_1^* = 5.7375398, \\ \log c_2 = 2.79173, \\ \log c_3 = 9.976 - 10. \end{cases}$$
(7)

$$\phi_1, \phi_2 = 1$$
 ($\psi_1, \psi_1, \psi_1, \psi_2 = \psi_1, \psi_1, \psi_2 = 1$ atitudes of bounding parallels,
 $\Delta \lambda =$ difference of longitude of bounding meridians

* c_1 , c_3 , c_4 are obtained from C_1 , C_3 , C_3 respectively by dividing the latter by the number of degrees in the radius, viz: 57.29578.

Numerical examples. — 1°. Suppose $\phi_1 = 0$, $\phi_2 = 90^\circ$ and $\Delta \lambda = 360^\circ$. Then (7) should give the area of a hemispheroid. The calculation runs thus :

	log.		log.	log.
<i>c</i> 1	5.7375398	C ₃	2.79173	<i>c</i> ₈ 9.976 — 10
cos φ	9.8494850 — 10	cos 3φ	9.84948 _* — 10	cos 5 ¢ 9.849, — 10
sin 🚽 Δφ	9.84 94850 — 10	sin 🖁 Δφ	9.84949 — 10	sin 🛔 🛆 o 9.848, — 10
360	2.5563025	360	2.55630	360 2.556
Sum	7.9928123		5.04700,	2.229
Hence —				-
1 st term = +98358591				
2d term = + 111429				
	30	term =	+ 169	
	Q =	sum —	98470189	

Twice this is the area of the spheroidal surface of the earth; *i. e.*, 196 940 378 square miles.

2°. The last result may be checked by (4). Thus,

$\left(\frac{e^2}{3}+\frac{e^4}{15}+\cdots\right)$) = 0.00225928
$\log\left(1-\frac{\epsilon^2}{3}-\ldots\right)$) = 9.9990177
$\log a^2$ $\log 4 \pi$	<i>—</i> 7.1961072
$\log 4 \pi$	= 1.0992099
log (196940407)	= 8.2943348

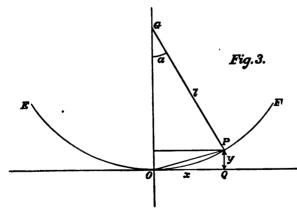
This number agrees with the number derived above as closely as 7-place logarithms will permit, the discrepancy between the two values being about $\overline{\sigma\sigma\sigma}$ part of the area. Hence, with a precision somewhat greater than the precision of the elements of the adopted spheroid warrants,

Area earth's surface = 196 940 400 square miles.

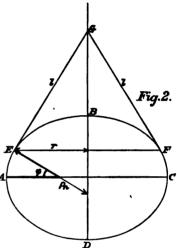
The areas of quadrilaterals of the earth's surface bounded by meridians and parallels of 1° , 30', 15', and 10' extent respectively, in latitude and longitude, are given in Tables 25 to 29.

10. Spheres of Equal Volume and Equal Surface with Earth's Spheroid.

 r_1 = radius of sphere having same volume as the earth's spheroid, r_2 = radius of sphere having same surface as that spheroid.


$$r_1 = \sqrt[3]{a^2 b}$$

= $a (1 - \frac{1}{6} e^2 - \frac{1}{29} e^4 - \frac{1}{199} e^8 - \dots).$


Digitized by Google

$$r_{2} = a \left(1 - \frac{e^{2}}{3} - \frac{e^{4}}{15} - \frac{e^{6}}{35} - \dots \right)^{\frac{1}{2}}$$

= $a \left(1 - \frac{1}{6} e^{2} - \frac{17}{360} e^{4} - \frac{67}{3024} e^{6} - \dots \right).$
 $a - r_{1} = \frac{1}{6} ae^{2} \left(1 + \frac{6}{19} e^{2} + \dots \right) = 0.00113 a$, about.
 $r_{2} - r_{1} = \frac{1}{45} ae^{4} + \dots = 0.000001 a$, about.

11. CO-ORDINATES FOR THE POLYCONIC PROJECTION OF MAPS.

In the polyconic system of map projection every parallel of latitude appears on the map as the developed circumference of the base of a right cone tangent to the spheroid along that parallel. Thus the parallel EF (Fig. 2) will appear in projection as the arc of a circle EOF (FIG. 3) whose radius OG = l is equal to the slant height of the tangent cone EFG (FIG. 2). Evidently one meridian and only one will appear as a straight line. This meridian is generally made the central meridian of the area to be projected. The distances along this central meridian between consecutive parallels are made equal (on the scale of the map) to the real A distances along the surface of the spheroid. The circles in which the parallels are developed are not concentric, but their centres all lie on the central meridian. The meridians are concave toward the central meridian, and, except near the corners of maps showing large

areas, they cross the parallels at angles differing little from right angles.

In the practical work of map making, the meridians and parallels are most advantageously defined by the co-ordinates of their points of intersection. These coordinates may be expressed in the following manner: For any parallel, as EOF (FIG. 3), take the origin Oat the intersection with the

central meridian, and let the rectangular axes of Y (OG) and X (OQ) be respectively coincident with and perpendicular to this meridian. Call the interval in longitude between the central meridian and the next adjacent one $\Delta\lambda$, and denote the angle at the centre G subtended by the developed arc OP by a.

liii

Then from FIG. 3 it appears that

$$x = l \sin \alpha,$$

$$y = 2 l \sin^2 \frac{1}{2}\alpha.$$

But from FIGS. 2 and 3,

$$l = \rho_n \cot \phi,$$

$$la = r \Delta \lambda = \rho_n \Delta \lambda \cos \phi,$$

$$a = \Delta \lambda \sin \phi.$$

whence

Hence, in terms of known quantities there result

$$x = \rho_n \cot \phi \sin (\Delta \lambda \sin \phi),$$

$$y = 2 \rho_n \cot \phi \sin^2 \frac{1}{2} (\Delta \lambda \sin \phi).$$
(1)

Numerical example. — Suppose $\phi = 40^{\circ}$ and $\Delta \lambda = 25^{\circ} = 90000''$.

Then

	log 90000"	<i>=</i> 4.9542425,	
	log sin 40°	<u> </u>	
	log 57850."88	= 4.7623100;	
	$\Delta\lambda \sin\phi$	= 16° 04' 10."88,	
	$\frac{1}{2}(\Delta\lambda\sin\phi)$	= 8° 02' 05."44.	
	log.		log.
$\sin (\Delta \lambda \sin \phi)$	9.4421760 — 10	$\sin \frac{1}{2} (\Delta \lambda \sin \phi)$	9.1454305 — 10
cot ø	0.076 1865	$\sin \frac{1}{2} (\Delta \lambda \sin \phi)$	9.1454305 — 10
ρ _n , Table 11	7.3212956	cot ϕ	0.0761865
		ρ _n , Table 11	7.3212956
		2	0.3010300
x	6.8396581	у	5.9893731
	$x = 6912865\mathrm{fe}$	et $y = 975 828$ feet.	

The equations (1) are exact expressions for the co-ordinates. But when $\Delta\lambda$ is small, one may use the first terms in the expansions of $\sin(\Delta\lambda\sin\phi)$ and $\sin^2\frac{1}{2}(\Delta\lambda\sin\phi)$ and reach results of a much simpler form.

Thus,

$$\sin (\Delta \lambda \sin \phi) = \Delta \lambda \sin \phi - \frac{1}{6} (\Delta \lambda \sin \phi)^{8} + \dots,$$

$$\sin^{2} \frac{1}{6} (\Delta \phi \sin \phi) = \frac{1}{4} (\Delta \lambda \sin \phi)^{2} - \frac{1}{48} (\Delta \lambda \sin \phi)^{4} + \dots;$$

whence, to terms of the second order,

$$x = \rho_n \Delta \lambda \cos \phi \left[1 - \frac{1}{6} (\Delta \lambda \sin \phi)^2 \right],$$

$$y = \frac{1}{4} \rho_n (\Delta \lambda)^2 \sin 2\phi \left[1 - \frac{1}{12} (\Delta \lambda \sin \phi)^2 \right].$$
(2)

If the terms of the second order in these equations be neglected, the value of x will be too great by an amount somewhat less than $\frac{1}{6}(\Delta\lambda\sin\phi)^2 \cdot x$, and the value of y will be too great by an amount somewhat less than $\frac{1}{12}(\Delta\lambda\sin\phi)^2 \cdot y$. An idea of the magnitudes of these fractions of x and y may be gained from the following table, which gives the values of $\frac{1}{6}(\Delta\lambda\sin\phi)^2$ for a few values of the arguments $\Delta\lambda$ and ϕ .

liv

Digitized by Google

	ф		
Δλ	20 ⁰	40°	60°
o I	1/168000	1/47700	1/26260
2	1/42000	1/11900	1/6560
3	1/18700	1/5300	1/2920

Values of $\frac{1}{4}(\Delta\lambda \sin \phi)^2$.

It appears from this table that the first terms of (2) will suffice in computing the co-ordinates for projection of all maps on ordinary scales, and of less extent in longitude than 2° from the middle meridian. For example, the value of x for $\Delta \lambda = 2^{\circ}$, and $\phi = 40^{\circ}$, and for a scale of two miles to one inch (1/126720), is 53.063 inches less 1/11900 part, or about 0.004 inch, which may properly be regarded as a vanishing quantity in map construction. For the computation of the co-ordinates given in the tables 19 to 24, where $\Delta \lambda$ does not exceed 1°, it is amply sufficient, therefore, to use

$$x = \rho_n \Delta \lambda \cos \phi,$$

$$y = \frac{1}{4} \rho_n (\Delta \lambda)^2 \sin 2\phi.$$
(3)

In these formulas and in (2), if $\Delta\lambda$ is expressed in seconds, minutes, or degrees, it must be divided by the number of seconds, minutes, or degrees in the radius. The logarithms of the reciprocals of these numbers are given on p. xlvi. In the construction of tables like 19 to 24, it is most convenient, when English units are used, to express $\Delta\lambda$ in minutes and x and y in inches. For this purpose, supposing log ρ_n to be taken from Table 11, if s be the scale of the map, or scale factor, equations (3) become —

Co-ordinates x and y in inches for scale s.

$$x = \frac{12}{3437.747} \rho_n s \Delta \lambda \cos \phi,$$

$$y = \frac{3}{(3437.747)^2} \rho_n s (\Delta \lambda)^2 \sin 2\phi,$$

$$\Delta \lambda \text{ in minutes };$$

$$\log (12/3437.747) = 7.54291 - 10, \\ \log (3/(3437.747)^2) = 3.4046 - 10.$$

Tables 19 to 24 give the values of x and y for various scales and for the zone of the earth's surface lying between 0° and 80° .

Numerical example. — Suppose $\phi = 40^{\circ}$ and $\Delta \lambda = 15'$; and let the scale of the map be one mile to the inch, or s = 1/63360. Then the calculation by (4) runs thus:

(4)

log.	log.
cons't 7.54291 — 10	cons't 3.4046 — 10
ρ _n 7.32130	ρ _n 7.3213
s 5.19818 — 10	s 5.1982 — 10
15 1.17609	(15) ² 2.3522
cos ø 9.88425 – 10	sin 2\$\$ 9.9934 - 10
x 1.12273	y 8.2697 - 10
In.	In.
x = 13.266	<i>y</i> = 0.01861.

These values of x and y, it will be observed, agree with those corresponding to the same arguments in Table 22.

When many values for the same scale are to be computed, log s should, of course, be combined with the constant logarithms of (4). Moreover, since in (4) x varies as $\Delta\lambda$ and y as $(\Delta\lambda)^2$, when several pairs of co-ordinates are to be computed for the same latitude, it will be most advantageous to compute the pair corresponding to the greatest common divisor of the several values of $\Delta\lambda$ and derive the other pairs by direct multiplication.

12. LINES ON A SPHEROID.

The most important lines on a spheroid used in geodesy are (a) the curve of a vertical section; (b) the geodesic line; and (c) the alignment curve. Imagine two points in the surface of a spheroid, and denote them by P_1 and P_2 respectively. The vertical plane at P_1 containing P_2 and the vertical plane at P_2 containing P_1 give vertical section curves or lines. The curves cut out by these two planes coincide only when P_1 and P_2 are in a meridian plane. The geodesic line is the shortest line joining P_1 and P_2 , and lying in the surface of the spheroid. The alignment curve on a spheroid is a curve whose vertical tangent plane at every point of its length contains the terminal points P_1 and P_2 . The curve (a) lies wholly in one plane, while (b) and (c) are curves of double curvature. In the case of a triangle formed by joining three points on a spheroid by lines lying in its surface, the curves of class (a) give two distinct sets of triangle sides, while the curves of classes (b) and (c) give but one set of sides each. For all intervisible points on the surface of the earth, these different lines differ immaterially in length; the only appreciable differences they present are in their azimuths (see formula under b below). Of the three classes of curves the first two only are of special importance.

a. Characteristic property of curves of vertical section.

Let $a_{1,2} = azimuth of vertical section at <math>P_1$ through P_3 , $a_{2,1} = azimuth of vertical section at <math>P_2$ through $P_{1,2}$ $\theta_{1,2}$, $\theta_2 = reduced latitudes of <math>P_1$ and P_2 respectively, $\delta_{1,2}$, $\delta_2 = angles$ of depression at P_1 and P_2 respectively of the chord joining these points.

Then the characteristic property of the vertical section curve joining P_1 and P_2 is

$$\sin a_{1.2} \cos \theta_1 \cos \delta_1 = \sin (a_{2.1} - 180^\circ) \cos \theta_2 \cos \delta_2.$$
Digitized by COO

The azimuths $a_{1,2}$ and $a_{2,1}$, it will be observed, are the astronomical azimuths, or the azimuths which would be determined astronomically by means of an altitude and azimuth instrument.

b. Characteristic property of geodesic line.

Let

 $a'_{1,2}$ = azimuth of geodesic line at P_1 , $a'_{2,1}$ = azimuth of geodesic line at P_2 , θ_1 , θ_2 = reduced latitudes of P_1 and P_2 respectively.

Then the characteristic property of the geodesic line is

$$\sin a_{1.3} \cos \theta_1 = \sin \left(180^\circ - a_{2.1} \right) \cos \theta_2 = \cos \theta_0,$$

where θ_0 is the reduced latitude of the point where the geodesic through P_1 and P_3 is at right angles to a meridian plane.

The difference between the astronomical azimuth a_{12} and the geodesic azimuth a'_{13} is expressed by the following formula:

$$a_{1,2} - a'_{1,2}$$
 (in seconds) $= \frac{1}{12} \rho'' \epsilon^2 \left(\frac{s}{a}\right)^2 \cos^2 \phi \sin 2a_{1,2}$

where

s = length of geodesic line $P_1 P_3$, a = major semi-axis of spheroid, ϵ = eccentricity of spheroid, $\rho'' = 206264.''8$, ϕ = astronomical latitude of P_1 , $a_{1,3}$ = azimuth (astronomical or geodesic) of $P_1 P_3$,

$$\log \frac{1}{12} \rho'' \left(\frac{e}{a}\right)^3 = 7.4244 - 20, \text{ for } a \text{ in feet.}$$

Thus, for $\phi = 0$ and $a_{1.2} = 45^{\circ}$, for which $\cos^2 \phi \sin 2a_{1.2} = 1$, the above formula gives

 $a_{1.3} - a'_{1.3} = 0."074$, for s = 100 miles, = 0.296, for s = 200 miles, = ...;

so that for most geodetic work this difference is of little if any importance.

13. SOLUTION OF SPHEROIDAL TRIANGLES.

The data for solution of a spheroidal triangle ordinarily presented are the measured angles and the length of one side. This latter may be either a geodesic line or a vertical section curve, since their lengths are in general sensibly equal. Such triangles are most conveniently solved in accordance with the rule afforded by Legendre's theorem, which asserts that the sides of a spheroidal triangle (of any measurable size on the earth) are sensibly equal to the sides of a plane triangle having a base of the same length and angles equal respectively to the spheroidal angles diminished each by one third of the excess of the spheroidal triangle. In other words, the computation of spheroidal triangles is thus made to depend on the computation of plane triangles.

a. Spherical or spheroidal excess.

The excess of a spheroidal triangle of ordinary extent on the earth is given by

$$\epsilon$$
 (in seconds) = $\rho'' \frac{S}{\rho_m \rho_n}$

where S is the area of the spheroidal or corresponding plane triangle; ρ_{m} , ρ_{n} are the principal radii of curvature for the mean latitude of the vertices of the triangle; and $\rho'' = 206\,264.''8$. For a sphere, $\rho_{m} = \rho_{n} =$ radius of the sphere.

Denote the angles of the spheroidal triangle by A, B, C, respectively; the corresponding angles of the plane triangle by a, β , γ (as on p. xviii); and the sides common to the two triangles by a, b, c. Then

$$S = \frac{1}{2} ab \sin \gamma = \frac{1}{2} bc \sin a = \frac{1}{2} ca \sin \beta.$$

$$\alpha = A - \frac{1}{3}\epsilon, \quad \beta = B - \frac{1}{3}\epsilon, \quad \gamma = C - \frac{1}{3}\epsilon.$$

Tables 13 and 14 give the values of $\log (\rho''/2\rho_m\rho_n)$ for intervals of 1° of astronomical or geographical latitude.*

14. Geodetic Differences of Latitude, Longitude, and Azimuth.

a. Primary triangulation.

Denote two points on the surface of the earth's spheroid by P_1 and P_2 respectively. Let

s = length of geodesic line joining P_1 and P_2 , $\phi_1, \phi_2 =$ astronomical latitudes of P_1 and P_2 , $\lambda_1, \lambda_2 =$ longitudes of P_1 and P_2 , $\Delta \lambda = \lambda_2 - \lambda_1$, $a_{1.2} =$ azimuth of $P_1 P_2$ (s) at P_1 , $a_{2.1} =$ azimuth of $P_2 P_1$ (s) at P_2 , $\epsilon =$ eccentricity of spheroid, $\rho_m, \rho_m =$ principal (meridian and normal) radii of curvature at the point P_1 .

Then for the longest sides of measurable triangles on the earth the following formulas will give ϕ_2 , λ_2 , and $a_{2.1}$ in terms of ϕ_1 , λ_1 , $a_{1.2}$, and s. The azimuths are astronomical, and are reckoned from the south by way of the west through 360°.

$$a' = 180^{\circ} - a_{1.9}$$
, and $a_{2.1} = 180^{\circ} + a''$, for $a_{1.9} < 180^{\circ}$
 $a' = a_{1.9} - 180^{\circ}$, and $a_{2.1} = 180^{\circ} - a''$, for $a_{1.9} > 180^{\circ}$ (1)

$$\eta = \frac{s}{\rho_n} \left\{ 1 + \frac{1}{6} \frac{\epsilon^2}{1 - \epsilon^2} \left(\frac{s}{\rho_n} \right)^2 \cos^2 \phi_1 \cos^2 a' \right\}$$
(2)

$$\zeta = \frac{1}{4} \frac{e^2 \eta^2}{1 - e^2} \cos^2 \phi_1 \sin 2a'$$
 (3)

• For the solution of very large triangles and for a full treatment of the theory thereof, consult Die Mathematischen und Physikalischen Theorieen der Höheren Geodäsie, von Dr. F. R. Helmert. Leipzig, 1880, 1884.

$$\tan \frac{1}{2}(a'' + \Delta\lambda + \zeta) = \frac{\cos \frac{1}{2}(90^{\circ} - \phi_1 - \eta)}{\cos \frac{1}{2}(90^{\circ} - \phi_1 + \eta)} \cot \frac{1}{2} a'$$

$$\tan \frac{1}{2}(a'' - \Delta\lambda + \zeta) = \frac{\sin \frac{1}{2}(90^{\circ} - \phi_1 - \eta)}{\sin \frac{1}{2}(90^{\circ} - \phi_1 + \eta)} \cot \frac{1}{2} a'$$

$$= \phi - \frac{s}{\sin \frac{1}{2}(a'' - a' + \zeta)} \left(c + 1 - \frac{1}{2} - \frac{3}{2} \cos^2 \frac{1}{2} \left((1 - \zeta) \right) \right)$$
(4)

$$\phi_2 - \phi_1 = \frac{3}{\rho_m} \frac{\sin \frac{1}{2}(a'' - a' + \zeta)}{\sin \frac{1}{2}(a'' + a' + \zeta)} \{ 1 + \frac{1}{1^3} \eta^2 \cos^2 \frac{1}{2}(a'' - a') \}.$$
(5)

To express η , ζ , and $\phi_2 - \phi_1$ in seconds of arc we must multiply the right hand sides of (2), (3), and (5) by $\rho'' = 206264$."8. For logarithmic compution of η'' and ζ'' , or η and ζ in seconds, we may write with an accuracy generally sufficient

$$\log \eta'' = \log \left(\rho'' s / \rho_n \right) + \frac{1}{6} \frac{\mu \, \epsilon^2}{1 - \epsilon^2} \left(\frac{s}{\rho_n} \right)^2 \cos^2 \phi_1 \cos^2 \alpha', \tag{6}$$

$$\log \zeta'' = \log \frac{1}{4} \frac{e^2}{(1-e^2)\rho''} + \log \{(\eta'')^2 \cos^2 \phi_1 \sin 2 \alpha'\}, \qquad (7)$$

where μ in (6) is the modulus of common logarithms. For units of the 7th decimal place of log η'' we have for the adopted spheroid

$$\log \frac{1}{8} \frac{\mu e^2}{1 - e^2} = 3.69309.$$

Also

$$\log \frac{1}{4} \frac{e^2}{(1-e^2)\rho'} = 1.91697 - 10.$$

Similarly, for the computation of the logarithm of the last factor in (5) we have

$$\log \{1 + \frac{1}{12} \eta^2 \cos^2 \frac{1}{2} (a'' - a')\} = \log \{1 + \frac{1}{12(\rho'')^2} (\eta'')^2 \cos^2 \frac{1}{2} (a'' - a')\}.$$

Putting for brevity

$$q = \frac{1}{12(\rho'')^2} (\eta'')^2 \cos^2 \frac{1}{2}(a'' - a')$$

the logarithm of the desired logarithm is given to terms of the second order inclusive in q by

$$\log \log (1+q) = \log \mu q - \frac{1}{2} \mu q.$$

For the adopted spheroid

$$\log \frac{\mu}{12(\rho'')^2} = 4.92975 - 10$$

for units of the seventh decimal place.

For a line 200 miles (about 320 kilometres) long, the maximum value of the second term in (6) is but 12.6 units in the 7th place of $\log \eta''$. For the same length of line, the maximum value of ζ'' is 0."895, and the maximum value of the logarithm of the last factor in (5), or log (1 + q), is less than 922 units in the seventh place of decimals.

For computing differences of latitude, longitude, and azimuth in primary triangulation whose sides are 1° (about 70 miles, or 100 kilometres) or less in length, the most convenient means are formulas giving $\phi_2 - \phi_1$, $\lambda_2 - \lambda_1$, and

Digitized by Google

lix

 $a_{2,1} - (180^\circ - a_{1,2})$, in series proceeding according to powers of the distance s. Formulas of this kind with convenient tables for facilitating the computations are given in the Reports of the U. S. Coast and Geodetic Survey.*

b. Secondary triangulation.

For secondary triangulation, wherein the sides are 12 miles (20 kilometres) or less in length, and wherein differences of latitude and longitude are needed to the nearest hundredth of a second only, the following formulas may suffice. Using the same notation as in the preceding section, the formulas are : —

$$\begin{aligned} \phi_2 &= \phi_1 + \Delta \phi, \\ \lambda_2 &= \lambda_1 + \Delta \lambda, \\ a_{2,1} &= 180^\circ + a_{1,2} + \Delta a, \end{aligned} \tag{1}$$

$$\begin{aligned} \Delta \phi &= - \qquad a_1 \, s \, \cos \, a_{1,3} - a_2 \, s^3 \, \sin^3 \, a_{1,3} \\ \Delta \lambda &= + \, b_1 \, \sec \, \phi_1 \, s \, \sin \, a_{1,3} - b_3 \, s^3 \, \sin \, a_{1,3} \, \cos \, a_{1,3} \\ \Delta a &= - \, c_1 \, \tan \, \phi_1 \, s \, \sin \, a_{1,3} + c_3 \, s^3 \, \sin \, a_{1,3} \, \cos \, a_{1,3}. \end{aligned} \tag{2}$$

The constants entering the latter equations are defined by the following expressions, wherein ρ_m and ρ_n are the principal radii of curvature of the spheroid at the point whose latitude is ϕ_1 and $\rho'' = 206\ 264$."8:

$$a_{1} = \frac{\rho''}{\rho_{m}}, \qquad b_{1} = c_{1} = \frac{\rho''}{\rho_{n}},$$
$$a_{2} = \frac{\rho'' \tan \phi_{1}}{2 \rho_{m} \rho_{n}}, \qquad b_{3} = \frac{\rho'' \sec \phi_{1} \tan \phi_{1}}{\rho_{n}^{2}}, \qquad c_{3} = \frac{\rho'' (1 + 2 \tan^{2} \phi_{1})}{2 \rho_{n}^{3}}.$$

The logarithms of the factors a_1 , b_1 , c_1 , a_2 , b_3 , c_3 , are given in Table 15 for the English foot as unit, and in Table 16 for the metre as unit, the argument being the initial latitude ϕ_1 for all of them.

When all of the differences given by (2) are computed, they may be checked by the formula

$$\sin \frac{1}{2}(\phi_2 + \phi_1) = \frac{\Delta \alpha}{\Delta \lambda}.$$
 (3)

For convenience of reference in numerical applications of the above formulas, (2) may be written thus:

$$\Delta \phi = A_1 + A_2$$

$$\Delta \lambda = B_1 + B_2$$

$$\Delta a = C_1 + C_2$$

in which, for example, A_1 and A_2 are the first and second terms respectively of $\Delta \phi$, due regard being paid to the signs of the functions of $a_{1,2}$.

Numerical example. The following example will serve to illustrate the use of formulas (1) to (3). The value of $\log s$ is for s in English feet, s being in this case about 12.3 miles.

See Appendix 7, Report of 1884, for latest edition of these tables.

log	log	log	log
s 4.81308	\$ 4.81308	s sin a _{1.3} 4.647	s sin a _{1.3} 4.647
COS a1. 9.86392	sin a ₁₂ 9.83402	s sin a _{1.3} 4.647	s cos a ₁₂ 4.677
a1 7.99495	sec ϕ_1 0.10890	<i>a</i> 2 0.279	<i>b</i> ₂ 0.688
	<i>b</i> 1 7.99316		<i>c</i> ₂ 0.733
A 1 2.67195	B1 2.74916	A, 9.573	B ₂ 0.012
	$\sin \phi_1 \ 9.79795$		C3 0.057
	C1 2.54711		log
$A_1 - 469.''84$	$B_1 + 561.''25$	$C_1 - 352.''46$	Da 2.54570
$A_2 - 0.''37$	$B_2 - 1.''03$	$C_2 + 1.''14$	Δλ 2.74836
$\Delta \phi - 470.''^{21}$	$\Delta\lambda$ + 560."22	Δa — 351."32	$\sin \frac{1}{2}(\phi_1 + \phi_1) 9.79734$

15. TRIGONOMETRIC LEVELING.

a. Computation of heights from observed zenith distances.

Let
$$s =$$
 sea level distance between two points P_1 and P_2

 H_1 , H_2 = heights above sea level of P_1 and P_2 ,

 $z_1 =$ observed zenith distance of P_2 from P_1 ,

- $s_2 =$ observed zenith distance of P_1 from P_2 ,
- $\rho = \text{radius of curvature of vertical section at } P_1 \text{ through } P_2, \text{ or at } P_2 \text{ through } P_1, \text{ the curvature being sensibly the same for both for this purpose,}$

C = angle at centre of curvature subtended by s,

 $m_1, m_2 = \text{coefficients of refraction at } P_1 \text{ and } P_2$

 $\Delta s_1, \Delta s_2 =$ angles of refraction at P_1 and P_2 .

Then, the fundamental relations are

$$C = \frac{s}{\rho}, \quad \Delta z_1 = m_1 C, \quad \Delta z_2 = m_2 C, \quad . \quad (1)$$

$$s_1 + s_2 + \Delta z_1 + \Delta z_2 = 180^\circ + C,$$

$$H_2 - H_1 = s \tan \frac{1}{2}(z_2 + \Delta z_2 - z_1 - \Delta z_1) \left(1 + \frac{H_2 + H_1}{2 \rho} + \frac{s^3}{12 \rho^3} + \ldots \right). \quad (2)$$

When the zenith distances z_1 and z_2 are simultaneous, or when Δs_1 and Δz_2 are assumed to be equal, (2) becomes

$$H_2 - H_1 = s \tan \frac{1}{2}(z_2 - z_1) \left(1 + \frac{H_2 + H_1}{2\rho} + \frac{s^2}{12\rho^2} + \ldots \right).$$
(3)

For the case of a single observed zenith distance z_1 , say, and a known or assumed value of $m = m_1 = m_2$, the following formula may be applied:

$$H_2 - H_1 = s \cot s_1 + \frac{1-2m}{2\rho} s^2 + \frac{1-m}{\rho} s^2 \cot^2 s_1.$$
 (4)

The coefficient of refraction *m* varies very greatly under different atmospheric conditions. Its average value for land lines is about 0.07. The following table gives the values of $\log \frac{1}{2}(1-2m)$ and $\log (1-m)$ for values of *m* ranging from 0.05 to 0.10. It is taken from Appendix 18, Report of U. S. Coast and Geodetic

Survey for 1876. Table 12 taken from the same source gives values of log ρ needed for use in (3) and (4).

m	$\log \frac{1}{2}(1-2m).$	log (I — m).	**	$\log \frac{1}{2}(1-2m).$	log (1 — #).
0.050 51 52 53 54	9.65321 65225 65128 65031 64933	9.978 77 77 76 76	0.075 76 77 78 79	9.62839 62737 62634 62531 62428	9.966 66 65 65 64
0.055	9.64836	9.975	0.080 81	9.62325	9.964
56	64738 64640	75	81	62221 62118	63 63
57 58	64542	75 74	83	62014	62
59 59	64444	74	84	61910	62
0.060	9.64345	9.973	0.085	9.61805	9.961
61	64246	73	86	61700	61
62	64147	72	87	61595	60
63	64048	72	88	61490	60
64	63949	71	89	61384	60
0.065	9.63849	9.97 I	0.090	9.61278	9.959
66	63749	70	91	61172	59
67	63649	70	92	61066	58
68	63548	69	93	60959	58
69	63448	69	94	60853	57
0. 070	9.63347	9.968	0.095	9.60746	9.957
7 I	63246	68	96	60638	56
72	63144	68	97	60531	56
73	63043	67	98	60423	55
74	62941	67	99	60315	55
			0.100	9.60206	9.954

Table of values of log $\frac{1}{2}(1-2m)$ and log (1-m).

For less precise work one may use equation (4) in the form

$$H_{2} - H_{1} = s \cot z_{1} + c s^{2}, \qquad (5)$$

wherein, if we make m = 0.07 and use for ρ its average value, or $\sqrt{\rho_m \rho_m}$ for latitude 45°,

$$\log c = 2.313 - 10$$
 for s in feet,
= 2.829 - 10 for s in metres

Thus, for a distance (s) of 10 miles the value of the term cs^{s} in (5) is 57.3 feet.

If altitudes a_1 , say, are observed in the place of zenith distances s_1 , it is most convenient to write (5) thus: —

$$H_2 - H_1 = \pm s \tan a_1 + c s^2,$$

Digitized by Google⁽⁶⁾

lxii

where the upper sign is used when a_1 is an angle of elevation and the lower sign when a_1 is an angle of depression.

b. Coefficients of refraction.

When s_1 and s_2 are both observed for a given line, a coefficient of refraction may be computed from the assumption of equality of coefficients at the two ends of the line. Thus, equations (1) give

or

$$\Delta z_1 + \Delta z_2 = 180^\circ + C - (z_1 + z_2),$$

$$(m_1 + m_2) \frac{s}{\rho} = 180^\circ + \frac{s}{\rho} - (s_1 + s_2),$$

whence

$$m_1 + m_2 = 1 - \frac{\rho}{s} (z_1 + z_2 - 180^\circ).$$

Assuming $m_1 = m_2 = m$, and supposing $s_1 + z_2 - 180^\circ$ expressed in seconds of arc,

$$m = \frac{1}{2} \left\{ 1 - \frac{\rho}{s\rho''} \left(z_1 + z_2 - 180^\circ \right) \right\}.$$

$$\rho'' = 206264.''8, \quad \log \rho'' = 5.3144251.$$

c. Dip and distance of sea horizon.

Let

k = height of eye above sea level, δ = dip or angle of depression of horizon, s = distance of horizon from observer.

Then

$$\delta \text{ (in seconds)} = 58.82 \sqrt{h \text{ in feet,}}$$

= 106.54 $\sqrt{h \text{ in metres.}}$
s (in miles) = 1.317 $\sqrt{h \text{ in feet,}}$
s (in kilometres) = 3.839 $\sqrt{h \text{ in metres.}}$

The above formulas take account of curvature and refraction. They depend on the value 0.0784 for the coefficient of refraction, and are quite as accurate as the uncertainties in such data justify. For convenience of memory, and for an accuracy amply sufficient in most cases, the coefficients of the radicals in the last two formulas may be written $\frac{4}{3}$ and $\frac{1}{8}$ respectively.

16. MISCELLANEOUS FORMULAS.

a. Correction to observed angle for eccentric position of instrument

Let C be the eccentric position of the instrument, and C_0 the observed value of the angle at that point between two other points A and B. Let C denote the central point as well as the angle ACB desired. Call the distance CC r and denote the angle ACC' by θ . Denote the lines BC and AC, which are assumed to be sensibly the same as BC' and AC', by a and b respectively. Then

$$C - C_0 \text{ (in seconds)} = \frac{\rho'' r \sin(\theta - C_0)}{a} - \frac{\rho'' r \sin\theta}{b}$$

$$\rho'' = 206\ 264.''8, \qquad \log \rho'' = 5.3144251.$$

Attention must be paid to the signs of $\sin(\theta - C_0)$ and $\sin \theta$, and to the fact that angles are counted from A towards B through 360°. A diagram drawn in accordance with the above specifications will elucidate any special case.

b. Reduction of measured base to sea level.

Let l be the length of the bar, tape or other unit used in measuring the base. Let l_0 be the corresponding length reduced to sea level for a height h, this latter being the observed height of l. Then if ρ denote the radius of curvature of the earth's surface in the direction of the base,

$$l_0 = \frac{\rho l}{\rho + h} = \left(1 - \frac{h}{\rho} + \dots\right) l$$

with sufficient accuracy. Hence, for the whole length of the base,

$$\Sigma I_0 = \Sigma I - \frac{1}{\rho} \Sigma I h.$$

If L denote the total measured length, L_0 the corresponding total sea level length, and H the mean value of the heights h, the above equation gives

$$L_0 = L - L \frac{H}{\rho}.$$

c. The three-point problem.

In this problem the positions of three points A, B, C, and hence the elements of the triangle they form, are given together with the two angles APC and BPC at a point P whose position is required. Denote the angles and the sides of the known triangle by A, B, C, and a, b, c, respectively. Also put

$$APC = \beta, \quad BPC = a, \\ PAC = x, \quad PBC = y.$$

Then the sum of the angles in the quadrilateral PACB is

$$a + \beta + x + y + C = 360^{\circ},$$

 $\frac{1}{2}(x + y) = 180^{\circ} - \frac{1}{2}(a + \beta + C).$ (1)

whence

Compute an auxiliary angle *z* from the equation

$$\tan z = \frac{a \sin \beta}{b \sin a}; \qquad (2)$$

Then

$$\tan \frac{1}{2}(x-y) = \tan (z-45^{\circ}) \tan \frac{1}{2}(x+y).$$
(3)

These three equations give all the data essential to a complete determination of the position of P. Any special case should be elucidated by a diagram drawn in accordance with the specifications given above.

Digitized by Google

lxiv

When the positions of the points A, B, C are given on a map, the position of P on the same map may be found graphically by drawing lines making angles with each other equal to the given angles a and β from a point on a piece of tracing paper, and then placing this tracing on the map so as to meet the required conditions. This ready method of solving the problem is often sufficient.

17. SALIENT FACTS OF PHYSICAL GEODESY.

a. Area of earth's surface, areas of continents, area of oceans.*

									Square miles.
Total ar	ea of ea	rth's surface						•	196 940 000
Area co	ntinent	of Europe.	•	•	•	•	•		3820000
"	"	Asia.		•					17 230 00 0
66	"	Africa.			•				11 480 000
"	"	Australia							3 406 000
. 66	66	America							15 950 000
Total a	rea of co	ntinents .							51 886 000
Total a	rea of oc	eans	•						145 054 000

b. Average heights of continents and depths of oceans.†

										Feet.	Metres.
Average	height of	continent	t of Eu	iroj	pe		•	•	•	980	300
"	66	66	A	sia	•	•	•		•	1640	500
66	"	"	A	fric	a				•	1640	500
66	66	"	A	usti	rali	a	•			820	250
"	"	"	A	mei	rica			•	•	1340	410
Average	height of	fall	•••	•	. •	•	•	•	•	1440	440
										Feet.	Metres.
Average	depth of	Atlantic (Ocean	•	•	•	•		•	12 100	3680
66	"	Pacific O	cean		•					12 700	3890
"	"	Indian O	cean		•					11000	3340
Average	depth of	all		•	•	•	•	•	•	11 300	3440

c. Volume, surface density, mean density, and mass of earth.

= 1 083 200 000 000 cubic kilometres.

= 260×10^9 cubic miles (about).

= 108×10^{10} cubic kilometres (about).

Surface density of earth = $2.56 \pm 0.16 \ddagger$ Mean density of earth = 5.576 ± 0.016 .

* Derived from relative areas given in Helmert's Geodäsie, Band II. p. 313.

† Helmert's Geodäsie, Band II. p. 313.

t These densities are given by Professor Wm. Harkness in his memoir on *The Solar Parallax* and *Related Constants*. The surface density applies to that portion of the earth's crust which lies above and within a shell ten miles thick, the lower surface of this shell being ten miles below sea level.

Assuming the mass of a cubic foot of water to be 62.28 pounds (at 62° F.),

Mass of earth * = 13284×10^{21} pounds. = 6642×10^{10} tons (of 2000 lbs.). = 60258×10^{20} kilogrammes.

d. Principal moments of inertia and energy of rotation of earth.

M = mass of earth,

- A = moment of inertia of earth about an axis in its equator,
- C = moment of inertia about axis of rotation,
- a = equatorial axis of earth,
- ω = angular velocity of earth,

= (2 $\pi/86164$) for mean solar second as unit of time.

Then †

$$A = 0.325 Ma^2$$
,
 $C = 0.326 Ma^2$.

Energy of rotation of earth = $\frac{1}{2} \omega^2 C$.

 $= 0.163 \text{ w}^3 Ma^3.$ = 504 × 10³³ foot-poundals. = 217 × 10³⁶ kilogramme-metres. = 212 × 10⁸⁵ ergs.

References.

The most exhaustive treatise on the theory of geodesy is found in "Die Mathematischen und Physikalischen Theorieen der Höheren Geodäsie," von Dr. F. R. Helmert. Leipzig: B. G. Teubner; 8vo, 1880 (vol. i.), 1884 (vol. ii.). An excellent work on the practical as well as theoretical features of the subject is "Die geodätischen Hauptpunkte und ihre Co-ordinaten," von G. Zachariae; autorisirte deutsche Ausgabe, von E. Lamp. Berlin: Robert Oppenheim, 8vo, 1878. Of works in English the most comprehensive is "Geodesy," by A. R. Clarke. Oxford: The Clarendon Press, 8vo, 1880.

* The mass of the earth's atmosphere is about one-millionth part of the entire mass, or about 66×10^{14} tons.

 \dagger The values of A and C are those given by Harkness, *loc. cit.*, but they are here abridged to three places of decimals.

lxvi

I. THE CELESTIAL SPHERE. PLANES AND CIRCLES OF REFERENCE.

THE celestial sphere is a sphere to which it is convenient to refer stars and other celestial objects. Its centre is assumed to be coincident with the eve of the observer, and the objects referred to it are supposed to lie in its surface. The orientation of this sphere is defined by its equator, which is assumed to be parallel to the earth's equator. The equator is thus the principal plane of reference. Other planes of reference are the plane of the horizon, which is perpendicular to the plumb line at the place; the meridian, which is a plane through the place and the earth's axis of rotation; the prime-vertical, which is a vertical plane at the place at right angles to the meridian; and the ecliptic, which is a plane parallel to the plane of the earth's orbit. These planes cut the surface of the sphere in great circles called the equator, the horizon, the meridian, etc. The points on the sphere defined by the intersection of the meridians, or the points where the axis of the equator pierces the sphere, are called the poles. Similarly, the prolongation of the plumb line upwards pierces the sphere in the zenith, and its prolongation downwards pierces the sphere in the nadir. Great circles passing through the zenith are called vertical circles.

2. Spherical Co-ordinates.

a. Notation.

The position of a celestial body may be defined by several systems of co-ordinates. The most important of these in practical astronomy are the azimuth and altitude system and the hour angle and declination system. In the first of these the azimuth of a star or other body is the angle between the meridian plane of the place and a vertical plane through the star. It is measured, in general, from the south around by the west through 360° . The altitude of a star is its angular distance above the horizon, and its zenith distance is the complement of the altitude. In the second system the hour angle of a star is the angle between the meridian plane of the place and a meridian plane through the star. It is measured towards the west through 360° . The declination of a star is its angular distance above or below the equator; the complement of the declination is called the polar distance.

The angular distance of the pole above the horizon is equal to the zenith distance of the equator, or to the latitude of the place. Likewise, the altitude of the equator and the zenith distance of the pole are each equal to the complement of the latitude at any place. These quantities are usually designated by the following notation : --

$$A =$$
 the azimuth of a star or object,

h =its altitude,

$$s = its zenith distance = 90^{\circ} - h$$
,

- t =its hour angle,
- $\delta = its$ declination,

$$p =$$
its polar distance $= 90^{\circ} - \delta$,

- q = the parallactic angle, or angle at the star between the pole and the zenith,
- ϕ = the latitude of the place of observation.

b. Altitude and azimuth in terms of declination and hour angle.

The fundamental relations for this problem are --

$$\sin h = \sin \phi \sin \delta + \cos \phi \cos \delta \cos t,$$

$$\cos h \cos A = -\cos \phi \sin \delta + \sin \phi \cos \delta \cos t,$$

$$\cos h \sin A = \cos \delta \sin t.$$
(1)

When it is desired to compute both A and h by means of logarithms, the most convenient formulas are,

$$m \sin M = \sin \delta, \qquad \tan M = \frac{\tan \delta}{\cos t}, \qquad \tan M = \frac{\tan \delta}{\cos t}, \qquad (2)$$

$$\sin h = m \cos (\phi - M), \qquad \tan A = \frac{\tan t \cos M}{\sin (\phi - M)}, \qquad (2)$$

$$\cos h \cos A = m \sin (\phi - M), \qquad \tan h = \frac{\cos A}{\tan (\phi - M)}.$$

$$A > 180^{\circ} \text{ when } t > 180^{\circ} \text{ and } A < 180^{\circ} \text{ when } t < 180^{\circ}.$$

For the computation of A and s separately, the following formulas are useful :

$$\tan A = -\frac{\sin t}{\cos \phi \tan \delta (1 - \tan \phi \cot \delta \cos t)}$$

$$= -\frac{a \sin t}{1 - b \cos t},$$

$$a = \sec \phi \cot \delta, \quad b = \tan \phi \cot \delta.$$
(3)

where

Formulas (3) are especially appropriate for the computation of a series of azimuths of close circumpolar stars, since a and b will be constant for a given place and date.

$$\cos s = \cos (\phi \sim \delta) - 2 \cos \phi \cos \delta \sin^2 \frac{1}{2} t,$$

$$\sin^2 \frac{1}{2} s = \sin^2 \frac{1}{2} (\phi \sim \delta) + \cos \phi \cos \delta \sin^2 \frac{1}{2} t,$$

$$(\phi \sim \delta) = \phi - \delta, \text{ for } \phi > \delta$$

$$= \delta - \phi, \text{ for } \phi < \delta.$$
(4)

lxviii

For logarithmic application of (4) we may write

$$m^{2} = \cos \phi \cos \delta, \qquad n^{2} = \sin^{2} \frac{1}{2} (\phi \sim \delta),$$

$$\tan N = \frac{m}{n} \sin \frac{1}{2} t, \qquad (5)$$

$$\sin \frac{1}{2} s = \frac{n}{\cos N} = \frac{m}{\sin N} \sin \frac{1}{2} t.$$

c. Declination and hour angle in terms of altitude and azimuth.

The fundamental relations for this case are

$$\sin \delta = \sin \phi \sin h - \cos \phi \cos h \cos A,$$

$$\cos \delta \cos t = \cos \phi \sin h + \sin \phi \cos h \cos A,$$

$$\cos \delta \sin t = \cos h \sin A.$$
(1)

For logarithmic computation by means of an auxiliary angle M one may write

$$m \sin M = \cos h \cos A, \qquad \tan M = \cot h \cos A,$$

$$m \cos M = \sin h,$$

$$\sin \delta = m \sin (\phi - M), \qquad \tan t = \frac{\tan A \sin M}{\cos (\phi - M)},$$

$$\cos \delta \cos t = m \cos (\phi - M),$$

$$\cos \delta \sin t = \cos h \sin A, \qquad \tan \delta = \tan (\phi - M) \cos t.$$
(2)

d. Hour angle and azimuth in terms of zenith distance.

 $\cos t = \frac{\cos z - \sin \phi \sin \delta}{\cos \phi \cos \delta}.$ $\tan^2 \frac{1}{2} t = \frac{\sin (\sigma - \phi) \cos (\sigma - \delta)}{\cos \sigma \cos (\sigma - z)}, \quad \sigma = \frac{1}{2} (\phi + \delta + z).$ $\cos A = \frac{\sin \phi \cos z - \sin \delta}{\cos \phi \sin z}.$ $\tan^2 \frac{1}{2} A = \frac{\sin (\sigma - \phi) \cos (\sigma - z)}{\cos \sigma \sin (\sigma - \delta)}, \quad \sigma = \frac{1}{2} (\phi + \delta + z).$

e. Formulas for parallactic angle.

 $\cos z = \sin \delta \sin \phi + \cos \delta \cos \phi \cos t,$ $\sin z \cos q = \cos \delta \sin \phi - \sin \delta \cos \phi \cos t,$ $\sin z \sin q = \cos z \sin \phi + \sin z \cos \phi \cos t,$ $\cos \delta \cos q = \sin z \sin \phi + \cos z \cos \phi \cos A,$ $\cos \delta \sin q = \cos \phi \sin A.$ (1)

The first three of these are adapted to logarithmic computation as follows :----

$$n \sin N = \cos \phi \cos t,$$

$$n \cos N = \sin \phi,$$

$$\cos s = n \sin (\delta + N),$$

$$\sin s \cos q = n \cos (\delta + N),$$

$$\sin s \sin q = \cos \phi \sin t;$$

whence

$$\tan N = \cot \phi \cos t,$$

$$\tan z \sin q = \frac{\tan t \sin N}{\sin (\delta + N)},$$

$$\tan z \cos q = \cot (\delta + N).$$
 (2)

A similar adaptation results for the last three of equations (1) by interchanging δ and s. The equations (2) give both s and q in terms of ϕ , δ , and t, without ambiguity, since tan s is positive for stars above the horizon.

If A, s, and q are all required from ϕ , δ , and t, they are best given by the Gaussian relations

$$\sin \frac{1}{3} s \sin \frac{1}{3}(A+q) = \sin \frac{1}{3} t \cos \frac{1}{3}(\phi+\delta),$$

$$\sin \frac{1}{3} s \cos \frac{1}{3}(A+q) = \cos \frac{1}{3} t \sin \frac{1}{3}(\phi-\delta),$$

$$\cos \frac{1}{3} s \sin \frac{1}{3}(A-q) = \sin \frac{1}{3} t \sin \frac{1}{3}(\phi+\delta),$$

$$\cos \frac{1}{3} z \cos \frac{1}{3}(A-q) = \cos \frac{1}{3} t \cos \frac{1}{3}(\phi-\delta).$$
(3)

f. Hour angle, azimuth, and zenith distance of a star at elongation.

In this case the parallactic angle is 90° and the required quantities are given by the formulas

$$\cos t = \frac{\tan \phi}{\tan \delta},$$

$$\sin A = \frac{\cos \delta}{\cos \phi},$$
 (1)

$$\cos z = \frac{\sin \phi}{\sin \delta}.$$

When all of the quantities t, A, and z are to be computed the following formulas are more advantageous: —

$$K^{2} = \sin (\delta + \phi) \sin (\delta - \phi),$$

$$\sin t = \frac{K}{\cos \phi \sin \delta}, \quad \cos A = \frac{K}{\cos \phi}, \quad \sin z = \frac{K}{\sin \delta}, \quad (2)$$

$$\tan t = \frac{K}{\sin \phi \cos \delta}, \quad \tan A = \frac{\cos \delta}{K}, \quad \tan s = \frac{K}{\sin \phi}.$$

g. Hour angle, zenith distance, and parallactic angle for transit of a star across prime vertical.

In this case the azimuth angle is 90° and the required quantities are given by the formulas

Digitized by Google

lxx

$$\cos t = \frac{\tan \delta}{\tan \phi}$$

$$\cos z = \frac{\sin \delta}{\sin \phi}$$
(1)
$$\sin q = \frac{\cos \phi}{\cos \delta};$$

or, if all of them are to be computed, by the formulas

$$K^{2} = \sin (\phi + \delta) \sin (\phi - \delta),$$

$$\sin t = \frac{K}{\sin \phi \cos \delta} \qquad \sin s = \frac{K}{\sin \phi}, \qquad \cos q = \frac{K}{\cos \delta},$$

$$\tan t = \frac{K}{\cos \phi \sin \delta} \qquad \tan s = \frac{K}{\sin \delta} \qquad \tan q = \frac{\cos \phi}{K}.$$
(2)

For special accuracy the following group will be preferred :---

$$\tan^{2} \frac{1}{2} t = \frac{\sin (\phi - \delta)}{\sin (\phi + \delta)},$$

$$\tan^{2} \frac{1}{2} s = \frac{\tan \frac{1}{2}(\phi - \delta)}{\tan \frac{1}{2}(\phi + \delta)},$$

$$\tan^{2} (45^{\circ} - \frac{1}{2}q) = \tan \frac{1}{2}(\phi + \delta) \tan \frac{1}{2}(\phi - \delta).$$
(3)

h. Hour angle and azimuth of a star when in the horizon, or at the time of rising or setting.

In this case the zenith distance of the star is 90°, and the required quantities are given by

 $\cos t = -\tan \phi \tan \delta,$ $\cos A = -\frac{\sin \delta}{\cos \phi};$ $\tan^{2} \frac{1}{2} t = \frac{\cos (\phi - \delta)}{\cos (\phi + \delta)};$ $\tan^{2} \frac{1}{2} A = \frac{\tan \frac{1}{2}(90^{\circ} - \phi + \delta)}{\tan \frac{1}{2}(90^{\circ} - \phi - \delta)};$

or by

On account of refraction, the values of t and A given by these formulas are subject to the following corrections, to wit:—

$$\Delta t = \frac{R}{\cos \phi \cos \delta \sin t}, \quad \Delta A = \frac{\tan \phi}{\sin A} R,$$

where R is the refraction in the horizon. Thus the actual values of the hour angle and azimuth at the time of rising or setting of a star are

$$t + \Delta t$$
 and $A + \Delta A$.

Digitized by Google

lxxi

i. Differential formulas.

The general differential relations for the altitude and azimuth and the declination and hour angle systems of coördinates are : ---

$$dz = -\cos q \, d\delta + \sin q \cos \delta \, dt + \cos A \, d\phi,$$

$$\sin z \, dA = \sin q \, d\delta + \cos q \cos \delta \, dt - \cos z \sin A \, d\phi.$$

$$d\delta = -\cos q \, dz + \sin q \sin z \, dA + \cos t \, d\phi,$$
(1)
(2)

$$\cos \delta dt = \sin q \, dz + \cos q \sin s \, dA + \sin \delta \sin t \, d\phi.$$
(2)

The following values derived from (1) are of interest as showing the dependence of s and A on t in special cases: —

		$\left(\frac{dz}{dt}\right)$)	$\left(\frac{dA}{dt}\right)$
For a star in the meridian	=		о,	$=\frac{\cos\delta}{\sin s}$
For a star in the prime vertical	=	cos	φ,	$= \sin \phi$,
For a star at elongation	=	cos	δ,	= o.

3. RELATIONS OF DIFFERENT KINDS OF TIME USED IN ASTRONOMY.

a. The sidereal and solar days.

The sidereal day is the interval between two successive transits of the vernal equinox over the same meridian. The sidereal time at any instant is the hour angle of the vernal equinox reckoned from the meridian towards the west from o to 24 hours. The sidereal time at any place is o when the vernal equinox is in the meridian of that place.

The solar day is the interval between two successive transits of the sun across any meridian; and the solar time at any instant is the hour angle of the sun at that instant. The solar day begins at any place when the sun is in the meridian of that place.

The mean solar day is the interval between two successive transits over the same meridian of a fictitious sun, called the mean sun, which is assumed to move uniformly in the equator at such a rate that it returns to the vernal equinox at the same instant with the actual sun.

Time reckoned with respect to the actual sun is called apparent time, while that reckoned with respect to the mean sun is called mean time. The difference between apparent and mean time, which amounts at most to about 16^m, is called the equation of time. This quantity is given for every day in the year in ephemerides.

The sidereal time when a star or other object crosses the meridian is called the right ascension of the object. The right ascension of the mean sun is also called the sidereal time of mean noon. This time is given for every day in the year in ephemerides for particular meridians, and can be found for any meridian by allowing for the difference in longitude.

The time to which ephemerides and most astronomical calculations are referred

lxxii

is the solar day, beginning at noon, and divided to hours numbered continuously from o^A to 24^A. This is called astronomical time; and such a day is called the astronomical day. It begins, therefore, 12 hours later than the civil day.

b. Relation of apparent and mean time.

A = apparent time = hour angle of real sun, M = mean time = hour angle of mean sun, E = equation of time.

$$M = A + E.$$

In the use of this relation, E may be most conveniently derived (by interpolation for the place of observation) from an ephemeris.

c. Relation of sidereal and mean solar intervals of time.

I =interval of mean solar time,

I' =corresponding interval in sidereal time,

r = the ratio of the tropical year expressed in sidereal days to the tropical year expressed in mean solar days

$$=\frac{366.2422}{365.2422} = 1.002738.$$

$$I' = rI = I + (r - 1) I = I + 0.002738 I$$

$$I = r^{-1} I' = I' - (1 - r^{-1}) I' = I' - 0.002730 I'.$$

Tables for making such calculations are usually given in ephemerides (see, for example, the American Ephemeris). Short tables for this purpose are Tables 34 and 35 of this volume.

Frequent reference is made to the relations

24^h sidereal time = 23^h 56^m 04.⁶091 solar time, 24^h mean time = 24^h 03^m 56.⁶555 sidereal time.

d. Interconversion of sidereal and mean solar time.

 $T_{\rm m} =$ mean time at any place, $T_{\rm s} =$ corresponding sidereal time, = right ascension of meridian of the place, A = right ascension of mean sun for place and date, = sidereal time of mean noon for place and date. $T_{\rm s} = A + T_{\rm m}$ expressed in sidereal time.

 $T_{\rm m} = (T_{\rm s} - A)$ expressed in mean time.

The quantity A is given in the ephemerides for particular meridians, and can be found by interpolation for any meridian whose longitude with respect to the meridian of the ephemeris is known. The formulas assume that A is taken out of the ephemeris for the next preceding mean noon.

e. Relation of sidereal time to the right ascension and hour angle of a star.

 $T_{a} =$ sidereal time at any place,

= right ascension of the meridian of the place,

a = right ascension of a star,

t = the hour angle of the star at the time T_r

 $T_s = a + t, \quad t = T_s - a.$

4. DETERMINATION OF TIME.

a. By meridian transits.

A determination of time consists in finding the correction to the clock, chronometer, or watch used to record time. If T_0 denote the true time at any place of an event, T the corresponding observed clock time, and ΔT the clock correction,

$$T_0 = T + \Delta T$$

The simplest way to determine the clock correction is to observe the transit of a star, whose right ascension is known, across the meridian. In this case the true time $T_0 = a$, the right ascension of the star; and if T is the observed clock time of the transit,

 $\Delta T = a - T.$

Meridian transits of stars may be observed by means of a theodolite or transit instrument mounted so that its telescope describes the meridian when rotated about its horizontal axis. The meridian transit instrument is specially designed for this purpose, and affords the most precise method of determining time.*

Since it is impossible to place the telescope of such an instrument exactly in the meridian, it is essential in precise work to determine certain constants, which define this defect of adjustment, along with the clock correction. These constants are the azimuth of the telescope when in the horizon, the inclination of the horizontal axis of the telescope, and the error of collimation of the telescope.[†]

Let

a = azimuth constant, b = inclination or level constant, c = collimation constant.

a is considered plus when the instrument points east of south; b is plus when the west end of the rotation axis is the higher; and c is intrinsically plus when the star observed crosses the thread (or threads) too soon from lack of collimation. (The latter constant is generally referred to the clamp or circle on the horizontal axis of the instrument.)

^{*} The best treatise on the theory and use of this instrument is to be found in Chauvenet's *Manual of Spherical and Practical Astronomy*, which should be consulted by one desiring to go into the details of the subject.

[†] Other equivalent constants may be used, but those given are most commonly employed.

Also let

 $\phi = \text{latitude of the place,} \\\delta = \text{declination of star observed,} \\a = \text{right ascension of star observed,} \\T = \text{observed clock time of star's transit,} \\\Delta T = \text{the clock correction at an assumed epoch } T_{0}, \\r = \text{the rate of the clock, or other timepiece,} \\A = \frac{\sin(\phi - \delta)}{\cos \delta} = \text{the "azimuth factor,"} \\B = \frac{\cos(\phi - \delta)}{\cos \delta} = \text{the "level factor,"} \\C = \frac{1}{\cos \delta} = \text{the "collimation factor."}$

Then, when a, b, c are small (conveniently less than 10^s each, and in ordinary practice less than 1^s each),

$$T + \Delta T + Aa + Bb + Cc + r(T - T_0) = a.$$

This is known as Mayer's formula for the computation of time from star transits. The quantity Bb is generally observed directly with a striding level. Assuming it to be known and combined with T, the above equation gives

$$\Delta T + Aa + Cc + r(T - T_0) = a - T.$$
 (1)

This equation involves four unknown quantities, ΔT , *a*, *c*, and *r*; so that in general it will be essential to observe at least four different stars in order to get the objective quantity ΔT . Where great precision is not needed, the effect of the rate, for short intervals of time, may be ignored, and the collimation *c* may be rendered insignificant by adjustment. Then the equation (1) is simplified in

$$\Delta T + Aa = a - T. \tag{2}$$

This shows that observations of two stars of different declinations will suffice to give ΔT . Since the factor A is plus for stars south of the zenith (in north latitude) and minus for stars north of the zenith, if stars be so chosen as to make the two values of A equal numerically but of opposite signs, ΔT will result from the mean of two equations of the form (2). With good instrumental adjustments (b and c small), this simple sort of observation with a theodolite will give ΔT to the nearest second.

A still better plan for approximate determination of time is to observe a pair of north and south stars as above, and then reverse the telescope and observe another pair similarly situated, since the remaining error of collimation will be partly if not wholly eliminated. Indeed, a well selected and well observed set of four stars will give the error of the timepiece used within a half second or less. This method is especially available to geographers who may desire such an approximate value of the timepiece correction for use in determining azimuth. It will suffice in the application of the method to set up the instrument (theodolite or transit) in the vertical plane of Polaris, which is always close enough to the meridian. The determination will then proceed according to the following programme:—

Digitized by GOOgle

- 1. Observe time of transit of a star south of zenith,
- 2. Observe time of transit of a star north of zenith.

Reverse telescope,

- 3. Observe time of transit of another star south of zenith,
- 4. Observe time of transit of another star north of zenith.

Each star observation will give an equation of the form (1), and the mean of the four resulting equations is

$$\Delta T + a \frac{\Sigma A}{4} + c \frac{\Sigma C}{4} + r \frac{\Sigma (T-T_0)}{4} = \frac{\Sigma (\alpha - T)}{4}.$$

Now the coefficient of r in this equation may be always made zero by taking for the epoch T_0 the mean of the observed times T. Likewise, ΣA and ΣC may be made small by suitably selected stars, since two of the A's and C's are positive and two negative. The value $\frac{1}{2} \Sigma(a - T)$ is thus always a close approximation to ΔT for the epoch $T_0 = \frac{1}{2} \Sigma T$, when ΣA and ΣC approximate to zero. But if these sums are not small, approximate values of a and c may be found from the four equations of the form (1), neglecting the rate, and these substituted in the above formula will give all needful precision.

For refined work, as in determining differences of longitude, several groups of stars are observed, half of them with the telescope in one position and half in the reverse position, and the quantities ΔT , a, c, and r are computed by the method of least squares. In such work it is always advantageous to select the stars with a view to making the sums of the azimuth and collimation coefficients approximate to zero, since this gives the highest precision and entails the simplest computations.*

b. By a single observed altitude of a star.

An approximate determination of time, often sufficient for the purposes of the geographer, may be had by observing the altitude or zenith distance of a known star. The method requires also a knowledge of the latitude of the place. Let

- $z_1 =$ the observed zenith distance of the star,
- R = the refraction,
- s = the true zenith distance of the star,

$$= s_1 + R$$

- α , δ , = the right ascension and declination of the star,
 - t = hour angle of star at time of observation,
 - T =observed time when z_1 is measured,
- $\Delta T =$ correction to timepiece,
 - $\phi =$ latitude of place.

Then the hour angle t may be computed by

$$\tan^2 \frac{1}{2} t = \frac{\sin (\sigma - \phi) \cos (\sigma - \delta)}{\cos \sigma \cos (\sigma - z)}, \quad \sigma = \frac{1}{2}(\phi + \delta + z).$$

* For details of theory and practice in time work done according to this plan see Bulletin 49, U. S. Geological Survey. Digitized by Google

lxxvi

Having the hour angle the clock correction ΔT is given by

$$\Delta T = a + t - T,$$

in which all terms must be expressed in the same unit; *i. e.*, in sidereal or in mean time.

The refraction R may be taken from Table 31.

The most advantageous position of the star observed, so far as the effect of an error in the measured quantity z_1 is concerned, is in the prime vertical, but stars near the horizon should be avoided on account of uncertainties in refraction. The least favorable position of the star is in the meridian.

Compared with the preceding method the present method is inferior in precision, but it is often available when the other cannot be applied.

c. By equal altitudes of a star.

This method is an obvious extension of the preceding method, and has the advantage of eliminating the effect of constant instrumental errors in the measured altitudes or zenith distances. Thus it is plain that the mean of the times when a (fixed) star has the same altitude east and west of the meridian, whether one can measure that altitude correctly or not, is the time of meridian transit.

This method may, therefore, give a good approximation to the timepiece correction when nothing better than an engineer's transit, whose telescope can be clamped, is available. When the instrument has a vertical circle (or when a sextant is used) a series of altitudes may be observed before meridian passage of the star, and a similar series in the reverse order with equal altitudes respectively after meridian passage. The half sums of the times of equal altitudes on the two sides of the meridian will give a series of values for the time of meridian transit from which the precision attained may be inferred.

This method is frequently applied to the sun, observations being made before and after noon. For the theory of the corrections essential in this case on account of the changing position of the sun, on account of inequalities in the observed altitudes, etc., the reader must be referred to special treatises on practical astronomy.*

5. DETERMINATION OF LATITUDE.

a. By meridian altitudes.

The readiest method of determining the latitude of a place is to measure the meridian zenith distance or altitude of a known star. When precision is not required this process is a very simple one, since it is only essential to follow a (fixed) star near the meridian until its altitude is greatest, or zenith distance least. Thus, if the observed zenith distance is s_1 , the true zenith distance s_2 , and the refraction R,

$$z=z_1+R;$$

* The best work of this kind is Chauvenet's Manual of Spherical and Practical Astronomy. It should be consulted by all persons desiring a knowledge of the details of practical astronomy.

lxxvii

and if the declination of the star is δ and the latitude of the place ϕ_{μ} ,

$$\phi = \delta \pm z$$

according as the star is south or north of the zenith.

A more accurate application of the same principle is to observe the altitudes of a circumpolar star at upper and lower culmination (above and below the pole). The mean of these altitudes, corrected for refraction, is the latitude of the place. This process, it will be observed, does not require a knowledge of the star's declination.

b. By the measured altitude of a star at a known time.

h = measured altitude corrected for refraction,

 $T_{e} =$ observed sidereal time,

a, $\delta =$ right ascension and declination of star,

t =hour angle of star,

 $\phi =$ latitude of place.

Then ϕ may be computed by means of the following formulas : ----

$$t = T_{\bullet} - a,$$

$$\tan \beta = \frac{\tan \delta}{\cos t}, \quad \cos \gamma = \frac{\sin h \sin \beta}{\sin \delta},$$

$$\phi = \beta \pm \gamma.$$

In the application of these β may be taken numerically less than 90°, and since t may also be taken less than 90°, β may be taken with the same sign as δ . γ is indeterminate as to sign analytically, but whether it should be taken as positive or negative can be decided in general by an approximate knowledge of the latitude, which is always had except in localities near the equator.

The most advantageous position of a star in determining latitude by this method is in the meridian, and the least advantageous in the prime vertical. When a series of observations on the same star is made, they should be equally distributed about the meridian; and when more than one star is observed it is advantageous to observe equal numbers of them on the north and south of the zenith.

The application of this method to the pole star is especially well adapted to the means available to the geographer and engineer, namely, a good theodolite and a good timepiece. In this case the following simple formula for the latitude may be used : —

$$\phi = h - p \cos t + \frac{1}{2} p^2 \sin x'' \sin^2 t \tan h,$$

where p is the polar distance of Polaris in seconds (about 5400"), and the other symbols have the same meaning as defined above. Tables giving the logarithms of p and $\frac{1}{2}p^2 \sin 1$ " are published in the American Ephemeris.

lxxviii

c. By the zenith telescope.

The zenith telescope furnishes the most precise means known for the determination of the latitude of a place. For the theory of the instrument and method when applied to refined work the reader must be referred to special treatises.^{*} It will suffice here to state the principle of the method, which may sometimes be advantageously applied by the geographer. Let s_s be the meridian zenith distance of a star south of the zenith, and s_n the meridian zenith distance of another star north of the zenith. Let δ_s and δ_n denote the declinations of these stars respectively. Then

$$\begin{aligned} z_s &= \phi - \delta_s, \\ z_s &= \delta_s - \phi_s \end{aligned}$$

whence

$$\phi = \frac{1}{2} \left(\delta_s + \delta_n \right) + \frac{1}{2} \left(z_s - z_n \right).$$

It appears, therefore, that this method requires only that the difference $(z_s - z_n)$ be measured. Herein lies the advantage of the method, since that difference may be made small by a suitable selection of pairs of stars. With the zenith telescope the stars are so chosen that the difference $(z_s - z_n)$ may be measured by means of a micrometer in the telescope.

The essential principles and advantages of this method may be realized also with a theodolite, or other telescope, to which a vertical circle is attached, the difference $(z_s - z_n)$ being measured on the circle; and a determination of latitude within 5" or less is thus easy with small theodolites of the best class (*i. e.*, with those whose circles read to 10" or less by opposite verniers or microscopes).

6. DETERMINATION OF AZIMUTH.

a. By observation of a star at a known time.

 $T_{s} =$ sidereal time of observation,

a, $\delta =$ right ascension and declination of star observed,

t =hour angle of star,

$$= T_{\bullet} - a_{\bullet}$$

 $\phi =$ latitude of place,

A = azimuth of the star at the time T_{\bullet} counted from the south around by the west through 360°.

The azimuth A may be computed by the formulas

$$a = \sec \phi \cot \delta, \qquad b = \tan \phi \cot \delta,$$

$$\tan A = -\frac{a \sin t}{1 - b \cos t} \tag{1}$$

The angle A will fall in the same semicircle as t, and A is thus determined by its tangent without ambiguity. The quantities a and b will be sensibly constant for

* Among which Chauvenet's Manual of Spherical and Practical Astronomy is the best.

a given star and date; and hence they need be computed but once for a series of observations on the same star on one date.

The effects of small errors Δt , $\Delta \phi$, and $\Delta \delta$ in the assumed time, latitude, and declination are expressed by

$$\frac{\cos\delta\cos q}{\sin s}\Delta t, \quad -\sin A \cot s \Delta \phi, \quad \frac{\sin q}{\sin s}\Delta \delta,$$

respectively, where s and q are the zenith distance and parallactic angle of the star. Hence the effect of Δt will vanish for a star at elongation; the effect of $\Delta \phi$ vanishes for a star in the meridian, and is always small (in middle latitudes) for a close circumpolar star; the effect of $\Delta \delta$ vanishes for a star in the meridian. It appears advantageous, therefore, to observe for azimuth (in middle latitudes) close circumpolar stars at elongations, since the effect of the time error is then least, and the effects of errors in the latitude and declination are small and may be eliminated entirely by observing the same star at both elongations.

The hour angle t_e , the azimuth A_e , and the altitude h_e of a star at elongation are given by the formulas (2) of section 2, f. Those best suited to the purpose are

$$K^{2} = \sin (\delta + \phi) \sin (\delta - \phi),$$

$$\tan t_{e} = \frac{K}{\sin \phi \cos \delta} \qquad \tan A_{e} = \frac{\cos \delta}{K}, \qquad \tan h_{e} = \frac{\sin \phi}{K}.$$
 (2)

Knowing the time of elongation of a close circumpolar star, it suffices for many purposes to observe the angle between the star and some reference terrestrial mark at or in the vicinity of that time.

For precise determinations of azimuth it is customary to observe a star near its elongation repeatedly, thus obtaining a series of results whose mean will be sensibly free from errors of observation and errors due to instrumental defects.

The computation of the azimuth A may be made accurately in all cases by the formulas (1); but when a close circumpolar star is observed near elongation, it may be more convenient to use the following formulas:—

 $\Delta t = (t - t_{*})$, or the interval before or after elongation at the time of observation,

 $\Delta A = (A - A_e)$, or the difference in azimuths of the star at the time of elongation and at the time of observation,

$$\Delta A'' = \frac{(15)^2}{2\rho''} \frac{\sin \delta \cos \delta}{\sin t_e \cos \phi} (\Delta t^e)^2 \pm \frac{(15)^8}{2(\rho')^2} \frac{\sin \delta \cos \delta}{\sin t_e \tan t_e \cos \phi} (\Delta t^e)^8.$$

* To the same order of approximation one may write in the first term of this expression

$$\frac{(15)^2}{2\rho''} (\Delta t^a)^2 = \rho'' 2 \sin^2 \frac{1}{2} \Delta t = \frac{2 \sin^2 \frac{1}{2} \Delta t}{\sin 1''},$$

which latter is the most convenient form when tables giving $\log \frac{(2 \sin^2 \frac{1}{2} \Delta f)}{\sin 1''}$ for the argument Δf in time are at hand. Such tables are given in Chauvenet's Manual of Spherical and Practical Astronomy (for full title see p. lxxxii), and in Formeln und Hülfstafeln für Geographische Ortsbestimmungen, von Dr. Th. Albrecht. Leipzig: Wilhelm Engelmann, 4to, 2d ed., 1879.

Digitized by Google

(3)

lxxx

This last formula gives ΔA in seconds of arc when Δt is expressed in seconds of time; Δt is considered positive in all cases (in the use of the formula), and with this convention the positive sign is used when the star is between either elongation and upper culmination, and the negative sign when the star is between either elongation and lower culmination. For a given star, place, and date the coefficients of $(\Delta t^n)^2$ and $(\Delta t^n)^8$ will be sensibly constant and their logarithms will thus be constant for a series of observations of a star on any date. By reason of the large factors $(\rho'' = 206 264.''8)^2$ and $\tan t_e$ in the denominator of the second term, it will be very small unless Δt^n is large. Hence this term may often be neglected. Using both terms, the formula will give ΔA for Polaris to the nearest o.''or when $\Delta t < 40^m$ and when observations are made in middle latitudes.

By reference to formulas (2) of section 2, f, it is seen that

$$\frac{\sin \delta \cos \delta}{\sin t_e \cos \phi} = \frac{\sin^2 \delta \cos \delta}{K},$$
$$\frac{\sin \delta \cos \delta}{\sin t_e \tan t_e \cos \phi} = \frac{\sin^2 \delta \cos^2 \delta \sin \phi}{K^2},$$
$$K^2 = \sin (\delta + \phi) \sin (\delta - \phi).^*$$

b. By an observed altitude of a star.

k == true altitude of star observed ; i. c., the observed altitude less the refraction,

- $\phi =$ latitude of place,
- p = polar distance of star,

A = azimuth of star.

$$\tan^2 \frac{1}{2}A = \frac{\sin (\sigma - \phi) \sin (\sigma - h)}{\cos \sigma \cos (\sigma - p)},$$

$$\sigma = \frac{1}{2}(\phi + h + p).$$

The most advantageous position of the star, on account of possible error in the observed value of h, is that in which sin A is a maximum. This position is then at elongation for stars which elongate, in the prime vertical for stars which cross this great circle, and in the horizon for a star which neither elongates nor crosses the prime vertical. A star will elongate when $p < 90^\circ - \phi$; it will cross the prime vertical when p lies between $90^\circ - \phi$ and 90° ; and it will neither elongate nor cross the prime vertical when $p > 90^\circ$, or when the declination (δ) of the star is negative.

c. By equal altitudes of a star.

By this method, when a fixed star is observed first east of the meridian and then west of the meridian at the same altitude, the direction of the meridian will

• In precise work the computed azimuth requires the following correction for daily aberration, namely : ---

$$\Delta A = -0.''_{32} \frac{\cos \phi}{\sin z} \cos A,$$

where A is to be reckoned from the south by way of the west through 360° .

obviously be given by the mean of the azimuth circle readings for the two observed directions. This process will thus give the direction of the meridian free from the effect of any instrumental errors common to the equal altitudes observed. Neither does it require any knowledge of the star's position (right ascension and declination). It is therefore available to one provided with nothing but an instrument for measuring altitudes and azimuths, and is susceptible of considerable precision when a series of such equal altitudes is carefully referred to a terrestrial mark.

When the sun is observed, it is essential to take account of its change in declination between the first and the second observation. Let A_1 and A_2 be the true azimuths counted from the meridian toward the east and west respectively at the times t_1 and t_2 of the two observations. Also, let $\Delta\delta$ be the increase in declination of the sun in the interval $(t_2 - t_1)$. Then

$$A_2 - A_1 = \frac{\Delta \delta}{\cos \phi \sin \frac{1}{2}(t_2 - t_1)}$$

Calling the azimuth circle readings for the east and west observations R_1 and R_2 respectively, the resulting azimuths are

$$A_1 = \frac{1}{2}(R_2 - R_1) - \frac{1}{2}(A_2 - A_1), \\ A_2 = \frac{1}{2}(R_2 - R_1) + \frac{1}{2}(A_2 - A_1).$$

References.

Many excellent treatises on spherical and practical astronomy are available. Among these the most complete are the following : —

"A Manual of Spherical and Practical Astronomy," by William Chauvenet. Philadelphia: J. B. Lippincott & Co., 2 vols., 8vo, 5th ed., 1887. "A Treatise on Practical Astronomy, as applied to Astronomy and Geodesy," by C. L. Doolittle. New York: John Wiley & Sons, 8vo, 2d ed., 1888. "Lehrbuch der Sphärischen Astronomie," von F. Brünnow. Berlin: Fred. Dümler, 8vo, 1851. "Spherical Astronomy," by F. Brünnow. Translated by the author from the second German edition. London: Asher & Co., 8vo, 1865.

lxxxii

I. LAWS OF ERROR.

THE theory of errors is that branch of mathematical science which considers the nature and extent of errors in derived quantities due to errors in the data on which such quantities depend. A law of error is a relation between the magnitude of an error and the probability of its occurrence. The simplest case of a law of error is that in which all possible errors (in the system of errors) are equally likely to occur. An example of such a case is had in the errors of tabular logarithms, natural trigonometric functions, etc.; all errors from zero to a half unit in the last tabular place being equally likely to occur.

When quantities subject to errors following simple laws are combined in any manner, the law of error of the quantity resulting from the combination is in general more complex than that of either component.

Let ϵ denote the magnitude of any error in a system of errors whose law of error is defined by $\phi(\epsilon)$. Then if ϵ vary continuously the probability of its occurrence will be expressed by $\phi(\epsilon)d\epsilon$. If ϵ vary continuously between equal positive and negative limits whose magnitude is a, the sum of all the probabilities $\phi(\epsilon)d\epsilon$ must be unity, or

$$\int_{-a}^{+a} \phi(\epsilon) d\epsilon = 1.$$

For the case of tabular logarithms, etc., alluded to above, $\phi(\epsilon) = c$, a constant whose value is 1/(2 a) = 1, since a = 0.5.

For the case of a logarithm interpolated between two consecutive tabular values, by the formula $v = v_1 + (v_2 - v_1) t = v_1 (1 - t) + v_2 t$, where v_1 and v_2 are the tabular values, and t the interval between v_1 and the derived value $v, \phi(\epsilon)$ has the following remarkable forms when the extra decimals (practically the first of them) in $(v_2 - v_1) t$ are retained : —

$$\phi(\epsilon) = \frac{\frac{1}{2} + \epsilon}{(1 - t)t} \text{ for values of } \epsilon \text{ between } -\frac{1}{2} \text{ and } -(\frac{1}{2} - t),$$

$$= \frac{1}{1 - t} \text{ for values of } \epsilon \text{ between } -(\frac{1}{2} - t) \text{ and } +(\frac{1}{2} - t), \quad (1)$$

$$= \frac{\frac{1}{2} - \epsilon}{(1 - t)t} \text{ for values of } \epsilon \text{ between } +(\frac{1}{2} - t) \text{ and } +\frac{1}{2}.$$
Digitized by Google

It thus appears that $\phi(\epsilon)$ in this case is represented by the upper base and the two sides of a trapezoid.

When, as is usually the practice, the quantity $(v_2 - v_1) t$ is rounded to the nearest unit of the last tabular place, $\phi(\epsilon)$ becomes more complex, but is still represented by a series of straight lines. It is worthy of remark that the latter species of interpolated value is considerably less precise than the former, wherein an additional figure beyond the last tabular place is retained.

When an infinite number of infinitesimal errors, each subject to the law of constant probability and each as likely to be positive as negative, are combined by addition, the law of the resultant error is of remarkable simplicity and generality. It is expressed by

$$\phi(\epsilon) = \frac{\hbar}{\sqrt{\pi}} e^{-k^2 \epsilon^2}$$
(2)

where e is the Napierian base, $\pi = 3.14159$ +, and h is a constant dependent on the relative magnitude of the errors in the system. This is the law of error of least squares. It is the law followed more or less closely by most species of observational errors. Its general use is justified by experience rather than by mathematical deduction.

a. Probable, mean, and average errors.

For the purposes of comparison of different systems of errors following the same law, three different terms are in use. These are the *probable error*,* or that error in the system which is as likely to be exceeded as not; the *mean error*, or that error which is the square root of the mean of the squares of all errors in the system; and the *average error*, which is the average, regardless of sign, of all errors in the system. Denote these errors by ϵ_{pr} , ϵ_{mr} , ϵ_{mr} respectively. Then in all systems in which positive and negative errors of equal magnitude are equally likely to occur, and in which the limits of error are denoted by -a and +a, the analytical definitions of the probable, mean, and average errors are : -a

$$\int_{-a}^{-\epsilon_{p}} \phi(\epsilon) d\epsilon = \int_{0}^{0} \phi(\epsilon) d\epsilon = \int_{0}^{+\epsilon_{p}} \phi(\epsilon) d\epsilon = \int_{0}^{+a} \phi(\epsilon) d\epsilon = \frac{1}{2},$$

$$+a + \epsilon_{p} + a + \epsilon_{p}$$

$$\epsilon_{m}^{2} = \int_{-a}^{0} \phi(\epsilon) \epsilon^{2} d\epsilon, \quad \epsilon_{a} = \int_{-a}^{+a} \phi(\epsilon) \epsilon d\epsilon.$$
(3)

• The reader should observe that the word probable is here used in a specially technical sense. Thus, the probable error is not "the most probable error," nor "the most probable value of the actual error," etc., as commonly interpreted.

Digitized by Google

lxxxiv

b. Probable, mean, average, and maximum actual errors of interpolated logarithms, trigonometric functions, etc.

When values of logarithms, etc., are interpolated from numerical tables by means of first differences, as explained above, the probable and other errors depend on the magnitude of the interpolating factor. Thus, the interpolated value is

$$v = v_1 + (v_2 - v_1) t$$

where v_1 and v_2 are consecutive tabular values and t is the interpolating factor.

For the species of interpolated value wherein the quantity $(v_2 - v_1) t$ is not rounded to the nearest unit of the last tabular place (or wherein the next figure beyond that place is retained) the maximum possible actual error is 0.5 of a unit of the last tabular place, and formulas (1) and (3) show that the probable, mean, and average errors are given by the following expressions:—

$$\begin{aligned} \mathbf{e}_{p} &= \frac{1}{4} \left(\mathbf{I} - t \right) & \text{for } t \text{ between } \mathbf{o} \text{ and } \frac{1}{3}, \\ &= \frac{1}{2} - \frac{1}{2} \sqrt{2t} \left(\mathbf{I} - t \right) & \text{for } t \text{ between } \frac{1}{3} \text{ and } \frac{3}{3}, \\ &= \frac{1}{4} t & \text{for } t \text{ between } \frac{3}{3} \text{ and } \mathbf{1}. \end{aligned}$$

$$\mathbf{e}_{m} &= \begin{cases} \frac{\mathbf{I} - (\mathbf{I} - 2t)^{4}}{96 \left(\mathbf{I} - t \right) t} \end{cases}^{\frac{1}{3}}. \\ \mathbf{e}_{m} &= \frac{\mathbf{I} - (\mathbf{I} - 2t)^{8}}{24 \left(\mathbf{I} - t \right) t} & \text{for } t \text{ between } \mathbf{o} \text{ and } \frac{1}{2}, \\ &= \frac{\mathbf{I} - (\mathbf{I} - 2t)^{8}}{24 \left(\mathbf{I} - t \right) t} & \text{for } t \text{ between } \mathbf{o} \text{ and } \frac{1}{2}, \\ &= \frac{\mathbf{I} - (2t - \mathbf{I})^{8}}{24 \left(\mathbf{I} - t \right) t} & \text{for } t \text{ between } \frac{1}{2} \text{ and } \mathbf{I}. \end{aligned}$$

It thus appears that the probable error of an interpolated value of the species under consideration decreases from 0.25 to 0.15 of a unit of the last tabular place as *t* increases from 0 to 0.5. Hence such interpolated values are more precise than tabular values.

For the species of interpolated values ordinarily used, wherein $(v_2 - v_1) t$ is rounded to the nearest unit of the last tabular place, the probable, mean, and average errors are greater than the corresponding errors for tabular values. The laws of error for this ordinary species of interpolated value are similar to but in general more complex than those defined by equations (1). It must suffice here to give the practical results which flow from these laws for special values of the interpolating factor t.^{*} The following table gives the probable, mean, average, and maximum actual error of such interpolated values for $t = 1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{10}$. It will be observed that t = 1 corresponds to a tabular value.

• For the theory of the errors of this species of interpolated values see Annals of Mathematics, vol. ii. pp. 54-59.

Interpolating factor t	Probable error ¢p	Mean error ¢m	Average error ¢a	Maximum actual error
I	0.250	0.289	0.250	1
1	.292	.408	•333	I
]	.256	·347	.287	ŧ
ł	.276	.382	.313	I
ł	.268	.370	.303	10
*	.277	. 3 85	.315	I
7	·274	.380	.311	12
+ ·	· 2 79	.389	.318	I
+	.278	.386	.316	łł
10	.281	.392	.320	I

Characteristic Errors of Interpolated Logarithms, etc.

2. THE METHOD OF LEAST SQUARES.

a. General statement of method.

When the errors to which observed quantities are subject follow the law expressed by

$$\phi(\epsilon) = \frac{\hbar}{\sqrt{\pi}} \ \epsilon^{-h^2} \ \epsilon^2,$$

a unique method results for the computation of the most probable values of the observed quantities and of quantities dependent on the observed quantities. The method requires that the sum of the weighted squares of the corrections to the observed quantities shall be a minimum,* subject to whatever theoretical conditions the corrections must satisfy. These conditions are of two kinds, namely, those expressing relations between the corrections only, and those expressing relations between the corrections only, and those expressing relations between the corrections only quantities whose values are disposable in determining the minimum. A familiar illustration of the first class of conditions is presented by the case of a triangle each of whose angles is measured, the condition being that the sum of the corrections is a constant. An equally familiar illustration of the second class of conditions is found in the case where the sum and difference of two unknown quantities are separately observed; in this case the two unknowns are to be found along with the corrections.

Mathematically, the general problem of least squares may be stated in two

Hence the term least squares.

equations. Thus, let x, y, z, \ldots be the observed quantities with weights p, q, r, \ldots . Let the corrections to the observed quantities be denoted by $\Delta x, \Delta y, \Delta z, \ldots$; so that the corrected quantities are $x + \Delta x, y + \Delta y, z + \Delta z, \ldots$ Let the disposable quantities whose values are to be determined along with the corrections be denoted by ξ, η, ζ, \ldots . Then, the theoretical conditions which must be satisfied by $x + \Delta x, y + \Delta y, z + \Delta z, \ldots$ and by ξ, η, ζ, \ldots may be symbolized by

$$F_{\mathbf{x}}(\xi, \eta, \zeta, \ldots x + \Delta x, y + \Delta y, z + \Delta z, \ldots) = 0.$$
 (4)

Subject to the conditions specified by the n equations (4), we must also have

$$p(\Delta x)^{2} + q(\Delta y)^{2} + r(\Delta s)^{2} + \dots = a \text{ minimum}$$
(5)
= u, say.

Equations (4) and (5) contain the solution of every problem of adjustment by the method of least squares. Two examples may suffice to illustrate their use.

First, take the case of the observed angles of a triangle alluded to above. Calling the observed angles x, y, z, we have

or

$$x + \Delta x + y + \Delta y + z + \Delta z = 180^{\circ} + \text{spherical excess},$$

 $\Delta x + \Delta y + \Delta s = 180^{\circ} + \text{spherical excess} - (x + y + s)$ = c, say.

This is the only condition of the form (4). The problem is completely stated, then, in the two equations

$$\Delta x + \Delta y + \Delta s = c$$

$$p (\Delta x)^{2} + q (\Delta y)^{2} + r (\Delta z)^{2} = a \min = u.$$

To solve this problem the simplest mode of procedure is to eliminate one of the corrections by means of the first equation and then make u a minimum. Thus, eliminating Δs , there results

$$u = p (\Delta x)^2 + q (\Delta y)^2 + r (c - \Delta x - \Delta y)^2.$$

The conditions for a minimum of *u* are : —

$$\frac{\partial u}{\partial \Delta x} = (p+r) \Delta x + r \Delta y - rc = 0,$$

$$\frac{\partial u}{\partial \Delta y} = r \Delta x + (q+r) \Delta y - rc = 0;$$

and these give, in connection with the value $\Delta s = c - \Delta x - \Delta y$,

$$\Delta x = \frac{Q}{p}, \quad \Delta y = \frac{Q}{q}, \quad \Delta z = \frac{Q}{r}.$$

where

$$Q = \frac{c}{\frac{1}{p} + \frac{1}{q} + \frac{1}{r}}.$$

When the weights are equal, or when p = q = r, the corrections are —

$$\Delta x = \Delta y = \Delta z = \frac{1}{3} c.$$

lxxxviii

Secondly, take the case, also alluded to above, of the observed sum and the observed difference of two numbers. Denote the numbers by ξ and η , the latter being the smaller. Let the observed values of the sum $(\xi + \eta)$ be denoted by x_1, x_2, \ldots, x_m and their weights p_1, p_2, \ldots, p_m respectively. Likewise, call the observed values of the difference $(\xi - \eta), y_1, y_2, \ldots, y_m$ and their weights $q_1, q_2 \ldots q_n$ respectively. Then there will be m + n equations of the type (4), namely: —

$$\begin{aligned} \xi + \eta - (x_1 + \Delta x_1) &= 0, \\ \xi + \eta - (x_2 + \Delta x_2) &= 0, \\ \xi + \eta - (x_m + \Delta x_m) &= 0, \\ \xi - \eta - (y_1 + \Delta y_1) &= 0, \\ \xi - \eta - (y_2 + \Delta y_2) &= 0, \\ \xi - \eta - (y_2 + \Delta y_2) &= 0; \end{aligned}$$
(a)

and the minimum equation is

$$u = p_1 (\Delta x_1)^2 + p_2 (\Delta x_2)^2 + \ldots + q_1 (\Delta y_1)^2 + q_2 (\Delta y_2)^2 + \ldots = a \text{ min. (b)}$$

The equations of group (a) give

$$\Delta x_1 = \xi + \eta - x_1,$$

$$\Delta x_2 = \xi + \eta - x_2,$$

$$\dots \qquad (c)$$

$$\Delta y_1 = \xi - \eta - y_1,$$

$$\Delta y_2 = \xi - \eta - y_2,$$

$$\dots ;$$

and these values in (b) give

$$u = p_1 (\xi + \eta - x_1)^2 + \ldots + q_1 (\xi - \eta - y_1)^2 + \ldots$$
 (d)

Thus it appears that all conditions will be satisfied if ξ and η are so determined as to make u in (d) a minimum. Hence, using square brackets to denote summation of like quantities, the values of ξ and η must be found from

$$\frac{\partial u}{\partial \xi} = [p+q] \xi + [p-q] \eta - [px+qy] = 0,$$
(e)
$$\frac{\partial u}{\partial \eta} = [p-q] \xi + [p+q] \eta - [px-qy] = 0.$$

Equations (e) give ξ and η , and these substituted in (c) will give the corrections to the observed quantities.

b. Relation of probable, mean, and average errors.

The introduction of the law of error (2) in equations (3) furnishes the following relations, when it is assumed that the limits of possible error are $-\infty$ and $+\infty$:

$$\epsilon_p = 0.6745 \ \epsilon_m = 0.8453 \ \epsilon_a. \tag{6}$$

c. Case of a single unknown quantity.

The case of a single unknown quantity whose observed values are of equal or unequal weight is comprised in the following formulas: —

 $x_1, x_2, \ldots, x_m = \text{observed values of unknown quantity,}$ $p_1, p_2, \ldots, p_m = \text{the weights of } x_1, x_2, \ldots$ $v_1, v_2, \ldots, v_m = \text{most probable corrections to } x_1, x_2, \ldots$ x = most probable value of the unknown quantity,m = the number of independent observations.

Then the conditional equations (4) are

$$\begin{aligned} x - x_1 &= v_1, \\ x - x_2 &= v_2, \\ \cdot & \cdot \\ x - x_m &= v_m; \end{aligned}$$

the minimum equation (5) is

$$p_1v_1^2 + p_2v_2^2 + \ldots = [pv^2] = [p(x - x_i)^2] = a \min.,$$

where i = 1, 2, ..., m, and

$$x = \frac{p_1 x_1 + p_2 x_3 + \dots + p_m x_m}{p_1 + p_2 + \dots + p_m} = \frac{[px]}{[p]}$$

When the weights are equal, $p_1 = p_2 = \ldots = p_m$, and

$$x = \frac{[x]}{m}$$

or the arithmetic mean of the observed values.

Weight of $x = [\rho]$ when the ρ 's are unequal, = m when the ρ 's are equal.

Mean error of an observed value of weight unity $= \sqrt{\frac{pvv}{m-1}}$ for unequal weights,

$$=\sqrt{\frac{[vv]}{m-1}}$$
 for equal weights.

Mean error of an observed value of weight $p = \sqrt{\frac{pvv}{(m-1)p}}$ for unequal weights.

Mean error of
$$x = \sqrt{\frac{[pvv]}{(m-1)[p]}}$$
 for unequal weights,

$$= \sqrt{\frac{[vv]}{m(m-1)}} \text{ for equal weights.}$$

The corresponding probable errors are found by multiplying these values by 0.6745. See equation (6).

A formula for the average error sometimes useful is

Average error
$$= \frac{[pv]}{\sqrt{(m-1)[p]}}$$
 for unequal weights
 $= \frac{[v]}{\sqrt{m(m-1)}}$ for equal weights.

In these the residuals v are all taken with the same sign. A sufficient approximation in many cases of equal weights is $\frac{[v]}{m}$; but the above formulas dependent on the squares of the residuals are in general more precise.

An important check on the computation of x is [pv] = o; *i. e.*, the sum of the residuals v, each multiplied by its weight, is zero if the computation is correct.

d. Case of observed function of several unknown quantities ξ, η, ζ

A case of frequent occurrence, and one which includes the preceding case, is that in which a function of several unknown quantities is observed. Thus, for example, the observed time of passage of a star across the middle thread of a transit instrument is a function of the azimuth and collimation of the transit instrument and the error of the timepiece used. In cases of this kind the conditional equations of the type (4) assume the form

$$F(\xi,\eta,\zeta\ldots x+\Delta x)=0;$$

that is, each of them contains but one observed quantity x along with several disposable (disposable in satisfying the minimum equation) quantities ξ , η , ζ

The process of solution in this case consists in eliminating the corrections $\Delta x_1, \Delta x_2, \ldots$ from the above conditional equations, substituting their values in the minimum equation (5), and then placing the differential coefficients of u with respect to $\xi, \eta, \zeta \ldots$ separately equal to zero. There will thus result as many independent equations as there are unknown quantities of the class in which $\xi, \eta, \zeta \ldots$ fall, the remaining unknown quantities $\Delta x_1, \Delta x_2, \ldots$, or the corrections to the observed values, are then found from the conditional equations.

In many applications it happens that the conditional equations

$$F(\xi, \eta, \zeta, \ldots x + \Delta x) = 0,$$

are not of the linear form. But they may be rendered linear in the following manner. First, eliminate the quantities $x + \Delta x$ from the conditional equations. The result of this elimination may be written

 $f(\xi, \eta, \zeta \ldots) - x - \Delta x = 0.$

Secondly, put

$$\begin{split} \xi &= \xi_0 + \Delta \xi, \\ \eta &= \eta_0 + \Delta \eta, \end{split}$$

where ξ_0, η_0, \ldots are approximate values of ξ, η, \ldots , found in any manner, and $\Delta \xi, \Delta \eta, \ldots$ are corrections thereto. Then supposing the approximate values

xc

 ξ_0, η_0, \ldots so close that we may neglect the squares, products, and higher powers of $\Delta \xi, \Delta \eta, \ldots$, Taylor's series gives

$$f(\xi_0, \eta_0, \zeta_0, \ldots) + \frac{\partial f}{\partial \xi} \Delta \xi + \frac{\partial f}{\partial \eta} \Delta \eta + \frac{\partial f}{\partial \zeta} \Delta \zeta + \ldots - x - \Delta x = 0,$$

which is linear with respect to the corrections $\Delta \xi$, $\Delta \eta$, For brevity, and for the sake of conformity with notation generally used, put

$$n = x - f(\xi_0, \eta_0, \zeta_0 \dots),$$

$$v = \Delta x,$$

$$a = \frac{\partial f}{\partial \xi}, \quad b = \frac{\partial f}{\partial \eta}, \quad c = \frac{\partial f}{\partial \zeta}, \dots$$

$$x = \Delta \xi, \quad y = \Delta \eta, \quad z = \Delta \zeta, \dots$$

Then the conditional equations will assume the form

$$ax + by + cz + \ldots - n = v;$$

and if they are *m* in number they may be written individually thus : —

$$a_{1}x + b_{1}y + c_{1}z + \ldots - n_{1} = v_{1},$$

$$a_{2} + b_{3} + c_{3} + \ldots - n_{2} = v_{3},$$

$$\ldots$$

$$a_{m} + b_{m} + c_{m} + \ldots - n_{m} = v_{m}.$$
(a)

The minimum equation (5) becomes

 $u = [pv^s] = [p(ax + by + cs + \ldots - n)^s];$

so that placing $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial u}{\partial z}$, ... separately equal to zero will give as many independent equations as there are values of x, y, z, \ldots . The resulting equations are in the usual (Gaussian) notation of least squares : —

$$[paa]x + [pab]y + [pac]z + \dots - [pan] = 0, [pab] + [pbb] + [pbc] + \dots - [pbn] = 0, [pac] + [pbc] + [pcc] + \dots - [pcn] = 0,$$
 (b)

The equations (a) are sometimes called observation-equations. The absolute term n is called the observed quantity. It is always equal to the observed quantity *minus* the computed quantity $f(\xi_0, \eta_0, \zeta \ldots)$, which latter is assumed to be free from errors of observation. The term v is called the residual. It is sometimes, though quite erroneously, replaced by zero in the equations (a).

The equations (b) are called normal equations. They are usually formed directly from equations (a) by the following process: Multiply each equation by the coefficient of x and by the weight p of the v in the same equation, and add the products. The result is the first equation of (b), or the normal equation in x. The normal equations in y, z, \ldots are found in a similar manner.

A noteworthy peculiarity of the normal equations is their symmetry. Hence in forming equations (b) from (a) it is not essential to compute all the coefficients of x, y, z, \ldots except in the first equation.

Checks on the computed values of the numerical terms in the normal equations are found thus: Add the coefficients a, b, c, \ldots of x, y, z, \ldots in (a) and put

$$a_1 + b_1 + c_1 + \ldots = s_1,$$

 $a_2 + b_2 + c_2 + \ldots = s_2,$

Multiply each of these, first, by its pa; secondly, by its pb, etc., and then add the products. The results are

$$[paa] + [pab] + [pac] + \dots = [pas]$$

 $[pab] + [pbb] + [pbc] + \dots = [pbs]$

These will check the coefficients of x, y, z, ... in (b). To check the absolute terms, multiply each of the above sums by its np, and add the products. The result is

$$[pan] + [pbn] + [pcn] + \ldots = [psn]$$

which must be satisfied if the absolute terms are correct.

Checks on the computation of x, y, z, \ldots from (b) and of v_1, v_2, \ldots from (a) are furnished by

$$[pav] = 0, \quad [pbv] = 0, \quad [pcv] = 0, \quad \dots$$

To get the unknowns x, y, s, and their weights simultaneously, the best method of procedure is, in general, the following: For brevity replace the absolute terms in (b) by A, B, C, \ldots respectively. Then the solution of (b) will be expressed by

$$x = a_1A + \beta_1B + \gamma_1C + \dots,$$

$$y = a_2 + \beta_2 + \gamma_2 + \dots,$$

$$z = a_3 + \beta_3 + \gamma_3 + \dots,$$

$$\dots,$$

(c)

in which $a_1, \beta_1, \gamma_1, \ldots$ are numerical quantities; and

weight of
$$x = \frac{1}{a_1}$$
,
weight of $y = \frac{1}{\beta_2}$, (d)
weight of $z = \frac{1}{\gamma_2}$,

To compute mean (and hence probable) errors the following formulas apply: m = the number of observed quantities n

$$m \equiv$$
 the number of observed quantities

- = number of equations of condition,
- $\mu =$ number of the quantities x, y, z, ...
- ϵ_m = mean error of an observed quantity (n) of weight unity,

 $\epsilon_p = \text{corresponding probable error} = 0.6745 \epsilon_m$

Digitized by Google

xcii

$$\epsilon_{m} = \sqrt{\frac{[pvv]}{m-\mu}} \text{ for unequal weights,}$$
$$= \sqrt{\frac{[vv]}{m-\mu}} \text{ for equal weights,}$$

Mean error of any observed quantity (n) of weight $p = \frac{\epsilon_m}{\sqrt{p}}$, Mean error of $x = \epsilon_m \sqrt{a_1}$, Mean error of $y = \epsilon_m \sqrt{\beta_3}$, Mean error of $z = \epsilon_m \sqrt{\gamma_3}$, ...,

where $a_1, \beta_2, \gamma_3, \ldots$ are defined by equations (c) and (d) above.

e. Case of functions of several observed quantities x, y, z,

This case is that in which the conditional equations (4) contain no disposable quantities ξ , η , ζ , It is the opposite extreme to that represented by the case of the preceding section.* It finds its most important and extensive application in the adjustment of triangulation, wherein the observed quantities are the angles and bases of the triangulation, and the conditions (4) arise from the geometrical relations which the observed quantities *plus* their respective corrections must satisfy.

An outline of the general method of procedure in this case is the following : ---

The first step consists in stating the conditional equations and in reducing them to the linear form if they are not originally so. The form in which they present themselves is (4) with ξ , η , ζ , ... suppressed, or

$$F(x_1 + \Delta x_1, x_2 + \Delta x_2, x_3 + \Delta x_3, \dots) = 0,$$

wherein x, y, z, \ldots of (4) are replaced by $x_1, x_2, x_3 \ldots$ for the purpose of simplicity in the sequel. If this equation is not linear, Taylor's series gives

$$F(x_1, x_2, x_3...) + \frac{\partial F}{\partial x_1} \Delta x_1 + \frac{\partial F}{\partial x_2} \Delta x_2 = ... = 0,$$

since the method supposes that the squares, products, etc., of $\Delta x_1, \Delta x_2 \dots$ may be neglected. The last equation is then linear with respect to the corrections $\Delta x_1, \Delta x_2 \dots$ which it is desired to find.

For brevity put

 $F(x_1, x_2, x_3...) = q_1$, a known quantity,

$$\frac{\partial F}{\partial x_1} = a_1, \qquad \frac{\partial F}{\partial x_2} = a_2, \qquad \frac{\partial F}{\partial x_3} = a_3, \ldots$$

Then the conditional equations will be of the type

 $a_1\Delta x_1 + a_2\Delta x_2 + a_3\Delta x_3 + \ldots + q_1 = 0.$

* The middle ground between these extremes has been little explored; indeed, most practical applications fall at one or the other of the extremes.

There will be as many equations of this type as there are independent relations which the quantities $x_1 + \Delta x_1$, $x_2 + \Delta x_3$, ... must satisfy. Suppose there are ksuch relations, and let the differential coefficients $\partial F/\partial x_1$, $\partial F/\partial x_2$, ... for the second relation be denoted by b_1 , b_2 , b_3 , ...; for the third relation by c_1 , c_2 , c_3 , ..., etc. Then all of the conditional equations may be written thus:

$$a_{1}\Delta x_{1} + a_{2}\Delta x_{2} + a_{3}\Delta x_{3} + \ldots + q_{1} = 0,$$

$$b_{1} + b_{2} + b_{3} + \ldots + q_{2} = 0,$$

$$c_{1} + c_{2} + c_{3} + \ldots + q_{8} = 0,$$

$$\ldots,$$

(a)

......

the number of these equations being k.

Call the weights of the observed quantities $x_1, x_2, \ldots p_1, p_2, \ldots$ Then, subject to the conditions (a) we must have (in accordance with (5))

$$u = p_1(\Delta x_1)^3 + p_2(\Delta x_2)^3 + \ldots = [p(\Delta x)^3]$$
 (b)

a minimum.

Equations (a) and (b) contain the solution of all problems falling under the present case. Obviously, the number of conditions (a) must be less than the number of observed quantities x, or less than the number of Δx 's in (b); in other words, if m denote the number of observed quantities, m > k, for if $m \ge k$ the minimum equation (b) has no meaning.

The question presented by (a) and (b) is one of elimination only. Two methods, the one direct and the other indirect, are available. Thus, by the direct method one finds from (a) as many Δx 's as there are equations (a), or k such values, and substitutes them in (b). The remaining (m - k) values of Δx in (b) may then be treated as independent and the differential coefficients of u with respect to each of them placed equal to zero. Thus all of the corrections Δx become known.

By the indirect process, one multiplies the first of equations (a) by a factor Q_1 , the second by Q_2 , the third by Q_3 , ... and subtracts the differential (with respect to the Δx 's) of the sum of these products from half the differential of (δ). The result of these operations is

$$\frac{1}{3} du = \{ p_1 \Delta x_1 - (a_1 Q_1 + b_1 Q_3 + c_1 Q_3 + \ldots) \} d\Delta x_1 + \{ p_3 \Delta x_3 - (a_3 Q_1 + b_3 Q_3 + c_3 Q_3 + \ldots) \} d\Delta x_3 + \ldots + \{ p_m \Delta x_m - (a_m Q_1 + b_m Q_2 + c_m Q_3 + \ldots) \} d\Delta x_m$$

Now we may choose the factors Q_1, Q_2, \ldots, Q_k in such a way as to make k of the coefficients of the differentials in this equation disappear; and after thus eliminating k of these differentials we are at liberty to place the coefficients of the remaining (m - k) differentials equal to zero. Thus all conditions are satisfied by making

$$a_{1}Q_{1} + b_{1}Q_{2} + c_{1}Q_{3} + \ldots - p_{1}\Delta x_{1} = 0,$$

$$a_{2} + b_{2} + c_{2} + \ldots - p_{2}\Delta x_{2} = 0,$$

$$\ldots$$

$$a_{m} + b_{m} + c_{m} + \ldots - p_{m}\Delta x_{m} = 0;$$

(c)

Digitized by Google

and the values of the corrections will be given by these equations when the factors Q_1, Q_2, \ldots are known. To find the latter it suffices to substitute the values

xciv

of $\Delta x_1, \Delta x_2, \ldots$ from (c) in (a), whereby there will result k equations containing the Q_1, Q_2, \ldots, Q_k alone as unknowns. The result of this substitution is

$$\begin{bmatrix} \frac{aa}{p} \\ \frac{ab}{p} \end{bmatrix} Q_1 + \begin{bmatrix} \frac{ab}{p} \\ \frac{bb}{p} \end{bmatrix} Q_3 + \begin{bmatrix} \frac{ac}{p} \\ \frac{bc}{p} \end{bmatrix} Q_3 + \dots + q_1 = 0,$$

$$\begin{bmatrix} \frac{ab}{p} \\ \frac{ac}{p} \end{bmatrix} + \begin{bmatrix} \frac{bb}{p} \\ \frac{bc}{p} \end{bmatrix} + \begin{bmatrix} \frac{bc}{p} \\ \frac{bc}{p} \end{bmatrix} + \dots + q_3 = 0,$$

$$(d)$$

$$\vdots$$

These equations (d) are derived directly from (c) in the following manner: multiply the first of (c) by $\frac{a_1}{p_1}$, the second by $\frac{a_2}{p_2}$, etc., sum the products, and compare the sum with the first of (a). The first of (d) is then evident; the others are obtained in a similar way.

The mean error of an observed quantity of weight unity is in this case given by the formula

$$\epsilon_{m} = \sqrt{\frac{\left[p(\Delta x)^{2}\right]}{k}},$$

where k is the number of conditions (a); and the mean error of any observed value of weight p is

f. Computation of mean and probable errors of functions of observed quantities.

Let V denote any function of one or more independently observed quantities x, y, s, \ldots ; that is, let

$$V = f(x, y, z \ldots).$$

A question of frequent occurrence with respect to such functions is, What is the mean * error of V in terms of the mean errors of x, y, z, \ldots ? The answer to this question given by the method of least squares assumes that the actual errors (whatever they may be) of x, y, z, \ldots are so small that the actual error of V is a linear function of the errors of x, y, z. In other words, if e_x, e_y, e_z, \ldots denote the actual errors of x, y, z, \ldots , and ΔV denote the corresponding actual error of V, the method assumes that

$$\Delta V = \frac{\partial V}{\partial x} \epsilon_x + \frac{\partial V}{\partial y} \epsilon_y + \frac{\partial V}{\partial z} \epsilon_s + \dots, \qquad (a)$$

wherein the squares, products, etc., of e_x , e_y , e_x , ... are omitted.

This condition being fulfilled, let ϵ denote the mean error of V, and ϵ_x , ϵ_y , ϵ_z ... denote those of x, y, z, \ldots respectively. Then the law of error of least squares requires that

$$\epsilon^{2} = \left(\frac{\partial V}{\partial x}\right)^{2} \epsilon_{x}^{2} + \left(\frac{\partial V}{\partial y}\right)^{2} \epsilon_{y}^{2} + \left(\frac{\partial V}{\partial z}\right)^{2} \epsilon_{z}^{2} + \dots \qquad (b)$$

* Since the probable error is 0.6745 times the mean error the latter only need be considered.

This equation includes all cases. Its analogy with (a) should be noted, since the step from (a) to (b) is clear when the correct form of (a) is known. Mistakes in the application of (b) are most likely to arise from a lack of knowledge of the *independently observed* quantities x, y, z, \ldots or from a lack of knowledge of the true form of (a). Hence,* in deriving probable errors of functions of observed quantities attention should be given first to the construction of the expression for the actual error (a).

A few examples may serve to illustrate the use of (a) and (b).

(1.) Suppose

$$V = f(x, y, z, \ldots) = a (x - y) + b (y + z) + c (z - 1).$$

$$\frac{\partial V}{\partial x} = a, \quad \frac{\partial V}{\partial y} = b - a, \quad \frac{\partial V}{\partial z} = b + c,$$

$$\Delta V = ae_x + (b - a)e_y + (b + c)e_x,$$

$$\epsilon^2 = a^2\epsilon_x^2 + (b - a)^2\epsilon_y^2 + (b + c)^2\epsilon_z^2.$$

(2.) Suppose

$$V = f(x, y, z \dots) = \frac{a}{x} + b \frac{y}{x^3}$$

Then

$$\frac{\partial V}{\partial x} = -\frac{a}{x^3}, \quad \frac{\partial V}{\partial y} = \frac{b}{z^3}, \quad \frac{\partial V}{\partial z} = -\frac{2}{z^4},$$
$$\Delta V = -\frac{a}{x^3}\epsilon_x + \frac{b}{z^3}\epsilon_y - \frac{2}{z^3}b_y,$$
$$\epsilon^3 = \frac{a^3}{x^4}\epsilon_x^2 + \frac{b^3}{z^4}\epsilon_y^2 + \frac{4}{z^4}\frac{b^3y^3}{z^4}\epsilon_z^3.$$

(3.) Suppose

$$V = a \log x + b \sin y + c \log \tan x$$

Then

$$\frac{\partial V}{\partial x} = \frac{a\mu}{x}, \quad \frac{\partial V}{\partial y} = b \cos y, \quad \frac{\partial V}{\partial z} = \frac{c\mu}{\sin z \cos z}$$
$$\epsilon^{2} = \left(\frac{a\mu}{x}\right)^{2} \epsilon^{2} + (b \cos y)^{2} \epsilon^{2} + \left(\frac{2 c\mu}{x}\right)^{2} \epsilon^{2}.$$

and

$$\epsilon^{3} = \left(\frac{a\mu}{x}\right)^{3} \epsilon_{x}^{2} + (b \cos y)^{3} \epsilon_{y}^{2} + \left(\frac{2 \ c\mu}{\sin 2 \ s}\right)^{3} \epsilon_{z}^{2}.$$

(4.) Suppose the case of a single triangle all of whose angles are observed. What is the mean error, 1st, of an observed angle; 2d, of the correction to an observed angle; and 3d, of the corrected or adjusted angle?

Let x, y, z denote the observed angles, p, q, r their weights, and Δx , Δy , Δz the corresponding corrections.

Then, as shown on p. lxxxvii,

$$\Delta x + \Delta y + \Delta z = c = 180^{\circ} + \text{ sph. excess} - (x + y + z)$$

= error of closure of triangle,

$$Q = \frac{c}{\frac{1}{p} + \frac{1}{q} + \frac{1}{r}},$$
$$\Delta x = \frac{Q}{p}, \quad \Delta y = \frac{Q}{q}, \quad \Delta s = \frac{Q}{r}.$$

As remarked by Sir George Airy in his Theory of Errors.

 $\dagger \mu =$ modulus of common logarithms.

For brevity, put

Then

$$g = 180^{\circ} + \text{spherical excess,} \quad h = \frac{1}{\frac{1}{p} + \frac{1}{q} + \frac{1}{r}}$$
$$Q = h (g - x - y - z) = hc,$$
$$\Delta x = \frac{h}{p} (g - x - y - z),$$

 $x + \Delta x = \frac{h}{p}(g - x - y - z) + x,$

with similar expressions for the other two angles.

Now by the formula on p. xcv the square of the mean error of an observed angle of weight unity is (since there is but one condition to which Δx , Δy , Δs are subject),

$$p(\Delta x)^2 + q(\Delta y)^2 + r(\Delta z)^2 = \frac{Q^2}{h} = hc^2.$$

Hence, the squares of the mean errors of the observed angles x, y, s, their weights being p, q, r respectively, are

$$\frac{hc^a}{p}, \frac{hc^a}{q}, \frac{hc^a}{r},$$

respectively.

To get the mean error of a correction, Δx for example, formula (a) gives

$$\Delta V = \Delta(\Delta x) = -\frac{h}{p}(\epsilon_x + \epsilon_y + \epsilon_z),$$

and the corresponding expressions for the actual errors of Δy and Δz are found from this by replacing p by q and r respectively. Thus by (b), observing that the mean errors of x, y, z are given above, there result

Square of mean error of
$$\Delta x = (hc/p)^3$$
,
""" $\Delta y = (hc/q)^3$,
"" $\Delta z = (hc/r)^3$.

Likewise, the formula for the actual error of $x + \Delta x$ is

$$\Delta V = \Delta(x + \Delta x) = \left(1 - \frac{h}{p}\right)\epsilon_x - \frac{h}{p}\epsilon_y - \frac{h}{p}\epsilon_z$$

and the corresponding expressions for the actual errors of $y + \Delta y$ and $s + \Delta s$ are found by interchange of q and r with p. Thus the squares of the mean errors of the *adjusted* angles are : —

for
$$(x + \Delta x)$$
, $\frac{hc^3}{p} \left(\mathbf{I} - \frac{h}{p} \right)$,
for $(y + \Delta y)$, $\frac{hc^2}{q} \left(\mathbf{I} - \frac{h}{q} \right)$,
for $(s + \Delta s)$, $\frac{hc^3}{r} \left(\mathbf{I} - \frac{h}{r} \right)$.

Digitized by Google

xcvii

In case the weights are equal, or in case p = q = r, $h = \frac{1}{3}$, and there result, —

Square of mean error of observed angle $= \frac{1}{3} c^3$, """""" correction to observed angle $= \frac{1}{3} c^3$, """"""" adjusted angle $= \frac{1}{3} c^3$,

where c is the error of closure of the triangle; so that in this case of equal weights the three mean errors are to one another as $\frac{1}{3}\sqrt{3}$, $\frac{1}{3}$, and $\frac{1}{3}\sqrt{2}$.

References.

The literature of the theory of errors, especially as exemplified by the method of least squares, is very extensive. Amongst the best treatises the following are worthy of special mention : Method of Least Squares, Appendix to vol. ii. of Chauvenet's "Spherical and Practical Astronomy." Philadelphia : J. B. Lippincott & Co., 8vo, 5th ed., 1887. "A Treatise on the Adjustment of Observations, with Applications to Geodetic Work and Other Measures of Precision," by T. W. Wright. New York : D. Van Nostrand, 8vo, 1884. "On the Algebraical and Numerical Theory of Errors of Observation and on the Combination of Observations," by Sir George Biddle Airy. London : Macmillan & Co., 12mo, 2d ed., 1875. "Die Ausgleichungsrechnung nach der Methode der Kleinsten Quadrate, mit Anwendungen auf die Geodäsie und die Theorie der Messinstrumente," von F. R. Helmert. Leipzig : B. G. Teubner, 8vo, 1872.

xcviii

EXPLANATION OF SOURCE AND USE OF THE TABLES.

TABLES 1 and 2 are copies of tables issued by the Office of Standard Weights and Measures of the United States, edition of November, 1891.

Table 3 is derived from standard tables giving such data. The arrangement is that given in "Des Ingenieurs Taschenbuch, herausgegeben von dem Verein 'Hütte'"* (11th edition, 1877). The numbers have been compared with those given in the latter work, and also with those in Barlów's "Tables." The logarithms have been checked by comparison with Vega's 7-place tables.

Table 4 is abridged from a similar table in the Taschenbuch just referred to.

Tables 5 and 6 are copies of standard forms for such table. They have been checked by comparison with standard higher-place tables. The mode of using these tables will be evident from the following examples :—

(1.) To find the logarithm of any number, as 0.06944, we look in **Table 5** in the column headed N for the first two significant figures of the number, which are in this case 69. In the same horizontal line with 69 we now look for the number in the column headed with the next figure of the given number, which is in the present case 4. We thus find .8414 for the mantissa of the logarithm of the number 694. To get the increase due to the additional figure 4, we look in the same horizontal line under Prop. Parts in the column headed 4 and find the number 2, which is the amount in units of the fourth place to be added to the part of the mantissa previously found. Thus the mantissa of log (0.06944) is .8416. The characteristic for the logarithm in question is -2 = 8-10. Hence log (0.06944) = 8.8416-10.

(2.) To find the number corresponding to any logarithm, as 8.8416-10, we look in **Table 6** in the column headed L for the first two figures of the mantissa, which are in this case 84. In the same horizontal line with 84 we now look for the number in the column headed by the next figure of the mantissa, which is in this case 1. We thus find 6394 for the number corresponding to the mantissa 8410. To get the increase due to the additional figure 6, we look in the same horizontal line under Prop. Parts in the column headed 6 and find 10, which is the amount in units of the fourth place to be added to the number previously found. Thus the significant figures of the number are 6944, and since the characteristic of the logarithm is 8-10 = -2, the required number is 0.06944.

* Berlin: Verlag von Ernst & Korn. This work is an invaluable one to the engineer, architect, geographer, etc.

Tables 7 and 8 are taken from "Smithsonian Meteorological Tables" (the first volume of this series). Their mode of use will be apparent from the following example: Required the sine and tangent for 28° 17'.

Table 9 is a copy of a similar table published in "Professional Papers, Corps Engineers," U. S. A., No. 12. It has been checked by comparison with other tables in general use. This table is useful in computing latitudes and departures in traverse surveys wherein the bearings of the lines are observed to the nearest quarter of a degree, and in other work where multiples of sines and cosines are required. Thus, if L denote the length and B the bearing from the meridian of any line, the latitude and departure of the line are given by

$L\cos B$ and $L\sin B$

respectively; the "latitude" being the distance approximately between the parallels of latitude at the ends of the line, and the "departure" being the distance approximately between the meridians at the ends of the line. As an example, let it be required to compute the latitude and departure for L = 4837, in any unit, and $B = 36^{\circ}$ 15'. The computation runs thus :—

									Latitude.	Departure.
For 4000	•	•	•	•	•		•	•	3225.77	2365.23
· 800	•	•	•	•	•	•		•	645.16	473.05
30	•	•	•	•	•	•	•	•	24.19	17.74
7	•	•	•	•	•	•	•	•	5.63	4.14
4837	•	•	•	•		Lc	osi	B =	= 3900.77	$L\sin B = 2860.16$

Tables 10 and 11 give the logarithms of the principal radii of curvature of the earth's spheroid. They were computed by Mr. B. C. Washington, Jr., and carefully checked by differences. They depend on the elements of Clarke's spheroid of 1866. The use of these tables is sufficiently explained on p. xlv-xlix.

Table 12 gives logarithms of radii of curvature of the earth's spheroid in sections inclined to the meridian sections. It is abridged to 5 places from a 6-place table published in the "Report of the U. S. Coast and Geodetic Survey for 1876." Its use is explained on pp. lxi-lxiv.

Tables 13 and 14 give logarithms of factors needed to compute the spheroidal excess of triangles on the earth's spheroid. No. 13 is constructed for the English foot as unit, and No. 14 for the metre. These tables were computed by Mr.

С

Charles H. Kummell. Their use is explained on p. lviii. The following example will illustrate their use : ---

Latitude of vertex A of triangle 48° 08' " 66 B 47 52 С " " " 47 04 Mean latitude 47 41 Angle $C = 51^{\circ} 22' 55'' \log \sin C = 9.89283 - 10$ log a (feet) 5.64401 log b (feet) 5.58681 log factor, Table 13, for 47° 41' 0.37176 Spheroidal excess = 31."290, log 1.49541

Tables 15 and 16 give logarithms of factors for computing differences of latitude, longitude, and azimuth in secondary triangulation whose lines are 12 miles (20 kilometres) or less in length. These tables were computed by Mr. Charles H. Kummell. Table 15 gives factors for the English foot as unit, and Table 16 for the metre as unit. The use of these tables is illustrated by a numerical example given on pp. lx and lxi. For lines not exceeding the length mentioned, the tables will give differences of latitude and longitude to the nearest hundredth of a second of arc, using 5-place logarithms of the lengths of the lines.

Table 17 gives lengths of terrestrial arcs of meridians corresponding to latitude intervals of 10'', 20'', ... 60'', and 10', 20', ... 60', or lengths corresponding to arcs less than 1° . The unit of length is the English foot. The table was computed by Mr. B. C. Washington, Jr.

The length corresponding to any latitude interval is the distance along the meridian between parallels whose latitudes are less and greater respectively than the given latitude by half the interval. Thus, for example, the length corresponding to the interval 30' and latitude 37° (182047.3 feet) is the distance along the meridian from latitude 36° 45' to latitude 37° 15'.

By interpolation, we may get from this table the meridional distance corresponding to any interval. The following example illustrates this use: Required the distance between latitude 41° 28' 17."8 and latitude 41° 39' 53."4. The difference of these latitudes is 11' 35."6, and their mean is 41° 34' o5."6. The computation runs thus: —

		Latitude A	Tabular diff	ference.	
10'		60724.60	feet	10.70	feet
ı'		6072.46	"	1.07	"
30″		3036.23	"	.54	"
5″		506.04	"	.09	"
o.″6		60.72	"	.01	"
<u>³4.09</u> ★	12.41	7.05	"	sum, 12.41	"
	Distance =	= 70407.10	66		

When the degree of precision required is as great as that of the example just Digitized by Google

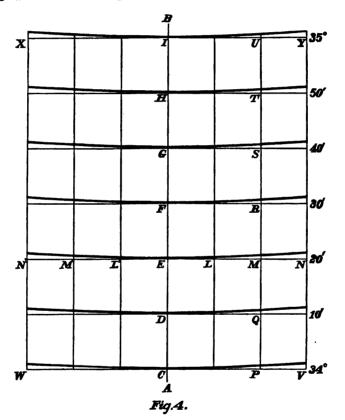
given, it will be more convenient to use formulas (2) on p. xlvi. Thus, in this example, --

	iog.
$\Delta \phi == 695.''6$	2.8423596
$\phi = 41^{\circ} 34' 05.''6, \rho_m (Table 10)$	7.3196820
cons't	4.6855749
Length == 70407.10 feet	4.8476165

Table 18 gives lengths of terrestrial arcs of parallels corresponding to longitude intervals of $10'', 20'', \ldots 60''$, and $10', 20', \ldots 60'$, or lengths corresponding to arcs less than 1° . The unit is the English foot. This table was computed by Mr. B. C. Washington, Jr.

The method of using this table is similar to that applicable to Table 17 explained above. For the computation of long arcs it will in general be less laborious to use the formulas (1) on p. xlix than to resort to interpolation from Table 18.

Tables 19-24 give the rectangular co-ordinates for the projection of maps, in accordance with the polyconic system explained on pp. liii-lvi, for the following scales respectively : ---


Table	19,	sc	ale	1 \$50000		
"	20,		"	1 125000		$\langle unit = English inch. \rangle$
"	21,	•	"	1 126730	(2 miles to 1 inch)	γ unit = English mch.
44	22,		"	1	(I mile to I inch)	
"	23,		"	1 900000	$\left. \right\}$ unit = millimetre.	
"	24,		"	1 80000	$\int \operatorname{unit} = \operatorname{munmetre}$	

These tables were computed by Mr. B. C. Washington, Jr.

The use of these tables and their application in the construction of maps may be best explained by an example. Suppose it is required to draw meridians and parallels for a map of an area of 1° extent in longitude, lying between the parallels of 34° and 35°. Let the scale of the map be one mile to the inch, or 1/63360, and let the meridians and parallels be 10' apart respectively. Draw on the projection paper an indefinite straight line AB, Fig. 4, to represent the middle meridian of the map. Take any convenient point, as C, on this line for the latitude 34°, and lay off from this point the meridional distances CD, CE, CF, . . . CI, given in the second column of Table 22, p. 114.* Through the points D, E, F, . . . I, thus found, draw indefinite straight lines perpendicular to AB. By means of these lines and the tabular co-ordinates, points on the developed parallels and meridians are readily found. Thus, for example, the abscissas for points ten minutes apart on the parallel 34° 20' are 9.53, 19.06, and 28.59 inches. These distances are to be laid off on NN' in both directions from AB. At the points L, M, N, L', M', N', so determined, erect perpendiculars to NN' equal in length, respectively, to the ordinates corresponding to the longitude intervals

* The meridional distances and the abscissas of the points on the developed parallels in Fig. 4 are one twentieth of the true or tabular values. The ordinates of points on the developed parallels are the tabular values. 10', 20', 30'. The curved line joining the extremities of these perpendiculars is the parallel required. It may be drawn by means of a flexible ruler. The other parallels are constructed in the same manner. They are all concave towards the north or south according as the map shows a portion of the northern or southern hemisphere. The meridians are drawn in a similar manner through the points (c. g., P, Q, M, R, S, T, U in Fig. 4) having the same longitude relative to the middle meridian. All meridians are concave towards the middle meridian.

A test of the graphical work which should always be applied is the approximation to equality of corresponding diagonals in the various quadrilaterals formed. Thus in Fig. 4, VX should be equal to WY, CN to CN', EV to EW, etc.*

Tables 25-29 give areas of quadrilaterals, bounded by meridians and parallels, of the earth's surface. They are taken from "Bulletin 50, U. S. Geological Survey." The unit of length used is the English mile, and the areas are thus given in square miles. The method of using these tables is obvious.

Table 30 gives data for the computation of heights, from barometric measures, in accordance with the formula of Babinet.[†] This table is taken from the "Smithsonian Meteorological Tables" (the first volume of this series). The manner of using it is explained in connection with the table.

* It should be noted that CN is not equal to EV, N and V referring here to points on the developed parallels.

[†] Comptes Rendus, Paris, 1850, vol. xxv. p. 309.

Table 31 gives the mean astronomical refraction in terms of the apparent altitude of a star or other object outside the earth's atmosphere. It is taken from Vega's 7-place table of logarithms. Its use will be evident from the following example : ---

Apparent altitude of star
$$= 34^{\circ}$$
 17' 12."7Refraction == 1' 24."3 - $\frac{5}{20} \times 1.$ "1 =1 24.1True altitude of star $= 34$ 15 48.6

Tables 32 and 33 facilitate the interconversion of arc and time. They are taken from the "Smithsonian Meteorological Tables" (the first volume of this series). The following examples illustrate their use :---

(1.) To convert 68° 29' 48."8 into time we have from Table 32 -

 $68^{\circ} = 4^{h} 32^{m} 00^{\circ}$ 29' = 1 56 48'' = 3.20 0.''8 = .05Equivalent in time = 4 33 59.25

(2.) To convert 5^h 43^m 28.^s into arc we have from Table 33 —

$$5^{h} = 75^{\circ} \circ 0^{\circ} \circ 0^{\circ'}$$

$$43^{m} = 10 \quad 45 \quad 00$$

$$28^{a} = 7 \quad 00$$

$$0.^{*8} = 12$$
Equivalent in arc = 85 \ 52 \ 12

Tables 34 and 35 facilitate the interconversion of mean solar and sidereal time intervals. They are taken from Vega's 7-place table of logarithms. The mode of using them is explained in the tables themselves.

Tables 36 and 37 give the lengths of degrees of terrestrial arcs of meridians and parallels expressed in metres,* statute miles (English), and geographic miles (distance corresponding to 1' on the earth's equator). These tables are taken from the "Smithsonian Meteorological Tables" (the first volume of this series).

Table 38 facilitates the interconversion of statute (English) miles and nautical miles. The nautical mile used is that defined by the U. S. Coast and Geodetic Survey, namely: the length of a minute of arc of a great circle of the sphere whose surface equals that of the earth (Clarke's spheroid of 1866). For formula for radius of such sphere see p. lii. This table is taken from the "Smithsonian Meteorological Tables" (the first volume of this series).

Table 39 gives the English and metric equivalents of other standards of length still in use or obsolescent. It is taken from the "Smithsonian Meteorological Tables" (the first volume of this series).

Table 40 gives values of the acceleration (g) of gravity, $\log g$, $\log (1/2g)$, $\log \sqrt{2g}$,

* It should be observed that the metric values given in these tables depend on Clarke's value of the ratio of the yard to the metre, which is now known to be erroneous by about the 1/100000th part.

and (g/π^{s}) or the length of a seconds pendulum, for intervals of 5° of geographical latitude. It was computed by the editor, and is based on the formula for g given by Professor William Harkness in his memoir "On the Solar Parallax and its Related Constants."*

Table 41 gives the linear expansions of the principal metals. It was compiled by the editor from various sources. The values given for the expansion per degree Centigrade have been rounded (with one exception) to the nearest unit in the millionths place, or to the nearest micron, since different specimens of the same metal vary more or less in the ten-millionths place.

Table 42 gives the fractional changes in numbers corresponding to changes in the 4th, 5th, ... 7th place of their logarithms. These fractions are often convenient in showing the approximate error in a number due to a given error in its logarithm, or the converse. Thus, for example, referring to the remark in a foot-note under explanation of **Tables 36 and 37** above, the error in the logarithm of Clarke's ratio of the yard to the metre is about 4 units in the sixth place of decimals; the **Table 42** shows, then, that the metric equivalents in **Tables 36 and 37** are erroneous by about 1/100 000th part.

* Washington, Government Printing Office, 1891.

GEOGRAPHICAL TABLES

.

.

.

:

TABLE 1. FOR CONVERTING U. S. WEIGHTS AND MEASURES.

<u> </u>		LINEAL	2.				CAPACI	<u></u> тү.	
	Inches to milli- metres.	Feet to metres.	Yards to metres.	Miles to kilometres.		Fluid drams to millilitres or cubic centi- metres.	Fluid ounces to milli- litres.	Quarts to litres.	Gallons to litres.
I	101.6002 127.0003 152.4003 177.8004 203.2004	0.609601 0.914402 1.219202 1.524003 1.828804 2.133604	3.657607 4.572009 5.486411 6.400813 7.315215	3 ⁻²¹⁸⁶⁹ 4 ⁻⁸²⁸⁰⁴ 6 ⁻⁴ 3739 8 ⁻⁰⁴⁶⁷⁴ 9 ⁻⁶⁵⁶⁰⁸ 11 ⁻²⁶⁵⁴³ 12 ⁻⁸⁷⁴⁷⁸	I = 2 = 3 = 50 = 78 = 9	3'70 7'39 11'09 14'79 18'48 22'18 25'88 29'57 33'27	29'57 59'15 88'72 118'29 147'87 177'44 207'02 236'59 266'16	0.94636 1.89272 2.83908 3.78543 4.73179 5.67815 6.62451 7.57087 8.51723	7.57087
		SQUARI	 2.				WEIGH	т.	
	Square inches to square centi- metres.	Square feet to square deci- metres.	Square yards to square metres.	Acres to hectares.		Grains to milli- grammes.	Avoirdu- pois ounces to grammes.	Avoirdu- pois pounds to kilo- grammes.	Troy ounces to grammes.
I 2 3 4 1 3 4 1 3 1 1	6:452 12:903 19:355 25:807 32:258 38:710 45:161 51:613 58:065	9.290 18:581 27:871 37:161 46:452 55:742 65:032 74:323 83:613	0.836 1.672 2.508 3.344 4.181 5.017 5.853 6.689 7.525	0'4047 0'8094 1'2141 1'6187 2'0234 2'4281 2'8328 3'2375 3'6422	I = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =	64.7989 129:5978 194:3968 259:1957 323:9946 388:7935 453:5924 518:3914 583:1903	170 [.] 0972 198.4467 226.7962	1.81437 2.26796 2.72156 3.17515 3.62874	31°10348 62°20096 93°31044 124°41392 155°51740 186°62088 217°72437 248°82785 279°93133
		CUBIC.							
	Cubic inches to cubic centi- metres.	Cubic feet to cubic metres.	Cubic yards to cubic metres.	Bushels to hectolitres.					-
1	16 ⁻ 387 32 ⁻ 774 49 ⁻ 161 65 ⁻ 549 81 ⁻ 936 98 ⁻ 323 114 ⁻ 710 131 ⁻ 097 147 ⁻ 484	0.02832 0.05663 0.08495 0.11327 0.14158 0.16990 0.19822 0.22654 0.25485	0.765 1.529 2.294 3.058 3.823 4.587 5.352 6.116 6.881	0'35239 0'70479 1'05718 1'40957 1'76196 2'11436 2'11436 2'46675 2'81914 3'17154	ISO Ifa In Ifo Ia	unter's c q. statute thom autical mi pot == 0.30 voir. pour 35639 gra	mile = ile = 04801 met nd =	259.000 1.829 1853.25 tre, 9.484 453.5924	metres. hectares. metres. tor 58 log. 277 gram. ogramme.

CUSTOMARY TO METRIC.

The only authorized material standard of customary length is the Troughton scale belonging to this office, whose length at 50% of Fahr. conforms to the British standard. The yard in use in the United States is therefore equal to the British yard.

the British yard. The only authorized material standard of customary weight is the Troy pound of the Mint. It is of brass of unknown density, and therefore not suitable for a standard of mass. It was derived from the British standard Troy pound of 1755 by direct comparison. The British Avoirdupois pound was also derived from the latter, and contains 7,000 grains Troy. The grain Troy is therefore the same as the grain Avoirdupois, and the pound Avoirdupois in use in the United States is equal to the British pound Avoirdupois. The British gallon = 4.54346 litres. The British bushel = 36.3477 litres. The length of the nautical mile given above and adopted by the U. S. Coast and Geodetic Survey many years ago is defined as that of a minute of arc of a great circle of a sphere whose surface equals that of the earth (Clarke's Spheroid of 1866).

* Issued by U. S. Office of Standard Weights and Measures, and republished here by permission of Superintendent of Coast and Geodetic Survey.

TABLE 2. FOR CONVERTING U. S. WEIGHTS AND MEASURES. METRIC TO CUSTOMARY.

		LINEA	R.				CAI	PACI	ry.		
	Metres to inches.	Metres to feet.		Kilo- metres to miles.		Millilitres or cubic centi- metres to fluid drams.	Centi- litres to fluid ounces.		es to	Deca litres t gallon	o litres to
I 34 34 156 167 178	39'3700 78'7400 118'1 100 157'4800 196'8500 236'2200 236'2200 235'5900 314'9600 354'3300	6'56167 9'84250 13'12333 16'40417 19'68500 22'96583 26'24667	1.093611 2.187222 3.280833 4.374444 5.468056 6.561667 7.655278 8.748889 9.842500	1.86411 2.48548 3.10685 3.72822 4.34959 4.97096	1 == 2 == 3 == 5 == 7 == 9 ==	0°27 0°54 0°81 1°08 1°35 1°62 1°89 2°16 2°43	0.338 0.676 1.014 1.353 1.691 2.029 2.367 2.705 3.043	2.1 3.1 4.2 5.2 6.3 7.3 8.4	567 134 700 267 834 401 968 535 101	2.64 5.28 7.92 10.560 13.268 15.850 18.49 21.13 23.77	34 5°6755 51 8°5132 58 11°3510 55 14°1887 52 17°0265 19 19°8642 36 22°7019
		SQUAR	E.				W	EIGH	т.		
	Square centi- metres to square inches.	Square metres to square feet.	Square metres to square yards.	Hectares to acres.		Milli- grammes to grammes to to ounces to pour grains. grains. avoirdu- avoirdu-			Kilo- grammes to pounds avoirdu- pois.		
1	0°1550 0°3100 0°4650 0°7750 0°9300 1°0850 1°2400 1°3950	10°764 21°528 32°292 43°055 53°819 64°583 75°347 86°111 96°875	1.196 2.392 3.588 4.784 5.980 7.176 8.372 9.568 10.764	2'471 4'942 7'413 9'884 12'355 14'826 17'297 19'768 22'239	I = 2 2 = 3 4 = 5 5 = 7 8 = 9 9	0.01543 0.03086 0.04630 0.00173 0.07716 0.09259 0.10803 0.12346 0.13889	462 617 771 925 1080 1234	58.85	7 10 14 17 21 21 24	5274 0548 5822 1096 6370 1644 6918 2192 7466	2'20462 4'40924 6'61387 8'81849 11'02311 13'22773 15'43236 17'63698 19'84160
		CUBIC	•			WE	ight –	-(0	ntin	ued).	
	Cubic centi- metres to cubic inches.	Cubic deci- metres to cubic inches.	Cubic metres to cubic feet.	Cubic metres to cubic yards.				ilogrammes to ounces Troy.			
I	0°0610 0°1220 0°1831 0°2441 0°3051 0°3661 0°4272 0°4882 0°5492	61'023 122'047 183'070 244'094 305'117 366'140 427'164 488'187 549'210	35-314 70-629 105-943 141-258 176-572 211-887 247-201 282-516 317-830	1.308 2.616 3.924 5.232 6.540 7.848 9.156 10.464 11.771	$ \begin{array}{c} 1 = \\ 2 = \\ 3 = \\ 4 = \\ 5 = \\ 7 = \\ 9 \end{array} $	220'4 440'5 661'1 881'8 1102'1 1322'7 1543'2 1763'7 1984'1	2 9 5 17 7 4	220, 440 661 881 1102 1322 1543 1763 1984	3.9 3.9 3.1 7.7 2.4 7.0		32'1507 64'3015 96'4522 128'6030 160'7537 192'9044 225'0552 257'2059 289'3567

By the concurrent action of the principal governments of the world an International Bureau of Weights and Measures has been established near Paris. Under the direction of the International Committee, two ingots were cast of pure platinum-indium in the proportion of 9 parts of the former to 1 of the latter metal. From one of these a cer-tain number of kilogrammes were prepared, from the other a definite number of metre bars. These standards of weight and length were intercompared, without preference, and certain ones were selected as International prototype stand-ards. The others were distributed by lot, in September, 1880, to the different governments and are called National prototype standards. Those apportioned to the United States were received in 1800 and are in the keeping of this office. The metric system was legalized in the United States in 1866. The International Standard Metre is derived from the Metre des Archives, and its length is defined by the dis-tance between two lines at o³ Centigrade, on a platinum-iridium bar deposited at the International Bureau of Weights and Measures. The International Standard Kilogramme is a mass of platinum-iridium deposited at the same place and its weight

and measures. The International Standard Kilogramme is a mass of platinum-iridium deposited at the same place, and its weight in vacuo is the same as that of the Kilogramme des Archives. The litre is equal to a cubic decimetre, and it is measured by the quantity of distilled water which, at its maximum density, will counterpoise the standard kilogramme in a vacuum, the volume of such a quantity of water being, as nearly as has been ascertained, equal to a cubic decimetre.

SMITHSONIAN TABLES.

n	1000.1 <u>-</u>	n²	n ²	√n	ųn.	log. #
1	1000.000	I	I	1.0000	1.0000	0.00000
2	500.000	4	8	1.4142	1.2599	0.30103
3	333-333		27	1.7321	I.4422	0.47712
4	250.000	9 16	64	2.0000	1.5874	0.60206
5	200.000	25 36	125 216	2.2361	1.7100	0.69897
6	166.667	30		2.4495	1.8171	0.77815
78	142.857	49	343	2.6458	1.9129	0.84510
。 9	125.000 111.111	64 81	512 729	2.8284 3.0000	2.0000 2.0801	0.90309 0.9542 4
10	100.000	100	1000	3.1623	2.1 544	1.00000
II	90.909 1	121	1331	3.3166	2.2240	1.04139
12	83.3333	I44	1728	3.4641	2.2894	1.07918
13	76.9231 71.4286	169	2197	3.6056	2.3513	1.11394
14	71.4286	196	274 4	3.7417	2.4101	1.14613
15 16	66.6667	225 256	3375	3.8730	2.4662	1.17609
10	62.5000 58.8235	250	4096	4.0000	2.5198	I.20412
17	55.5556		4913 5832	4.1231 4.2426	2.5713 2.6207	1.23045 1.25527
10	52.6316	324 361	5859	4.3589	2.6684	1.25527 1.27875
20	50.0000	400	8000	4.4721	2.7144	1.30103
21	47.6190	441	9261	4.5826	2.7589	1.32222
22	45.4545	484	10648	4.6904	2.8020	1.34242
23	43.4783	529	12167	4.7958	2.8439	1.36173
24	41.6667	576	13824	4.8990	2.8845	1.38021
25	40.0000	625	15625	5.0000	2.9240	1.39794
26	38.4615	676	17576	5.0990	2.9625	I.41497
27 28	37.0370	729	19683	5.1962	3.0000	1.43136
	35.7143	784	21952	5.2915	3.0366	1.44716
29	34-4828	84i	24389	5.3852	3.0723	1.46240
30	33-3333	900	27000	5.4772	3.1072	1.47712
31 31	32.2581	<u>9</u> 61	29791	5.5678	3.1414	1.49136
32	31.2500	1024	32768	5.6569	3.1748	1.50515
33	30.3030	1089	35937	5.7446	3.2075	1.51851
34	29.41 18	1156	39304	5.8310	3.2396	1.53148
35	28.5714	1225	42875	5.9161	3.2711	1.54407
36	27.7778	1296	46656	6.0000 6.0828	3.3019	1.55630
37 38	27.0270 26.3158	1369 1444	50653 54872	6.1644	3.3322	1.56820 1.57978
39 39	20.3150 25.6410	1444 1521	59319	6.2450	3.3620 3.3912	1.59106
40	25.0000	1600	64000	6.3246	3.4200	1.60206
41 41	24.3902	1681	68921	6.4031	3.4482	1.61278
42	23.8095	1764	74088	6.4807	3.4760	1.62325
43	23.2558	1849	79507	6.5574	3.5034	1.63347
44	22.7273	1936	85184	6.6332	3.5303	1.64345
45	22.2222	2025	91125 97336 103823	6.7082	3.5569 3.5830	1.65321
46	21.7391	2116	97330	6.7823	3.5830 3.6088	1.66276 1.67210
47 48	21.2766 20.8333	2209 2304	103023	6.8557 6.9282	3.6342	1.67210 1.68124
40 49	20.3333	2304 240I	1 10592 1 17649	7.0000	3.6593	1.69020
50	20.0000	2500 2601	125000	7.0711	3.6840	1.69897
51	19.6078		132651	7.1414	3.7084	1.707 57
52	10.2308	2704	140608	7.2111	3.7325	1.71600
53	18.8679	2809	148877	7.2801	3.7 563	1.72428
54	18.5185	2916	I 57464	7.3485	3.7798	I.73239

SMITHSONIAN TABLES.

#	1000.1	# ²	العد ا	ا سار ا		
			72⁸	√n	ýn.	log. <i>n</i>
55	18.1818	3025	166375	7.4162	3.8030	1.74036
56	17.8571	3136	1 175616	7.4833	3.8259	1.74819
57 58	17.5439	3249	185193	7.5498	3.8485	1.75587
58	17.2414	3364	195112	7.61 58	3.8709	1.76343
59	16.9492	3481	205379	7.6811	3.8930	1.77085
60 61	16.6667 16.3934	3600 3721	216000 226981	7.7460 7.8102	3.9149	1.77815
62	16.1290	3844	238328	7.8740	3.9365	1.78533
63	15.8730	3969	250047	7.0740	3.9579	1.79239
64	15.6250	4096	262144	7.9373 8.0000	3.9791 4.0000	1.79934 1.80618
65	15.3846	4225	274625	8.0623	4.0207	1.81291
66	15.1515	4356	287496	8.1240	4.0412	1.81954
67	14.9254	4489	300763	8.1854	4.0615	1.82607
67 68	14.7059	4624	314432	8.2462	4.0817	1.83251
69	14-4928	4761	328509	8.3066	4.1016	1.83885
70	14.2857	4900	343000	8.3666	4.1213	1.84510
71	14.0845	5041	357911	8.4261	4.1408	1.85126
72	13.8889	5184	373248	8.4853	4.1602	1.85733
73	13.6986	5329	389017	8.5440	4.1793	1.80332
74	13.5135	5476	405224	8.6023	4.1983	1.86923
75	13.3333	5625	421875	8.6603	4.2172	1.87506
76		5776	438976	8.7178	4.2358	1.88081
77	13.1579 12.9870	5929 6084	456533	8.77 50	4.2543	1.88649
77 78	12.8205		474552	8.8318	4 .272 7	1.89209
79	12.6582	6241	493039	8.8882	4.2908	1.89763
80	12.5000	6400	51 2000	8.9443	4.3089	1.90309
81	12.3457	6561	531441	9.0000	4.3267	1.90849
82	12.1951	6724	551368	9.0554	4-3445	1.91381
83	12.0482	6889	571787	9.1104	4.3621	1.91908
84	11.9048	7056	592704	9.1652	4-3795	1.92428
85	11.7647	7225	614125	9.2195	4.3968	1.92942
86	11.6279	7396	636056	9.2736	4.4140	1.93450
87 88	11.4943	7569	658503	9-3274	4.4310	1.93952
	11.3636	7744	681472	9.3808	4.4480	1.94448
89	11.2360	7921	704969	9-4340	4-4647	1.94939
90	11.1111	8100	729000	9.4868	4-4814	1.95424
91	10.9890 10.8696	8281 8464	753571 778688	9-5394	4-4979	1.95904
92		8464 8649	778088 804357	9.5917 9.6437	4.5144	1.96379 1.96848
93 94	10.7527 10.6383	8836	830584	9.043/ 9.6954	4-5307 4-5468	1.90848
95	10.5263	9025	857375	0.7468	4.5629	1.97772
96	10.4167	9216	884736	9.7980	4.5789	1.98227
97	10.3093	9409	912673	9.8489	4-5947	1.98677
97 98	10.2041	9604	941192	9.8995	4.6104	1.99123
99	10.1010	<u>9</u> 801	970299	9.9499	4.6261	1.99564
100	10.0000	10000	1000000	10.0000	4.6416	2.00000
101	9.90099	10201	1030301	10.0499	4.6570	2.00432
102	9.80392	I0404	1061208	10.0995	4.6723	2.00860
103	9.70874	10609	1092727	10.1489	4.6875	2.01284
104	9.61538	10816	1124864	10.1980	4.7027	2.01703
105	9.52381	11025	1157625	10.2470	4.7177	2.02119
106	9.43396	11236	1191016	10.2956	4.7326	2.02531
107	9.34579	11449	1225043	10.3441	4-7475	2.02938
108	9.25926	11664 11881	1259712	10.3923 10.4403	4.7622 4.7769	2.03342
109	9.17431	11001	1295029		T*//Y	2.03743

SHITHSORIAN TABLES.

Digitized by Google

.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

	1		_		34	
*	1000. ¹ / _n	<i>n</i> ²	# ⁸	\n 	¥#	log. #
110	9.09091	12100	1331000	10.4881	4.7914	2.04139
111	9.00901	12321	1367631	10.5357	4.8059	2.04532
112	8.92857	12544	1404928	10.5830	4.8203	2.04922
113	8.84956	12769	1442897	10.6301	4.8346	2.05308
114	8.77193	12996	1481544	10.6771	4.8488	2.05690
115	8.69565	13225	1 5 2087 5	10.7238	4.8629	2.06070
116	8.62069	13456	1 560896	10.7703	4-8770	2.06446
117	8.54701	13689	1601613	10.8167	4.8910	2.06819
118	8.47458	I 3924	1643032	10.8628	4.9049	2.07 188
119	8.40336	14161	1685159	10.9087	4.9187	2.07 555
120	8.33333	14400	1728000	10.9545	4.9324	2.07918 2.08279
121	8.26446	14641	1771561	11.0000	4.9461	
122	8.19672	14884	1815848	11.0454	4-9597	2.08636
123	8.13008	15129	1860867	11.0905	4.9732	2.08991
124	8.06452	15376	1906624	11.1355	4.9866	2.09342
125	8.00000	1 562 5	1953125	11.1803	5.0000	2.09691
126	7.93651	15876	2000376	11.2250	5.01 33	2.10037
127	7.87402	16129	2048383	11.2694	5.0265	2.10380
128	7.81250	16384	2097152	11.3137	5.0397	2.10721
129	7.75194	16641	2146689	11.3578	5.0528	2.11059
130	7.69231	16900	2197000	11.4018	5.0658	2.11394
131	7.63359	17161	224809I	11.4455	5.0788	2.11727
132	7.57576 7.51880	17424	2299968	11.4891	5.0916	2.12057
133	7.51880	17689	2352637	11.5326	5.1045	2.12385
134	7.46269	17956	2406104	11.5758	5.1172	2.12710
135	7.4074I	18225	2460375	11.6190	5.1299	2.13033
136	7.35294	18496	251 5456	11.6619	5.1426	2.13354
	7.29927	18769	2571353	11.7047	5.1 551	2.1 3672
137 138	7.24638	19044	2628072		5.1676	2.13988
139	7.19424	19321	2685619	11.7473 11.7898	5.1801	2.14301
140	7.14286	19600	2744000	11.8322	5.1925	2.14613
141	7.09220	19881	2803221	11.8743	5.2048	2.14922
142	7.04225	20164	2863288	11.9164	5.2171	2.1 5229
143	6.99301	20449	2924207	11.9583	5.2293	2.15534
144	6.94444	207 36	2985984	12.0000	5.2415	2.15836
145	6.89655	21025	3048625	12.0416	5.2536	2.16137
146	6.84932	21310	3112136	12.0830	5.2656	2.16435
147	6.80272	21609	3176523	12.1244	5.2776	2.16732
148	6.7 5676	21904	3241792	12.1655	5.2896	2.17026
149	6.71141	22201	3307949	12.2066	5.3015	2.17319
150	6.66667	22500	337 5000	12.2474	5.3133	2.17609
151	6.62252	22801	3442951	12.2882	5.3251	2.17898
152	6.57893	23104	3442951 351 1808	12.3288	5.3368	2.18184
153	6.53595	23409	3581 577	12.3693	5.3485	2.18469
154	6.49351	23716	3652264	12.4097	5.3601	2.18752
155	6.45161	24025	3723875	12.4499	5.3717	2.19033
156	6.41026	24336	3796416	12.4900	5.3832	2.19312
157	6.36943	24649	3869893	12.5300	5-3947	2.10500
158	6.32911	24964	3944312	12.5698	5.4061	2.19866
159	6.28931	25281	4019679	12.0095	5.4175	2.20140
160	6.25000	25600	4096000	12.6491	5.4288	2.20412
161	6.21118	25921	4173281	12.6886	5.4401	2.20683
162	6.17284	26244	4251528	12.7279	5.4514	2.20952
163	6.13497	26569	4330747	12.7671	5.4626	2.21219
164	6.097 56	26896	4410944	12.8062	5-4737	2.21484
	I I					

SMITHSONIAN TABLES.

*	1000.1	n ²	n ⁸	√12	¥712	log. n
165	6.06061	27225	4402125	12.8452	5.4848	2.21748
166	6.02410	27556	4492125 4574296	12.8841	5.4959	2.22011
167	5.98802	27 5 56 27889	4657463	12.9228	5.5069	2.22272
168	5.95238	28224	4741632	12.9615	5.5178	2.22531
169	5.91716	28561	4826809	13.0000	5.5288	2.22789
170	5.88235	28900	491 3000	13.0384	5-5397	2.23045
171	5.84795	29241	5000211	13.0767	5.5505	2.23300
172	5.81 395	29584	5088448	13.1149	5.5613	
173	5.78035	29929	5177717	13.1529	5.5721	2.23553 2.23805
174	5.74713	30276	5268024	13.1909	5.5828	2.24055
175	5.71429	30625	5359375	13.2288	5.5934 5.6041	2.24304
176	5.68182	30976	5451776	1 3.2665		2.2455I
177 178	5.64972	31 329	5545233	13.3041	5.6147	2.24797
	5.61798	31684	5639752	13.3417	5.6252	2.25042
179	5.58659	32041	5735339	13.3791	5.6357	2.25285
180	5.55556 5.52486	32400	5832000	13.4164	5.6462	2.25527
181	5.52486	32761	5929741 6028568	13.4536	5.6567	2.25768
182	5.4945I	331 24	6028568	I 3.4907	5.6671	2.26007
183	5.46448	33489	61 28 487	13.5277	5.6774	2.26245
184	5.43478	33856	6229504	13.5647	5.6877	2.26482
185	5.40541	34225	6331625	13.6015	5.6980	2.26717
186	5.37634	34596	6434856	13.6382	5.7083	2.26951
187	5-347 59	34969	6530203	13.6748	5.7185	2.27184
188	5.31915	35344	6644672	13.7113	5.7287	2.27416
189	5.29101	35721	67 51 269	13.7477	5.7388	2.27646
190	5.26316	36100	6859000	13.7840	5.7489	2.27875
191	5.23560	36481	6067871	1 3.8203	5.7590	2.28103
192	5.23560 5.20833	36864	7077888	13.8564	5.7690	2.28330
193	5.18135	37249	7189057	13.8924	5.7790	2.28556
194	5.1 5464	37636	7301384	13.9284	5.7890	2.28780
195	5.12821	38025	7414875	13.9642	5.7989	2.29003
196	5.10204	38416	7 5 2 9 5 3 6	14.0000	5.8088	2.29226
197	5.07614	38809	7645373	14.0357	5.8186	2.29447
198	5.05051	30204	7762392	14.0712	5.8285	2.29667
199	5.02513	39601	7880599	14.1067	5.8383	2.29885
200	5.00000	40000	8000000	14.1421	5.8480	2.30103
201	4.97 51 2	40401	8120601	14.1774	5.8578	2.30320
202	4.95050	40804	8242408	14.2127	5.8675	2.30535
203	4.92611	41209	8365427	14.2478	5.8771	2.307 50
204	4.90196	41616	8489664	14.2829	5.8868	2.30963
205	4.87805	42025	861 51 25	14.3178	5.8964	2.31175
206	4.85437	42436	8741816	14.3527	5.9059	2.31387
207	4.83092	42849	8869743	14.3527 14.3875	5.9155	2.31 507
208	4.80769	43264	8998912	14.4222	5.9250	2.31806
209	4.78469	43681	91 29 3 29	14.4568	5 ·934 5	2.32015
210	4.76190	44100	9261000	14.4914	5-9439	2.32222
211	4.73934	44521	9393931	14.5258	5.9533	2.32428
212	4.71698	44944	9528128	14.5602	5.9627	2.32634
213 214	4.69484 4.67290	45369 · 45796	9663597 9800344	14.5945 14.6287	5.9721 5.9814	2.32838 2.33041
N .						
215	4.65116	46225	9938375	14.6629	5.9907	2.33244
216	4.62963	46656	10077696	14.6969	6.0000	2.33445
217 218	4.60829	47089	10218313	14.7309	6.0092 6.0185	2.33646
210	4.58716 4.56621	47 524 47961	10360232	14.7648 14.7986	6.0277	2.33846 2.34044
1 19	4.30021	4/901	10503459	.4./900		
L						·

SHITHSONIAN TABLES.

Digitized by GOOgle

						1
n	1000. <u>1</u>	n²	n ⁸		ปีก	log. #
220	4-54545	48400	10648000	14.8324	6.0368	2.34242
221	4.52489	48841	10793861	14.8661	6.0459	2.34439
222	4.50450	49284	10941048	14.8997	6.0550	2.34635
223	4.48431	49729	11089567	14.9332	6.0641	2.34830
224	4.46429	50176	11239424	14.9666	6.0732	2.35025
225	4-44444	50625	11390625	15.0000	6.0822	2.35218
226	4-42478	51076	11543176	15.0333	6.0912	2.35411
227	4.40520	51 529	11697083	15.0005	6.1002	2.35603
228	4.38596	51984	11852352	1 5.0997	6.1091	2.35793
229	4.36681	52441	12008989	15.1327	6.1180	2.35984
230	4.34783	52900	12167000	15.1658	6.1260	2.36173
231	4.32900	53361	12326391	15.1987	6.1358	2.36361
232	4.31034	53824	12487168	15.2315	6.1446	2.36549
233	4.29185	54289	12649337	1 5.2643	6.1534	2.36736
234	4.27 350	54756	12812904	15.2971	6.1622	2.36922
		• • •			6	
235	4.25532	55225 55696	12977875	15.3297	6.1710	2.37107
236	4.23729	55000	13144256	15.3623	6.1797 6.1885	2.3729I
237	4.21941	56169	13312053	15.394 8	6.1972	2.37475 2.37658
238	4.20168 4.18410	56644 57121	13481272 13651919	15.4272 15 -4596	6.2058	2.37840
239	4.10410		• 30 3 • 9 • 9	• 3-+32-2	0.2030	1 1
240	4.16667	57600	13824000	15.491 9	6.2145	2.38021
24 I	4.14938	58081	13997521	15.5242	6.2231	2.38202
242	4.13223	58564	14172488	15.556 3 15.5885	6.2317	2.38382
243	4.11523	59049	14348907		6.2403	2.38561
244	4.09836	59536	14526784	15.6205	6.2488	2.38739
245	4.08163	60025	14706125	15.6525	6.2572	2.38917
246	4.06504	60516	14886936	15.6844	6.2573 6.2658	2.39094
247	4.04858	61000	1 5069223	15.7162	6.2743	2.39270
248	4.03226	61 504	15252992	15.7480	6.2828	2.39445
249	4.01606	62001	1 54 38 249	15.7797	6.2912	2.39620
250		60.000			6	
	4.00000	62500	1 562 5000	15.8114	6.2996	2.39794
251	3.98406	63001	15813251	15.8430	6.3080	2.39967
252	3.96825	63504	16003008 16194277	15.8745	6.3164	2.40140
² 53	3.95257	64009	16387064	15.9060	6.3247	2.40312
254	3.93701	64516	1030/004	15.9374	6.3330	2.40483
255	3.921 57	65025	16581375	1 5.9687	6.3413	2.40654
256	3.90625	65536	16777216	16.0000	6.3496	2.40824
257 258	3.89105	66049	16974593	16.0312	6.3579	2-40993
	3.87597	66564	17173512	16.0624	6.3661	2.41162
259	3.86100	67081	17373979	16.0935	6.3743	2.41330
260	3.84615	67600	17576000	16.1245	6.3825	2.41497
261	2.87142	68121	17779581	16.1555	6.3007	2.41664
262	2.81670	68644	17984728	10.1804	6.3988	2.41830
263	3.80228	69169	18191447	16.2173	6.4070	2.41996
264	3.78788	69696	18399744	16.2481	6.41 51	2.42160
265	3.77358	70225	18600625	16.2788	6.4232	2.42225
266	3.75940	707 56	18821096	16.3095	6.4312	2.42325 2.42488
267	3.74532	71289	19034163	16.3401	6.4393	2.42651
268	3.73134	71824	19248832	16.3707	6.4473	2.42813
269	3-71747	72361	19465109	16.4012	6.4553	2.42975
270	3.70370	72900	19683000	16 4017	6.4633	
271	3.69004	73441	19083000	16.4317 16.4621	64713	2.43136
272	3.67647	73984	20123648	16.4924	6.4792	2.43297
273	3.66300	74529	20346417	16.5227	6.4872	2-43457 2.43616
274	3.64964	75076	20570824	16.5529	6.4951	2.43775
-/-	5 17 1					

SHITHBONIAN TABLES.

.

	#	1000. <mark>1</mark>	n ²	n ⁸	Jn.	ij <i>s</i> e	log. # -
276 362319 76776 21034376 16.6132 6.5188 2.44201 277 3.50712 77841 21717539 16.6433 6.5195 2.44248 279 3.59423 77841 21717539 16.6733 6.5343 2.44248 280 3.57143 7840 2195200 16.7332 6.5421 2.44248 281 3.55872 78961 22185011 16.7621 6.5373 2.44252 282 3.5317 80659 2239534 16.8523 6.5731 2.4523 284 3.5217 8.4523 2.35977 2.4523 2.4533 286 3.46250 8.790 2.339555 16.6115 6.5624 2.4578 287 3.4432 8.2424 2.857872 16.6705 2.4578 2.4593 288 3.47222 8.244 2.487872 16.6705 2.4578 2.4578 291 3.44613 8.4601 2.4879500 17.0204 6.6111 2.46220	275	2 62626	78628	20206825	16 18 21	6 5020	2 (2022
277 $3.6(1011$ 76729 2123333 16.6433 6.5187 2.44248 279 3.5912 77284 2148492 166733 6.5187 2.44428 279 3.59423 77841 2177639 167733 6.5343 2.44376 281 3.5972 78961 2218502 1677332 6.5421 2.44976 281 3.5397 8009 2205187 168226 6.5577 2.44925 284 3.5317 80097 81225 23190501 168523 6.57331 2.45332 286 3.50877 81225 231930501 160411 6.5968 2.45788 286 3.46201 83527 231930501 160411 6.5962 2.45788 286 3.46221 83544 2387972 16.9706 66792 2.45788 289 3.44228 8_1100 243890001 17.0224 66191 2.46240 290 3.44888 8_1100 243890001 17.0224 66191 2.46240 292 3.44828 8_1100 24389721 17.0274 66191 2.46287 293 3.41377 856492 2557375 17.17726 66569 2.44782 299 3.44828 8_1100 24380020 17.0224 66191 2.46287 292 3.44828 87025 25672757 2.47626 2.46287 293 3.41377685 87016 2.957375 17.17766 65659 2.44787		2.62310	75025		16.61 72	6,5108	
278 3.59212 77844 21484952 10.6733 0.5205 2.44404 279 3.5423 77841 2171759 167033 0.5305 2.44404 280 3.57143 78400 21952000 167332 0.5433 2.444716 281 3.55272 78901 2218501 167532 0.5433 2.44276 282 3.53137 80059 22005187 16.8226 0.5054 2.45179 284 3.52113 80050 81796 23939565 16.6115 0.5885 2.4587 286 3.46021 82769 21693903 16.6411 0.5885 2.4587 287 3.44843 84100 2.4380000 17.0204 6.6111 2.46592 290 3.4488 84100 2.4380000 17.0204 6.6111 2.46239 291 3.44631 8461 2.442711 17.0656 6.6243 2.46389 293 3.44234 8461 2.46179 2.46389 2.46389 293 3.44243 8705 2.51577 17.1726 6.6		261011			16.6422	6.5187	2.44248
279 $3,5423$ 77841 2177739 $16,7033$ $6,5343$ 2.4450 280 $3,57143$ 78400 2195200 $16,7332$ $6,5421$ 2.44716 281 $3,5572$ 78951 2218801 $16,7332$ $6,5421$ 2.44716 282 $3,5477$ 80089 2245318 $16,5223$ $6,5577$ 2.449716 284 $3,52113$ 80656 22390504 168523 $6,5731$ 2.45332 285 $3,5477$ 81223 2149125 168523 $6,5733$ 2.4533 286 $3,46520$ 81790 2339565 160115 $6,5868$ 2.4584 286 $3,46221$ 83521 23193750 160411 $6,5962$ 2.45939 289 3.4621 83521 24137559 $17,0000$ 66115 2.46200 290 3.44848 8_1100 2.4890001 $17,0294$ 6.6547 2.46738 291 3.47222 85241 2.445775 6.6547 2.46738 292 3.42466 81264 2.4897088 $17,0850$ 6.6547 2.46788 293 3.41277 86439 2.2572757 $17,17756$ 6.6569 2.46982 293 3.42377 85649 2.2572757 $17,1726$ 6.6569 2.46982 294 3.30337 90000 2700000 $17,3205$ 6.6543 2.47787 295 3.348947 930257 2.857277 $17,1726$ 6.6569 2.47857 296 3.33333	278	3.59712	77284	21484952	10.0733	6.5265	
222 354010 79524 22425708 165226 65577 245275 224 35337 80056 22905304 168523 65731 245332 2265 350877 81225 2149125 168819 65808 245332 2266 349650 81790 23395651 169115 65808 245357 2267 344632 82944 2387872 169015 65805 245787 289 3446231 83244 2387872 169005 66015 246990 290 344828 84100 24389000 17.0204 66191 2.46240 291 343643 84681 24492171 17.0005 66343 2.46136 292 344828 87025 23572375 17.1775 66444 2.446335 293 341237 8549 251577375 17.1775 666444 2.47129 294 3.36933 87025 25572375 17.3047 666444 2.47276 296 3.37838 87025 25572375 17.3047 666444 2.47276 296 3.37933 87025 25572375 17.3047 666444 2.47276 296 3.33333 90000 27000000 17.3205 66794 2.47276 300 3.33333 90001 27270001 17.3494 67018 2.47276 300 3.33333 90000 27000000 17.3265 66794 2.48835 <t< th=""><th></th><th>3.58423</th><th>77841</th><th></th><th>16.7033</th><th>6.5343</th><th></th></t<>		3.58423	77841		16.7033	6.5343	
222 354010 79524 22425708 165226 65577 245275 224 35337 80056 22905304 168523 65731 245332 2265 350877 81225 2149125 168819 65808 245332 2266 349650 81790 23395651 169115 65808 245357 2267 344632 82944 2387872 169015 65805 245787 289 3446231 83244 2387872 169005 66015 246990 290 344828 84100 24389000 17.0204 66191 2.46240 291 343643 84681 24492171 17.0005 66343 2.46136 292 344828 87025 23572375 17.1775 66444 2.446335 293 341237 8549 251577375 17.1775 666444 2.47129 294 3.36933 87025 25572375 17.3047 666444 2.47276 296 3.37838 87025 25572375 17.3047 666444 2.47276 296 3.37933 87025 25572375 17.3047 666444 2.47276 296 3.33333 90000 27000000 17.3205 66794 2.47276 300 3.33333 90001 27270001 17.3494 67018 2.47276 300 3.33333 90000 27000000 17.3265 66794 2.48835 <t< th=""><th>280</th><th>3-57143</th><th>78400</th><th>21952000</th><th>16.7332</th><th>6.5421</th><th>2.44716</th></t<>	280	3-57143	78400	21952000	16.7332	6.5421	2.44716
222 354010 79524 22425708 165226 65577 245275 224 35337 80056 22905304 168523 65731 245332 2265 350877 81225 2149125 168819 65808 245332 2266 349650 81790 23395651 169115 65808 245357 2267 344632 82944 2387872 169015 65805 245787 289 3446231 83244 2387872 169005 66015 246990 290 344828 84100 24389000 17.0204 66191 2.46240 291 343643 84681 24492171 17.0005 66343 2.46136 292 344828 87025 23572375 17.1775 66444 2.446335 293 341237 8549 251577375 17.1775 666444 2.47129 294 3.36933 87025 25572375 17.3047 666444 2.47276 296 3.37838 87025 25572375 17.3047 666444 2.47276 296 3.37933 87025 25572375 17.3047 666444 2.47276 296 3.33333 90000 27000000 17.3205 66794 2.47276 300 3.33333 90001 27270001 17.3494 67018 2.47276 300 3.33333 90000 27000000 17.3265 66794 2.48835 <t< th=""><th></th><th>3.55872</th><th></th><th></th><th>16.7631</th><th>6.5499</th><th></th></t<>		3.55872			16.7631	6.5499	
284 $3,52113$ 36656 22905304 16.8523 6.5731 2.45332 286 3.40550 81225 22149125 16.8819 6.5808 2.4548 286 3.40550 81790 23393636 16.9115 6.5808 2.4548 289 3.47222 82944 2287972 16.9115 6.5808 2.45938 289 3.47222 839244 2287972 17.0294 6.6191 2.46290 290 3.44828 84100 2.4389000 17.0294 6.6191 2.46390 292 3.44868 84681 2.4612711 17.0687 6.6367 2.46392 293 3.441297 85849 25157757 17.1756 6.6569 2.46835 294 3.40130 86436 259512375 17.1756 6.6569 2.46982 295 3.38083 87025 22572375 17.1756 6.6569 2.4772 299 3.34448 89401 257335 17.327 6.6719 2.47276 299 3.34448 89401 27730599 17.3276 6.6943 2.47757 300 3.33333 900000 27020001 17.3205 6.6943 2.47757 300 3.33233 900000 27730599 17.3781 6.7092 2.48677 301 3.32269 93025 28372655 17.4642 6.7313 2.48439 300 3.32373 90205 28372655 17.4642 6.7313 </th <th>282</th> <th>3.54610</th> <th>79524</th> <th>22425768</th> <th>16.7929</th> <th>6.5577</th> <th>2.45025</th>	282	3.54610	79524	22425768	16.7929	6.5577	2.45025
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	283		80089		16.8226	6.5654	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	284	3-52113	80656	22906304	16.8523		2.45332
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.50877		23149125		6.5808	2.45484
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			81796	23393656		6.5885	2.45637
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			82369	23639903		0.5902	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3.47222	82944			6.6039	2.45939
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	289	-	83521		17.0000	0.0115	2.40090
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3-44828	84100		17.0294		
294 3.40136 86436 25412184 17.1464 6.6494 2.46835 295 3.36983 87025 25672375 17.1756 6.6549 2.47129 296 3.37638 87616 25934336 17.237 6.6644 2.47129 299 3.35700 88804 26463592 17.2047 6.6644 2.47422 299 3.34448 89401 2673899 17.2916 6.6869 2.47757 300 3.3333 90000 2700000 17.3205 6.6943 2.47712 301 3.2326 90601 27270901 17.3494 6.7018 2.47857 302 3.31126 91204 27543608 17.3781 6.7092 2.48001 303 3.3033 91809 27818127 17.4059 6.7166 2.48237 304 3.28947 92416 2809464 17.4356 6.7140 2.48237 305 3.27869 93025 28372625 17.4642 6.7313 2.48430 306 3.24797 93630 28052616 17.4929 6.7337 2.48572 307 3.22581 96100 29791000 17.5784 6.7679 2.49136 311 3.24575 95481 29503629 17.5784 6.7679 2.49136 312 3.0513 97344 3005321 17.6355 6.7824 2.494315 313 3.16496 99856 31254757 17.79482 6.8041 <th< th=""><th></th><th>3-43043</th><th></th><th>24042171</th><th>17.0587</th><th>0.0207</th><th>2.40389</th></th<>		3-43043		24042171	17.0587	0.0207	2.40389
294 3.40136 86436 25412184 17.1464 6.6494 2.46835 295 3.36983 87025 25672375 17.1756 6.6549 2.47129 296 3.37638 87616 25934336 17.237 6.6644 2.47129 299 3.35700 88804 26463592 17.2047 6.6644 2.47422 299 3.34448 89401 2673899 17.2916 6.6869 2.47757 300 3.3333 90000 2700000 17.3205 6.6943 2.47712 301 3.2326 90601 27270901 17.3494 6.7018 2.47857 302 3.31126 91204 27543608 17.3781 6.7092 2.48001 303 3.3033 91809 27818127 17.4059 6.7166 2.48237 304 3.28947 92416 2809464 17.4356 6.7140 2.48237 305 3.27869 93025 28372625 17.4642 6.7313 2.48430 306 3.24797 93630 28052616 17.4929 6.7337 2.48572 307 3.22581 96100 29791000 17.5784 6.7679 2.49136 311 3.24575 95481 29503629 17.5784 6.7679 2.49136 312 3.0513 97344 3005321 17.6355 6.7824 2.494315 313 3.16496 99856 31254757 17.79482 6.8041 <th< th=""><th></th><th></th><th>85204</th><th></th><th></th><th>0.0343</th><th>2.40530</th></th<>			85204			0.0343	2.40530
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						66404	2.40007
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					17.1404		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.38983		25672375		6.6569	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.37838		25934336	17.2047	6.6644	
299 3.34448 89401 26730899 17.2916 6.68809 2.47567 300 3.33333 90000 27000000 17.3205 6.6943 2.47712 301 3.32226 90601 277270901 17.3494 6.7018 2.47857 302 3.31126 91204 27543608 17.3761 6.7002 2.48001 303 3.30033 91809 27618127 17.4059 6.7166 2.48144 304 3.28947 92416 28094464 17.4356 6.7240 2.48287 305 3.27869 93025 28372625 17.4642 6.7387 2.48572 306 3.26797 93596 280534443 17.5140 6.7387 2.48572 306 3.24775 94864 29218112 17.5499 6.7387 2.48572 309 3.23625 95481 29503629 17.5784 6.7000 2.49136 310 3.22581 96100 29791000 17.6068 6.7679 2.49136 311 3.21543 97544 3073138 17.6318 6.7867 2.49276 312 3.20513 97344 30731328 17.6318 6.7867 2.49276 314 3144971 98596 30959144 17.7206 6.7969 2.49633 315 3.17460 99225 31255875 17.7482 6.8041 2.498311 316 3.14455 101761 32461759 17.8885 6.8942 <	297	3.36700		26198073		6.6719	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	298	3.35570		26463592			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	299	3.34448	89401	267 30899	17.2916	0.0809	2.47 507
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3-33333			17.3205	6.6943	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	301	3.32226		27270901		6.7018	2.47857
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	302	3.31126		27 54 3008		0.7092	2.48001
305 3.27869 93025 28372625 17.4642 6.7313 2.48430 306 3.26797 93636 28652616 17.4929 6.7387 2.48572 307 3.25733 94249 2893443 17.5214 6.7460 2.48714 308 3.24675 94864 29218112 17.5744 6.7606 2.48855 309 3.23625 95481 29503629 17.5784 6.7606 2.49136 311 3.21543 96721 30080231 17.6535 6.7752 2.49276 312 3.20513 97344 3071328 17.6038 6.7897 2.49136 313 3.19489 97059 3064297 17.6918 6.7897 2.494933 314 3.18471 98596 30959144 17.77482 6.8041 2.49831 316 3.17460 99225 3125875 17.7482 6.8041 2.49831 317 315457 100489 3185013 17.8045 6.8185 2.50166 318 314405 101761 32461759 17.4825	303	3.30033					2.48144
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	304		92410		17.4350		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3.27869	93025	28372625	17.4642	6.7313	2.48430
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	306	3.26797		28652616		6.7387	2.48572
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	307		94249	28934443			2.48714
	308		94864	29218112		0.7533	2.48855
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	309	3.23025	95481	29503029	17.5784	0.7000	2.48990
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	3.22581		29791000	17.6068	6.7679	2.491 36
314 3.18471 98596 30959144 17.7200 6.7969 2.49693 315 3.17460 99225 31255875 17.7482 6.8041 2.49693 316 3.16456 99856 31554496 17.7764 6.8113 2.49693 317 3.15457 100489 31855013 17.8045 6.8185 2.50106 318 3.14465 101124 32157432 17.8326 6.8256 2.50243 319 3.13480 101761 32401759 17.8606 6.8328 2.50379 320 3.12500 102400 32768000 17.8885 6.8399 2.50515 321 3.11527 103041 33076161 17.9165 6.8470 2.50651 323 3.09598 104329 33698267 17.9722 6.8612 2.50920 324 3.08642 104976 34012224 18.0000 6.8683 2.51155 325 3.07692 105525 3438125 18.0278 6.8753		3.21 543		30080231	17.0352	0.77 52	
314 3.18471 98596 30959144 17.7200 6.7969 2.49693 315 3.17460 99225 31255875 17.7482 6.8041 2.49693 316 3.16456 99856 31554496 17.7764 6.8113 2.49693 317 3.15457 100489 31855013 17.8045 6.8185 2.50106 318 3.14465 101124 32157432 17.8326 6.8256 2.50243 319 3.13480 101761 32401759 17.8606 6.8328 2.50379 320 3.12500 102400 32768000 17.8885 6.8399 2.50515 321 3.11527 103041 33076161 17.9165 6.8470 2.50651 323 3.09598 104329 33698267 17.9722 6.8612 2.50920 324 3.08642 104976 34012224 18.0000 6.8683 2.51155 325 3.07692 105525 3438125 18.0278 6.8753		3.20513	97344	30371328	17.0035		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3.19489	97909				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			20320				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.17460	99225	31255875	17.7482		2.4983I
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	316	3.16456	99856	21554400	17.7764		2.49969
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	317	3-1 54 57	100489	31855013	17.8045		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	318	3.14465		321 57432	17.8320	0.8250	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	319	3.13480	101701				2.50379
322 3.10559 103684 33386248 17.9444 6.8541 2.50786 323 3.09598 104329 33698267 17.9722 6.8612 2.50920 324 3.08642 104976 34012224 18.0000 6.8683 2.51055 325 3.07692 105625 34328125 18.0278 6.8753 2.51188 326 3.06748 106276 34045976 18.0555 6.8824 2.511322 327 3.05810 106929 34965783 18.0831 6.8864 2.51455 328 3.04878 107584 35287552 18.1028 6.8964 2.51587	0.00	3.12500		32768000	17.8885	6.8399	2.50515
323 3.09598 104329 33698267 17.9722 6.8612 2.50920 324 3.08642 104976 34012224 18.0000 6.8683 2.51055 325 3.07692 105625 34328125 18.0278 6.8753 2.51188 326 3.06748 106276 34645976 18.0555 6.8824 2.51322 327 3.05810 106929 34965783 18.0831 6.8964 2.51455 328 3.04878 107584 35287552 18.1108 6.8964 2.51587				33076161		0.0470	2.50051
324 3.08642 104976 34012224 18.0000 6.8683 2.51055 325 3.07692 105625 34328125 18.0278 6.8753 2.51188 326 3.06748 105276 34045976 18.0555 6.8824 2.51322 327 3.05810 106929 34965783 18.0831 6.8894 2.51455 328 3.04878 107584 35287552 18.1108 6.8964 2.51587		3.10559		33300240		68610	2.50700
325 3.07692 105625 34328125 18.0278 6.8753 2.51188 326 3.06748 106276 34045976 18.0555 6.8824 2.51322 327 3.05810 106929 34965783 18.0831 6.8894 2.51455 328 3.04878 107584 35287552 18.1108 6.8964 2.51587	323 324	3.09598		33098207 34012224			2.51055
326 3.06748 106276 34645976 18.0555 6.8824 2.51322 327 3.05810 106929 34965783 18.0831 6.8894 2.51455 328 3.04878 107584 35287552 18.1108 6.8964 2.51587		•				J	•
327 3.05810 106929 34965783 18.0831 6.8894 2.51455 328 3.04878 107584 35287552 18.1108 6.8964 2.51587		3.07092		34320125		6,8904	
328 3.04878 107584 35287552 18.1108 0.8904 2.51587		3.00748			18.0555		
329 3.03951 108241 35611289 18.1384 6.9034 2.51720	327	3.05010					
	220		108241	35611280			
	J-7	J J75.		339	J J	- 2-54	5,

SHITHSONIAN TASLES.

Digitized by GOOgle

1

[]						
я	1000. <u>1</u>	n ²	<i>71</i> 8	√ <i>n</i>	ง้าน	log. <i>n</i>
330	3.03030	108900	35937000	18.1659	6.9104	2.51851
331	3.02115	109561	36264691	18.1934	6.9174	2.51983
332	3.01205	110224	36594368	18.2209	6.9244	2.52114
333	3.00300	110889	36926037	18.2483	6.9313	2.52244
334	2.99401	111556	37259704	18.27 57	6.9382	2.52375
335	2.98507	112225	37 595 37 5	18.3030	6.9451	2.52504
336	2.97619	112896	37933056	18.3303	6.9521	2.52634
337	2.96736	113569	38272753	18.3576	6.9589	2.52763
338	2.95858	II4244	38614472	18.3848	6.9658	2.52892
339	2.94985	114921	38958219	18.4120	6.9727	2.53020
340	2.94118	115600	39304000	18.4391	6.9795	2.53148
341	2.93255 2.92398	116281	39651821	18.4662	6.9864	2.53275
342		116964	40001688	18.4932	6.9932	2.53403
343	2.91 54 5	117649	40353607	18.5203	7.0000	2.53529
344	2.90698	118336	40707584	18.5472	7.0068	2.53656
345	2.89855	119025	41063625	18.5742 18.601 1	7.0136	2.53782
346	2.80017	119716	41421736		7.0203	2.53908
347	2.88184	120409	41781923	18.6279	7.0271	2.54033
348	2.87356	121104 121801	42144192	18.6548	7.0338	2.54158
349	2.86533	121001	42508549	18.6815	7.0406	2.54283
350	2.85714	122500	4287 5000	18.7083	7.0473	2.54407
351	2.84900	123201	4324355I	18.7350	7.0540 7.0607	2.54531
352	2.84091	123904	43614208	18.7617		2.54654
353	2.83286	124609	43986977	18.7883	7.0674	2.54777
354	2.82486	125316	44361864	18.8149	7.0740	2.54900
355	2.81690	126025	44738875	18.8414	7.0807	2.55023
356	2.80899	1 267 36	45118016	18.8680	7.0873	2.55145
357 358	2.80112	127449 128164	45499293	18.8944	7.0940	2.55267
	2.79330 2.78552	128104	45882712 46268279	18.9209 18.9473	7.1006	2.55388
359	2./0552		402002/9		7.1072	2.55509
360	2.77778	129600	46656000	18.9737	7.1138	2.55630
361	2.77008	1 30321	47045881	19.0000	7.1204	2.55751
362	2.76243	131044	47437928	19.0263	7.1269	2.55871
363	2.7 5482	131769	47832147	19.0526	7.1335	2.55991 2.56110
364	2.74725	132496	48228544	19.0788	7.1400	2.50110
365	2.73973	133225	48627125	19.1050	7.1466	2.56229
366	2.73224	133956	49027896	19.1311	7.1531	2.56348
367	2.72480	1 34689	49430863	19.1 572	7.1596	2.56467
368 369	2.71739	135424	49836032	19.1833	7.1661	2.56585
	2.71003	136161	50243409	19.2094	7.1726	2.56703
370	2.70270	136900	50653000	19.2354	7.1791	2.56820
371	2.69542 2.68817	137641	51064811	19.2614	7.1855	2.56937
372		138384	51478848	19.2873	7.1920	2.57054
373	2.68097	1 391 29	51895117	19.31 32	7.1984	2.57171
374	2.67 380	1 39876	52313624	19.3391	7.2048	2.57287
375	2.66667	140625	52734375	19.3649	7.2112	2.57403
376	2.65957	141376	531 57 376	19.3907	7.2177	2.57519
377 378	2.65252	142129 142884	53582633	19.4165	7.2240	2.57634
370	2.64550 2.63852	142004 143641	54010152 54439939	19.4422 19.4679	7.2304 7.2368	2.57749 2.57864
380	2.631 58	144400	54872000	19.4936	7.2432	2.57978
381 382	2.62467 2.61780	145161	55306341 55742968	19.5192	7.2495	2.58092 2.58206
383	2.61097	145924 146689	55742908	19.5448	7.2558 7.2622	2.50200 2.58320
303 384	2.60417	140009	56623104	19.5704 19.5959	7.2685	2.58433
J-7	l,		JJ-04		,	

SMITHSONIAN TABLES.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

	,				_	
#	1000.1	n ²	n ⁸	√ <i>n</i>	√n	log. n
385	2.59740	148225	57066625	19.6214	7.2748	2.58546
386	2.59067	148996	57512456	19.64 69	7.2811	2.58659
387	2.58398	149769	57960603	19.6723	7.2874	2.58771
388	2.57732	1 50 544	58411072	19.6977	7.2936	2.58883
389	2.57069	151321	58863869	19.7231	7.2999	2.58995
390	2.56410	152100	59319000	19.7484	7.3061	2.59106
391	2-557 54	152881	59776471	19-7737	7.3124	2.59218
392	2.55102	153664	60236288	19.7990	7.3186	2.59329
393	2.54453	154449	60698457	19.8242 19.8494	7.3248	2.59439
394	2.53807	155236	61162984	19.0494	7.3310	2.59550
395	2.53165	156025	61629875	19.8746	7.3372	2.59660
396	2.52525 2.51889	156816	62099136	19.8997	7.3434	2.59770
397		1 57 609	62570773	19.9249	7.3490	2.59879
398	2.51256	I 58404	63044792	19-9499	7.3558	2.59988
399	2.50627	159201	63521199	19.9750	7.3619	2.60097
400	2.50000	160000	64000000	20.0000	7.3681	2.60206
401	2.49377	160801	64481201	20.0250	7.3742 7.3803	2.60314
402	2.487 56	161604	64964808	20.0499	7.3803	2.60423
403	2.48139	162409	65450827	20.0749	7.3864	2.60531
404	2.47 52 5	163216	65939264	20.0998	7.3925	2.60638
405	2.46914	164025	66430125	20.1246	7.3986	2.60746
406	2.46305	164836	66923416	20.1494	7.4047	2.60853
407	2.45700	165649	67419143	20.1742	7.4108	2.60959
408	2.45098	166464	67917312	20.1990	7.4169	2.61066
409	² -44499	167281	68417929	20.2237	7-4229	2.61172
410	2.43902	168100	68921000	20.2485	7.4290	2.61 278
411	2.43309	168921	69426531	20.2731	7.4350	2.61 384
412	2.42718	169744	69934528	20.2978	7.4410	2.61490
413	2.42131	170569	70444997	20.3224	7.4470	2.61 595
414	2.41 546	171396	70957944	20.3470	7.4530	2.61700
415	2.40964	172225	71473375	20.3715	7.4590	2.61805
416	2.40385 2.39808	173056	71991296	20.3961	7.4650	2.61909
417	2.39808	173889	72511713	20.4206	7.4710	2.62014
418	2.39234 2.38663	174724	73034632	20.4450	7-4770	2.62118
419	2.38003	175561	73560059	20.4695	7.4829	2.62221
420	2.38095	176400	74088000	20.4939	7.4889	2.62325
421	2.37 530	177241	74618461	20.5183	7.4948	2.62428
422	2.36967	178084	7 51 51 448 7 5686967	20.5426	7.5007	2.62531
423	2.36407	178929		20.5670	7.5067	2.62634
424	2.35849	179776	76225024	20.5913	7.5126	2.62737
425	2.35294	180625	7 676 5625	20.6155	7.5185	2.62839
426	2.34742	181476	77308776	20.6398	7.5244	2.62941
427	2.34192	182329	77854483	20.6640	7.5302	2.63043
428	2.33645	183184	784027 52	20.6882	7.5361	2.63144
429	2.33100	184041	78953589	20.7123	7.5420	2.63246
430	2.32558	184900	79507000	20.7364	7.5478	2.63347
43I	2.32019	185761	80062991	20.7605	7.5537	2.03448
432	2.31481	186624	80621568	20.7846	7.5595	2.63548
433 434	2.30947 2.30415	187489 188356	81182737 81746504	20.8087 20.8327	7.5654 7.5712	2.63649 2.63749
	•••	-		•••	/•3/**	
435	2.29885	189225	82312875 82881856	20.8567 20.8806	7.5770 7.5828	2.63849
436	2.29358 2.28833	190096 190969	83453453	20.0000 20.9045	7.5886	2.63949 2.64048
437 438	2.28311	190909	84027672	20.9284	7.5944	2.64147
439	2.27790	192721	84604519	20.9523	7.6001	2.64246
1.57					,	
L		·	·			

SMITHSONIAN TABLES.

Digitized by GOOGLC

_						
n	1000. ¹	n ²	n²	√n	ţ.	log. <i>n</i>
440	2.27273	193600	85184000	20.9762	7.6059	2.64345
441	2.267 57	194481	85766121	21.0000	7.6117	2.64444
441	2.26244	195364	86350888	21.0238	7.6174	2.64542
		195304	86938307	21.0476	7.6232	2.64640
443	2.25734	190249	87 528 384	21.04/0	7.6289	2.64738
444	2.25225	19/130	0/ 320 304	21.0/15	7.0209	
445	2.24719	198025	88121125	21.0950	7.6346	2.64836
446	2.24215	108010	88716536	21.1187	7.6403	2.64933
447 448	2.23714	199809	89314623	21.1424	7.6460	2.6503I
448	2.23214	200704	8991 5392 90518849	21.1660	7.6517	2.65128
449	2.22717	201601	90518849	21.1896	7.6574	2.65225
450	2.22222	202500	91125000	21.21 32	7.6631	2.65321
451			91733851	21.2368	7.6688	2.65418
451 452	2.21730 2.21239	20340I 204304	92345408	21.2300	7.6744	2.03410
			92343400	21.2838	7.680I	2.65514 2.65610
453	2.207 51 2.20264	205209 206116	92959677 93576664		7.6857	2.65706
454	2.20204	200110		21.3073	7.005/	2.05/00
455	2.19780	207025	94196375	21.3307	7.6914	2.65801
456	2.19298	207936 208849	94818816	21.3542	7.6970	2.65896
457	2.18818	208849	95443993	21.3776	7.7026	2.65992
458	2.18341	209764	96071912	21.4009	7.7082	2.66087
459	2.17865	210681	96702579	21.4243	7.7138	2.66181
460	a 15001				_	
100	2.17391	211600	97336000	21.4476	7.7194	2.66276
461	2.16920	212521	97972181	21.4709	7.7250	2.66370
462	2.16450	21 3444	98611128	21.4942	7.7306	2.66464
463	2.15983	214369	99252847	21.5174	7.7362	2.66558
464	2.15517	21 5296	99897344	21.5407	7.7418	2.66652
465	2.1 5054	216225	100544625	21.5639	7.7473	2.66745
466	2.14592	217156	101194696	21.5870	7.7529	2.66745 2.66839
A67	2.14133	218089	101847563	21.6102	7.7584	2.66932
468	2.13675	219024	102503232	21.6333	7.7639	2.67025
469	2.1 3220	219961	103161709	21.6564	7.7695	2.67117
	-					
470	2.12766	220000	103823000	21.6795	7.7750	2.67210
471	2.12314	221841	104487111	21.7025	7.7805	2.67302
472	2.11864	222784	105154048	21.7256	7.7860	2.67394
473	2.11416	223729	105823817	21.7486	7.7915	2.67486
474	2.10970	224677	106496424	21.7715	7.7970	2.67 578
475	2.10526	225625	107171875	21.7945	7.8025	2.67669
476	2.10084	226576	107850176	21.8174	7.8070	2.67761
477	2.09644	227 529	108531333	21.8403	7.8134	2.67852
478	2.09205	228484	10921 5352	21.8632	7.8134 7.8188	2.67043
479	2.08768	229441	109902239	21.8861	7.8243	2.68034
480	2.08333	230400	110592000	21.9089	7.8297	2.68124
481	2.07900	231361	111284641	21.9317	7.8352	2.68215
482	2.07469	232324	111980168	21.9545	7.8400	2.68305
483	2.07039	233289	112678587	21.9773	7.8460	2.68305
484	2.06612	234256	113379904	22.0000	7.8514	2.68485
485	2.06186	235225	114084125	22.0227	7.8568	2.68574
486	2.05761	236196	114791256	22.0454	7.8622	2.68664
487	2.05339	237169	115501303	22.0681	7.8676	2.687 53
488	2.04918	238144	116214272	22.0907	7.8730	2.68842
489	2.04499	239121	116930169	22.1133	7.8784	2.68931
400	a 0.08c					
490	2.04082 2.03666	240100 241081	117649000	22.1359	7.8837	2.69020
491			118370771	22.1 585	7.8891	2.69108
492	2.03252 2.02840	242064	119095488	22.1811	7.8944	2.69197
493	2.02420	243049 244036	119823157	22.2036	7.8998	2.69285
494	2.02429		120553784	22.2261	7.9051	2.69373
		<u> </u>	<u> </u>			I

SMITHSONIAN TABLES.

*	1000.1	n²	<i>n</i> ⁸	√n.	¥n.	log. #
405			121287375			2.69461
495 496	2.02020 2.01613	245025 246016	12120/3/5	22.2486 22.2711	7.9105 7.9158	2.60548
	2.01207	247009	122763473	22.2935	7.9211	2.69548 2.69636
497 498	2.00803	248004	123505992	22.31 59	7.9264	2.69723
499	2.00401	249001	124251499	22.3383	7.9317	2.69810
500	2.00000	250000	125000000	22.3607	7.9370	2.69897
501	1.99601	251001	125751501	22.3830	7.9420	2.69984
502	1.99203	252004	126506008	22.4054	7.9476	2.70070
503	1.99203 1.98807	253009	127263527	22.4277	7.9528	2.70157
504	1.98413	254016	128024064	22.4499	7.9581	2.70243
505	1.98020	255025	128787625	22.4722	7.9634	2.70329
506	1.97628	256036	129554216	22.4944	7.9686	2.70415
507	1.97239	257049	130323843	22.5167	7.9739	2.70501
508	1.96850	258064	131096512	22.5389	7.9791	2.70586
509	1.96464	259081	131872229	22.5010	7.9843	2.70672
510	1.96078	260100	132651000	22.5832	7.9896	2.707 57
511	1.95695	261121	133432831	22.6053	7.9948 8.0000	2.70842
512	1.95312	262144	134217728	22.6274		2.70927
513	1.94932	263169	135005697	22.6495 22.6716	8.0052 8.0104	2.71012
514	1.94553	264196	135796744		0.0104	2.71096
515	1.94175	265225	1 36 59087 5 1 37 388096	22.6936	8.0156	2.71181
516	1.93798	266256	1 37 388096	22.7156	8.0208	2.71265
517 518	1.93424	267289	138188413	22.7376	8.0260	2.71349
518	1.93050	268324	138991832	22.7596 22.7816	8.0311	2.71433
519	1.92678	269361	1 397 98359	22.7816	8.0363	2.71517
520	1.92308	270400	140608000	22.8035	8.0415	2.71600
521	1.91939	271441	141420761	22.8254	8.0466	2.71684
522	1.91 571	272484	142236648	22.8473	8.0517	2.71767
523	1.91205	273529	143055667	22.8692	8.0569	2.71850
524	1.90840	274576	143877824	22.8910	8.0620	2.71933
525	1.90476	27 562 5	144703125	22.91 29	8.0671	2.72016
526	1.90114	276676	145531576	22.9347	8.0723	2.72099
527	1.89753	277729	140303183	22.9565	8.0774	2.72181
528	1.89394	278784	147197952	22.9783	8.0825	2.72263
529	1.89036	279841	148035889	23.0000	8.0876	2.72346
530	1.88679	280900	148877000	23.0217	8.0927	2.72428
531	1.88324	281001	149721291	23.0434	8.0978	2.72509
532	1.87970	283024	1 50 568768	23.0651	8.1028	2.72591
533	1.87617	284089	151419437	23.0868	8.1079	2.72673
534	1.87266	285156	1 52 27 3 304	23.1084	8.1130	2.72754
535	1.86916	286225	1 531 3037 5	23.1301	8.1180	2.72835
536	1.86567	287296	153990656	23.1517	8.1231	2.72916
537 538	1.86220	288360	154854153	23.1733	8.1281	2.72997
538	1.85874	289444	155720872	23.1948	8.1332	2.7 3078
539	1.85529	290521	156590819	23.2164	8.1382	2.73159
540	1.85185	291600	1 57464000	23.2379	8.1433	2.73239
54I	1.84843	292681	158340421	23.2504	8.1483	2.73320
542	1.84502	293764	1 59220088	23.2809	8.1533 8.1583	2.73400
543 544	1.84162 1.83824	294849 295936	160103007 160989184	23.3024 23.32 3 8	8.1583	2.73480 2.73560
544	• •	~2320				
545	1.83486	297025	161878625	23.3452	8.1683	2.73640
546	1.831 50	298116	162771336	23.3666 23.3880	8.1733 8.1783	2.73719
547	1.82815 1.82482	299209	163667323 164566592	23.3000 23.4094	8.1833	2.73799 2.73878
548	1.82149	300304 301401	165469149	23.4307	8.1882	2.73957
549	100149	301401		-0-40*/		

SMITHSONIAN TABLES.

Digitized by GOOGLE

TABLE 3.

١

1

n $1000\frac{1}{2}$ n^2 n^4 \sqrt{n} \sqrt{n} \sqrt{n} \sqrt{n} $\log_n n$ 5501.316183025001661750003245218.10322.740765511.3179304704168196083240478.20312.741745531.803230500170031464235778.21302.743315551.507803080251700314642357978.22202.743515551.7935331024917280663323.6038.2772.745635551.7953131134417467687923.64328.23772.747415601.785713145211765564123.66438.24262.748195551.775333164211756560023.66438.24262.748195561.77630316590179651600023.66438.24262.748195561.7763031659017965143323.70658.27142.752355661.7667633.64441775433823.76978.26702.752355651.7660131922518056113323.76978.27602.752355651.7667633.44591832442323.78548.21352.75515701.7543733.26441832641223.79678.27622.752575711.75439346001831320023.85378.26552.75515731.7947033.26441831930023.85378.26552.75675741.744263		,			<u> </u>		
131:168 jogón 107:31:15 23-324 8:1082 27.4175 552 1.81:160 jogóno 168196668 23.4047 8.2011 2.74134 553 1.80:80 jogóno 169113377 23.5160 8.2011 2.74331 555 1.80:80 jogóno 170031404 23.5172 8.2180 2.74397 557 1.79836 jogóno 17876016 23.5024 8.2280 2.74397 559 1.79836 jogóno 17876016 23.6628 8.2377 2.74631 550 1.78573 31.364 174050679 23.4633 8.2425 2.74895 560 1.78573 31.4221 17501600 23.6643 8.2425 2.74895 563 1.76091 319225 180.362125 2.37058 8.2702 2.7525 564 1.77393 314244 1734328 2.37048 8.2716 2.75252 565 1.76091 319225 180.362125 2.37097 8.2713 2.	*	1000.1	n ²	# ⁸	√n	∛# 	log. n
553 1.81190 304704 168169608 23.4947 8.2031 2.74194 553 1.80532 305809 170031464 23.5372 8.2130 2.74331 555 1.80533 305805 170031464 23.5372 8.2180 2.74331 555 1.70533 310240 171879616 23.5797 8.2280 2.74450 556 1.70533 310240 172806603 23.6008 8.278 2.74653 559 1.70531 314241 1736716500 23.6644 8.2426 2.74896 561 1.78533 314721 170558491 23.6644 8.2475 2.74896 562 1.77930 316960 17744514 23.7497 8.2573 2.79031 564 1.777305 316921 17940514 23.7464 2.27497 8.2573 2.79031 565 1.76091 319225 180362125 2.37568 8.2710 2.7525 566 1.76057 3223450 18132446 2.3			302500	166375000	23.4521	8.1932	2.74036
533 1.86532 jos809 169113377 23.5372 8.3081 2.74331 555 1.80505 jos0016 170031464 23.5372 8.3130 2.74331 555 1.79856 jos025 171879016 23.5544 8.1180 2.74433 557 1.79533 j10240 17.805603 8.2220 8.327 2.74663 559 1.79533 j11344 17.470679 23.6432 8.237 2.74663 559 1.78591 j13600 17.561600 23.6643 8.2426 2.74819 560 1.78571 j15644 17750382 23.7055 8.3237 2.74819 563 1.77920 j15644 17750338 23.77657 8.3237 2.75051 566 1.76078 j323056 119406144 23.7697 8.3710 2.75205 566 1.76078 j32454 18132404 23.9588 8.8766 2.77531 577 1.76367 j32454 18324042 23.9588 8.8710 2.77535 566 1.76078 j32474 18312407				167284151		8.1982	2.74115
554 1.80505 306916 170031464 23,5372 8.130 2.74351 555 1.70856 300135 17185761 23,5574 8.180 2.74429 557 1.708513 310249 171850603 23,5078 8.2778 2.74450 559 1.708513 3112481 173076879 23,6432 8.2377 2.74663 559 1.78591 314281 174076879 23,6432 8.2377 2.74671 561 1.78533 314721 17055841 23,6763 8.2426 2.74896 571 1.77533 314921 17051841 23,684 8.4773 2.74974 561 1.77693 316069 17940514 23,7476 8.573 2.74951 565 1.76991 319225 180361125 23,7697 8.2670 2.7525 566 1.76951 323,50 18132446 2.77908 8.2716 2.7525 567 1.7537 323764 18224423 2.34763 8.2766		1.81159	304704				
555 I. & Bot Bo 1.798 56 300 25 301 20 1700 5187 5 1718 59616 23 5584 23 5079 8.2200 8.2270 2.744290 8.2200 557 1.79533 31 1040 173 80601 31 2481 1748 076879 23 5620 8.2377 2.74450 559 1.78511 31 2481 1746 76879 23 6634 8.2377 2.74631 560 1.78513 31 600 1765 58481 23 6654 8.2475 2.74890 561 1.78253 31 6721 1755 68481 23 6705 8.5344 2.74491 563 1.77930 316944 17754038 23 7705 8.5374 2.74074 564 1.77930 316925 1760378 2.37507 8.2670 2.7525 565 1.76078 3233761 183 22440 23 7005 8.2710 2.7525 565 1.76074 3234761 183 22440 23 7084 8.2716 2.7587 570 1.75447 323761 183 22406 2.37697 8.270 2.77587 571 1.76477<			305809				
556 17,987616 23,2707 8,2220 27,426 557 17,9833 310249 17,826693 23,603 8,227 27,426 559 17,7211 311360 17,871411 23,6020 8,227 27,426 559 17,8531 311360 17,961600 23,6432 8,227 27,4463 560 17,8531 314721 17055481 23,6643 8,2426 2.74876 561 1.7933 316421 17750438 23,7055 8,2524 2.74976 563 1.79305 316960 179400144 23,7097 8,2670 2.74936 564 1.76076 320350 181321490 23,7098 8,2710 2.75282 565 1.76036 322424 18325042 2.3818 8,2766 2.75338 566 1.75439 324900 185193000 2.8747 8,2913 2.7567 571 1.75439 324900 185193000 2.3874 8,3010 2.75697 <	554	1.80505	300910	170031404	23.5372	8.2130	2.74351
557 1.79533 310240 172800503 236008 8.2278 2.74586 559 1.79211 311364 17374112 236030 8.2377 2.74741 560 1.78531 314721 170558481 236632 8.2475 2.74896 561 1.78533 314721 170558481 236854 8.2475 2.74896 563 1.77930 315944 17750128 2.37057 8.2573 2.75051 564 1.77020 315950 1746014 2.37497 8.2670 2.75255 565 1.76591 319225 180362125 2.37697 8.2670 2.75255 566 1.76596 322624 18321426 2.37538 8.2710 2.75255 567 1.76597 321459 1828423 2.3818 8.2768 2.75358 570 1.75479 324001 18132042 2.3913 2.8537 8.2865 2.7543 571 1.75479 324001 18149248 2.39165 8.2913 2.75697 573 1.74523 327164 187149248				170953875			
558 1.72311 311364 173741112 236230 8.2327 2.7463 559 1.78571 312481 174076879 236433 8.2377 2.74741 560 1.78253 314721 170558481 236834 8.2475 2.74819 561 1.78253 314721 170554387 23705 8.2524 2.74974 563 1.77930 316960 17744137 2.7705 8.2573 2.75951 564 1.77305 316960 179451347 2.37697 8.2670 2.75305 566 1.76076 320356 181321402 2.37698 8.2710 2.75325 567 1.76367 3224900 185193000 2.38747 8.2672 2.75357 570 1.75439 324900 185193000 2.38747 8.2913 2.7557 574 1.74313 330641 187190002 2.3874 8.3050 2.75740 574 1.74313 330641 1871920033 2.40928 8.3050 <th>550</th> <th></th> <th></th> <th>171879610</th> <th>23.5797</th> <th></th> <th>2.74507</th>	550			171879610	23.5797		2.74507
559 1.78891 312481 174070879 236432 8.2377 2.74741 560 1.78571 313600 17561600 236643 8.2426 2.74819 561 1.78573 314721 17655481 236643 8.2426 2.74819 563 1.77030 316969 174453347 2.37276 8.2524 2.74974 564 1.77030 316969 174453347 2.37276 8.2570 2.75253 565 1.76591 319225 180362125 2.37697 8.2670 2.75285 566 1.76578 320376 18324063 2.3818 8.2768 2.75338 570 1.75439 324900 181193000 2.38747 8.2913 2.7587 571 1.75439 324900 181193002 2.3874 8.2912 2.7587 574 1.74216 329476 189119224 2.39583 8.3107 2.75891 575 1.73913 330643 19910033 2.40028 8.3351	557				23.0008	8.2278	2.74580
560 17,871 313600 17,561600 23,6643 8,2426 2.74819 561 1.78253 314721 170558481 23,6854 8,2475 2.74876 562 1.77930 315844 177504328 23,7055 8,2573 2.75051 564 1.77305 316960 179405144 23,7497 8,2670 2.75282 565 1.76071 321480 18321406 23,7607 8,2670 2.75282 566 1.76676 321480 18321406 23,7607 8,2670 2.75282 567 1.76676 321480 18321402 23,818 8,2768 2.75351 568 1.76076 321480 18312900 23,8747 8,2913 2.7557 577 1.75439 324900 185193000 23,8747 8,3010 2.75897 573 1.7420 328129 18813217 23,974 8,3059 2.75647 574 1.73013 330625 19010375 23,9792 8,3155	550	1.79211				8.2327	
501 1.78323 314721 17655481 23.6854 8.4753 2.74896 562 1.77930 315844 1775038 23.7056 8.2524 2.74974 563 1.77520 316969 178453547 23.7276 8.2573 2.75051 564 1.770305 316969 179400144 23.7487 8.2671 2.75285 565 1.76076 320356 181321490 23.7908 8.2710 2.75285 566 1.76676 320356 181324405 23.7908 8.2710 2.75285 567 1.76567 322624 183284263 23.8118 8.2763 2.75357 570 1.75747 323761 182284263 23.8747 8.2913 2.75587 571 1.75433 324900 185193000 23.8747 8.2913 2.75587 572 1.794253 327144 187149248 23.9165 8.3010 2.75740 573 1.74520 328329 188132517 23.9792 8.3155 2.75667 575 1.73913 330625 19010375 23.9792 8.3155 2.75647 576 1.73013 332044 193100252 2.4016 8.3300 2.76042 577 1.73013 330625 19010375 2.30792 8.3155 2.75647 578 1.7913 330625 19010375 2.30792 8.3155 2.75647 578 1.7913 330645 190102941 2.4028 8.3320	559		312401	174070879	23.0432	0.2377	2.74741
502 1.77936 315544 1.77504328 23.7055 8.3254 2.74974 503 1.77505 316096 179455147 23.7276 8.2773 2.75051 504 1.77505 318096 179406144 23.7487 8.2670 2.75262 505 1.76578 320376 18321496 23.7908 8.2710 2.75285 506 1.76678 320376 18321496 23.7908 8.2710 2.75285 507 1.7657 321499 1822423 23.8118 8.2716 2.75378 508 1.75747 323761 184220009 23.8537 8.2865 2.7557 571 1.75433 324900 185193000 23.8747 8.2913 2.75587 571 1.74230 324900 185193000 23.8747 8.2913 2.7557 571 1.74216 329476 189119224 23.9758 8.3002 2.7587 573 1.74216 329476 189119224 23.9938 8.3107 2.75891 575 1.73013 330625 19010375 2.39792 8.3155 2.75647 576 1.72414 336400 195112003 24.0028 8.3306 2.76423 580 1.72414 336400 195112002 24.0832 8.3306 2.76433 581 1.72173 332897 199179704 24.1247 8.3343 2.76641 582 1.72414 336400 199170704 24.1247 8.3396		1.78571	313600	175616000	23.6643		2.74819
553 564 1.77502 1.77305 316969 1.79406144 23.7276 23.7276 8.273 8.2621 2.75051 2.75128 565 566 1.76691 1.76678 319225 1.76597 18.036125 23.7008 23.7908 8.2670 8.2710 $2.752822.752552.753555665675761.76676322624183242631832426323.81188.276978.287102.752822.753855695701.7574732376118228426318422000923.832823.83288.28168.29132.755875705715721.754331.7425032832932832918519300023.83378.30102.758152.755778.30102.757475735745745745745741.742163306253306251.730113317761.9110237624.0023324.00268.32032.756422.756875761.730113317761.9110237624.0023324.00268.32032.756422.766422.756773.2766422.766335805795795791.727123352411.721123352411.9110237624.0023324.00268.32302.766422.766435855941.722123392891.9210033224.202488.33482.766432.767632.7664158655965975941.721273392891.9210023322.4202482.4207488.33482.766432.767632.7767633.324442.7648322.7664458755965975975911.722123392891.921002322.220076422.2420748.334622.776763$	561	1.78253	314721	176558481	23.6854	8.2475	2.74896
564 1.77305 318096 179406144 23,7487 8.2621 2.75128 565 1.76091 319225 180362125 23,7007 8.2670 2.75205 566 1.76078 322360 181321496 23,7008 8.2710 2.75282 567 1.76367 322424 183250432 23,8118 8.2768 2.75353 568 1.76056 322402 18132000 23,8747 8.2913 2.7587 570 1.7547 323761 18120000 23,8747 8.2913 2.7587 571 1.7433 326641 18119000 23,8747 8.3010 2.75867 572 1.74823 327184 187149248 23,9075 8.3010 2.75805 574 1.74216 329476 189119224 23,9573 8.3157 2.75067 575 1.73013 330625 190109375 23,9792 8.3155 2.7607 576 1.73011 331776 191022941 24-0208 8.3325 <th>562</th> <th></th> <th></th> <th>177 504 328</th> <th></th> <th>8.2524</th> <th>2.74974</th>	562			177 504 328		8.2524	2.74974
5651.7601312251803612523.76978.26702.752055661.7607632233618132149623.79088.27192.75355671.76367322348918228425323.81288.27652.75355681.7557432376118422000923.85378.28652.755115701.7543932490018519300023.87478.29132.755875711.7513132604118016941123.89568.29622.75645721.7482032832918813251723.91658.30102.758975741.7421632947618911922423.99538.31072.759615751.730133306251901093752.397928.31552.750675761.7301333029119210003324.00088.32312.760425771.73103340841931005224.04168.33092.761185781.73012334641931005224.04168.33052.760435781.72117335611991720424.05328.33962.765435801.7241433640019511200024.40828.33572.760415811.70483433052021020524.408328.33962.766415821.70343344569202200324.248328.33962.766415831.7004034222520200162524.48778.37772.769385841.7034834436920377000 </th <th>563</th> <th></th> <th></th> <th></th> <th></th> <th>8.2573</th> <th></th>	563					8.2573	
566 1.76678 320356 181321495 $23,7908$ 8.2719 2.75382 567 1.76367 321489 18226432 $23,8118$ 8.2768 2.75358 568 1.76056 322624 183250432 $23,8328$ 8.2816 2.75351 570 1.75439 3224900 185193000 $23,8747$ 8.2912 2.75687 571 1.75313 324900 185193000 $23,8747$ 8.2902 2.7564 572 1.74825 327184 187149248 23.9165 8.3010 2.75897 574 1.74513 329476 189119224 23.9573 8.3157 2.75951 574 1.73913 330625 199109375 23.9792 8.3155 2.75047 575 1.73011 331776 191102976 24.0000 8.3203 2.76042 576 1.73611 331776 19100552 24.0026 8.33231 2.76183 578 1.72117 335241 194104539 24.0244 8.3348 2.76268 580 1.72414 336400 195112000 24.0832 8.3396 2.76343 581 1.72173 337561 199179704 24.1247 8.3491 2.76443 582 1.70240 344225 200201625 24.4814 8.3539 2.76343 581 1.70346 343396 109179764 24.1247 8.3431 2.76441 582 1.70246 344396 2.77676 2334682 2.776967 </th <th>504</th> <th>1.77305</th> <th>318096</th> <th>179406144</th> <th>23.7487</th> <th>8.2621</th> <th>2.75128</th>	504	1.77305	318096	179406144	23.7487	8.2621	2.75128
566 1.76678 320356 181321495 $23,7908$ 8.2719 2.75382 567 1.76367 321489 18226432 $23,8118$ 8.2768 2.75358 568 1.76056 322624 183250432 $23,8328$ 8.2816 2.75351 570 1.75439 3224900 185193000 $23,8747$ 8.2912 2.75687 571 1.75313 324900 185193000 $23,8747$ 8.2902 2.7564 572 1.74825 327184 187149248 23.9165 8.3010 2.75897 574 1.74513 329476 189119224 23.9573 8.3157 2.75951 574 1.73913 330625 199109375 23.9792 8.3155 2.75047 575 1.73011 331776 191102976 24.0000 8.3203 2.76042 576 1.73611 331776 19100552 24.0026 8.33231 2.76183 578 1.72117 335241 194104539 24.0244 8.3348 2.76268 580 1.72414 336400 195112000 24.0832 8.3396 2.76343 581 1.72173 337561 199179704 24.1247 8.3491 2.76443 582 1.70240 344225 200201625 24.4814 8.3539 2.76343 581 1.70346 343396 109179764 24.1247 8.3431 2.76441 582 1.70246 344396 2.77676 2334682 2.776967 </th <th></th> <th>1.76991</th> <th>319225</th> <th>180362125</th> <th>23.7697</th> <th>8.2670</th> <th>2.7 5205</th>		1.76991	319225	180362125	23.7697	8.2670	2.7 5205
568 1.76056 322624 183250432 238328 8.2816 2.75435 570 1.75747 323761 18422000 23.8537 8.2865 2.75531 570 1.75439 324900 185193000 23.8747 8.2913 2.75587 571 1.74513 33001 18519300 23.8747 8.3052 2.75597 572 1.74825 327184 187149248 23.9165 8.3010 2.7597 574 1.74210 329476 189119224 23.9933 8.3155 2.75957 575 1.73913 330625 199102375 23.9792 8.3155 2.75957 576 1.7311 331776 191102376 24.0028 8.3300 2.76133 578 1.7310 332929 192100033 24.0284 8.3396 2.76133 579 1.72112 335241 194104539 24.4024 8.3396 2.76433 581 1.7217 337561 196122941 24.1039 8.3443 <th>566</th> <th>1.76678</th> <th>320356</th> <th>181321406</th> <th>23.7908</th> <th>8.2719</th> <th>2.7 5282</th>	566	1.76678	320356	181321406	23.7908	8.2719	2.7 5282
568 1.76056 322624 183250432 238328 8.2816 2.75435 570 1.75747 323761 18422000 23.8537 8.2865 2.75531 570 1.75439 324900 185193000 23.8747 8.2913 2.75587 571 1.74513 33001 18519300 23.8747 8.3052 2.75597 572 1.74825 327184 187149248 23.9165 8.3010 2.7597 574 1.74210 329476 189119224 23.9933 8.3155 2.75957 575 1.73913 330625 199102375 23.9792 8.3155 2.75957 576 1.7311 331776 191102376 24.0028 8.3300 2.76133 578 1.7310 332929 192100033 24.028 8.3306 2.76133 579 1.72112 335241 194104539 24.4024 8.3396 2.76443 581 1.7217 337561 196122941 24.1039 8.3443 <th>567</th> <th>1.76367</th> <th>321489</th> <th>182284263</th> <th>23.8118</th> <th></th> <th></th>	567	1.76367	321489	182284263	23.8118		
569 1.75747 323761 184220009 23.8537 8.2865 2.75511 570 1.75131 326011 185193000 23.8747 8.2913 2.75587 571 1.75131 326011 186169411 23.8956 8.3962 2.7564 573 1.74520 328329 188132517 23.9155 8.3059 2.75891 574 1.74510 330625 190109375 23.9792 8.3155 2.75064 576 1.73611 330625 190109375 24.0000 8.3203 2.76042 577 1.7310 332929 192100033 24.000 8.3300 2.76133 578 1.73010 33464 193100552 24.0416 8.3306 2.76133 580 1.72414 33640 195112000 24.0832 8.3396 2.7642 581 1.7127 337561 196122941 24.1034 8.3443 2.76643 582 1.71821 338724 197137368 24.1247 8.3491 </th <th>568</th> <td>1.76056</td> <td>322624</td> <td>183250432</td> <td>23.8328</td> <td></td> <td></td>	568	1.76056	322624	183250432	23.8328		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	569			184220009	23.8537	8.2865	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	570	1.75439	324900	185193000	23.8747	8.291 3	2.75587
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	571	1.75131			23.8956	8.2962	2.7 5664
573 1.74520 328329 188132517 23.9374 8.0059 2.75815 574 1.74216 329476 189119224 23.9983 8.3107 2.75815 575 1.73913 330625 190102375 23.9792 8.3155 2.75967 576 1.73611 331776 191102976 24.0006 8.3231 2.76042 577 1.73310 332929 192100352 24.0028 8.3251 2.76042 578 1.73010 334084 193100552 24.0416 8.3300 2.76133 579 1.72712 335241 194104539 24.0624 8.3348 2.76433 580 1.72414 336400 195112000 24.0832 8.3396 2.76343 581 1.72117 337561 109122941 24.1039 8.3443 2.76413 582 1.71233 341056 199176704 24.1661 8.3597 2.76641 585 1.70940 342225 200201625 24.1868 8.3634 2.76716 586 1.70648 343396 201230056 24.2074 8.3682 2.76790 587 1.70358 344569 20225003 24.2287 8.3777 2.76864 588 1.70048 343794 20329772 24.2487 8.3777 2.76864 589 1.69779 346921 204336469 24.2693 8.3872 2.77012 590 1.69492 348100 205379000 24.2899 8.3872 <th></th> <th>1.74825</th> <th>327184</th> <th></th> <th></th> <th>8.3010</th> <th></th>		1.74825	327184			8.3010	
574 1.74216 329476 189119224 23.9583 8.3107 2.75891 575 1.73913 330625 190109375 23.9792 8.3155 2.75967 576 1.73611 331776 191102976 24.0000 8.3203 2.76642 577 1.73310 332929 192100033 24.0208 8.3251 2.76118 578 1.73010 334084 193100552 24.0416 8.3300 2.76193 579 1.72712 335241 194104539 24.0624 8.3348 2.76638 580 1.72414 336400 105112000 24.0832 8.3396 2.76343 581 1.72117 337561 196122941 24.1039 8.3443 2.76492 583 1.71821 338724 197137368 24.1247 8.3392 2.76547 584 1.71233 341056 199170704 24.1661 8.3537 2.76641 585 1.70040 342225 200201625 24.1868 8.3634 2.76790 586 1.700468 343306 201230056 24.2074 8.3682 2.77616 586 1.70046 343396 201230056 24.2074 8.3682 2.776790 587 1.70368 344359 202202033 2.42281 8.3737 2.76936 588 1.70056 34459 202327472 24.2879 8.3777 2.76936 590 1.69492 348100 205379000 <th></th> <th></th> <th>328329</th> <th>1881 32 517</th> <th></th> <th>8.3059</th> <th></th>			328329	1881 32 517		8.3059	
576 17,3611 331776 191102976 24,0000 83233 2.76042 577 1.73310 332929 192100033 24,0208 8,3251 2.76118 578 1.73010 334084 193100552 24,0416 8,3300 2.76193 579 1.727112 335241 194104539 24,0624 8,3346 2.76268 580 1.72414 336400 195112000 24,0832 8,3396 2.76433 581 1.72117 337561 196122941 24,1039 8,3443 2.76492 583 1.71527 339889 198155287 24,1454 8,3597 2.76641 584 1.71233 341056 199170704 24,1661 8,3587 2.76641 585 1.70040 342225 200201625 24,1868 8,3682 2.76796 586 1.70548 343396 201230056 24,2074 8,3682 2.76938 587 1.70358 344594 203297472 24,2487 8,3777 2.76938 588 1.699779 346921 204336469			329476	1891 19224		8.3107	2.7 589 ĭ
576 17,3611 331776 191102976 24,0000 83233 2.76042 577 1.73310 332929 192100033 24,0208 8,3251 2.76118 578 1.73010 334084 193100552 24,0416 8,3300 2.76193 579 1.727112 335241 194104539 24,0624 8,3346 2.76268 580 1.72414 336400 195112000 24,0832 8,3396 2.76433 581 1.72117 337561 196122941 24,1039 8,3443 2.76492 583 1.71527 339889 198155287 24,1454 8,3597 2.76641 584 1.71233 341056 199170704 24,1661 8,3587 2.76641 585 1.70040 342225 200201625 24,1868 8,3682 2.76796 586 1.70548 343396 201230056 24,2074 8,3682 2.76938 587 1.70358 344594 203297472 24,2487 8,3777 2.76938 588 1.699779 346921 204336469	575	1.73013	330625	190100375	23.0702	8.31 55	2.75067
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			331776			8.3203	2.76042
5781.7301033408419310055224.04168.33002.76193 579 1.7271233524119410453924.06248.33482.76268 580 1.7241433640019511200024.08328.33962.76343 581 1.7211733756119612294124.10398.34432.76418 582 1.7182133872419713736824.12478.34912.76567 584 1.712333405619917670424.16618.35872.765641 585 1.7094034222520020162524.18688.36342.76716 586 1.706483433962012305624.20748.36822.76938 587 1.7035834456920226200324.22818.37302.76864 586 1.7064834574420329747224.24878.37772.76938 589 1.6977934092120433646924.20938.38252.77012 590 1.6949234810020537900024.28998.38722.77085 591 1.6920534928120642507124.31058.39192.77139 592 1.6863435164920958458724.33118.30672.77232 593 1.6866735402521064487524.39268.41082.77452 594 1.6835035836121170873624.41318.41552.77557 595 1.666673500002160000024.49498.43432.77815 596 <th>577</th> <th></th> <th>332020</th> <th></th> <th></th> <th>8.3251</th> <th></th>	577		332020			8.3251	
579 1.72712 335241 194104539 24.0624 8.3348 2.76268 580 1.72414 336400 195112000 24.0832 8.3396 2.76343 581 1.72117 337561 196122941 24.1039 8.3443 2.76418 582 1.71217 3398724 197137368 24.1247 8.3491 2.76492 583 1.71527 339889 19815287 24.1454 8.3539 2.76567 584 1.71233 341056 199170704 24.1661 8.3587 2.765641 585 1.70040 342225 200201625 24.1868 8.3614 2.76700 587 1.70358 344569 202262003 24.2281 8.3777 2.76864 588 1.70068 345744 203297472 24.2487 8.3777 2.76938 589 1.69779 346921 204336469 24.2693 8.3825 2.77012 590 1.69492 348100 205379000 24.2899 8.3872 2.77085 591 1.69205 349281 206425071 24.3105 8.3919 2.77159 592 1.68654 351649 205379000 24.2899 8.3872 2.77085 594 1.68350 352836 209584584 24.3311 8.3967 2.77232 595 1.68667 354025 210644875 24.3926 8.4108 2.77452 597 1.67785 355216 211708736 <th>578</th> <th></th> <th>334084</th> <th></th> <th></th> <th>8.3300</th> <th></th>	578		334084			8.3300	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	579		335241			8.3348	2.76268
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	580	1.72414	336400	195112000	24.0832	8.3306	2.76242
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	581		337561		24.1030	8.3443	2.76418
\$83 1.71527 339889 19815287 24.1454 8.3539 2.76567 \$584 1.71233 341056 199170704 24.1661 8.3539 2.76567 \$585 1.70040 342225 200201625 24.1868 8.3634 2.76716 \$586 1.70048 343396 201230056 24.2074 8.3682 2.76790 \$587 1.70358 344569 202262003 24.2281 8.3730 2.76864 \$588 1.70068 345744 203297472 24.2487 8.3872 2.770338 \$589 1.69779 346921 204336469 24.2093 8.3825 2.77012 \$590 1.69492 348100 205379000 24.2899 8.3872 2.77085 \$591 1.69205 349281 206425071 24.3115 8.3919 2.77159 \$592 1.68634 351649 20857857 24.3516 8.4014 2.77332 \$593 1.68634 351649 208584584 24.3721 8.4061 2.77452 \$594 1.68367 354025 21064	582		338724			8.3401	2.76402
584 1.71233 341056 199176704 24.1661 8.3587 2.76641 585 1.70040 342225 200201625 24.1868 8.3634 2.76716 586 1.70648 343396 201230056 24.2074 8.3682 2.76790 587 1.70358 344569 2022003 24.2281 8.3730 2.76864 588 1.70068 345744 203297472 24.2487 8.3777 2.76938 589 1.69779 340921 204336469 24.2093 8.3825 2.77012 590 1.69492 348100 205379000 24.2899 8.3872 2.77085 591 1.69205 349281 206425071 24.3105 8.3919 2.77159 592 1.68034 351649 205379000 24.2899 8.3872 2.77085 593 1.69205 349281 206425071 24.3105 8.3919 2.77159 593 1.68634 351649 207474688 24.3311 8.3967 2.77732 594 1.68350 352836 209584584	582		330880			8.3530	
586 1.70648 343390 201330056 24.2074 8.3682 2.76700 587 1.70358 344569 202262003 24.2074 8.3682 2.76864 588 1.70058 344569 202262003 24.2281 8.3730 2.76864 589 1.69779 346921 204336469 24.2693 8.3825 2.77012 590 1.69492 348100 205379000 24.2899 8.3872 2.77085 591 1.69205 349281 206425071 24.3105 8.3919 2.77159 592 1.68034 351649 208527857 24.3105 8.4014 2.77232 593 1.68634 351649 209584584 24.3721 8.4061 2.77339 594 1.68067 354025 210644875 24.3926 8.4108 2.77452 595 1.68067 354025 210644875 24.3926 8.4108 2.77555 597 1.69264 355836 2170673 24.4336 8.4202 2.77597 598 1.67785 355616 211708736	<u>5</u> 84		341056		24.1661	8.3587	
586 1.70648 343390 201330056 24.2074 8.3682 2.76700 587 1.70358 344569 202262003 24.2074 8.3682 2.76864 588 1.70058 344569 202262003 24.2281 8.3730 2.76864 589 1.69779 346921 204336469 24.2693 8.3825 2.77012 590 1.69492 348100 205379000 24.2899 8.3872 2.77085 591 1.69205 349281 206425071 24.3105 8.3919 2.77159 592 1.68034 351649 208527857 24.3105 8.4014 2.77232 593 1.68634 351649 209584584 24.3721 8.4061 2.77339 594 1.68067 354025 210644875 24.3926 8.4108 2.77452 595 1.68067 354025 210644875 24.3926 8.4108 2.77555 597 1.69264 355836 2170673 24.4336 8.4202 2.77597 598 1.67785 355616 211708736	585	1.70040	342225	200201625	24.1868	8.3624	2.76716
587 1.70358 344569 202262003 24.2281 8.3730 2.76864 588 1.70068 345744 203297472 24.2287 8.3777 2.76938 589 1.69779 346921 204336469 24.2693 8.3825 2.77012 590 1.69492 348100 205379000 24.2899 8.3872 2.77085 591 1.69205 349281 206425071 24.3105 8.3919 2.77159 592 1.68034 350464 207474688 24.3311 8.3967 2.77232 593 1.68034 351649 208527857 24.3105 8.4014 2.77339 594 1.68350 352836 209584584 24.3721 8.4061 2.77452 594 1.68067 354025 210644875 24.3926 8.4108 2.77452 595 1.68067 354025 210644875 24.3926 8.4108 2.77452 596 1.67785 355216 211708736 24.4336 8.4202 2.77597 598 1.67224 357604 213847192	\$86	1.70648		X		8.3682	2.76700
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\$87					8.37 20	2.76864
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	588 I	1.70068				8.3777	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>5</u> 89					8.3825	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	590	1.60402	348100	205370000	24.2800	8,3872	2.77081
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.69205	349281	206425071		8.3010	
593 1.68634 351649 208527857 24.3516 8.4014 2.77305 594 1.68350 352836 209584584 24.3721 8.4061 2.77379 595 1.68067 354025 210644875 24.3926 8.4108 2.77452 596 1.67785 355216 211708736 24.4131 8.4155 2.77525 597 1.67504 356409 212776173 24.4336 8.4202 2.77597 598 1.67224 357604 213847192 24.4540 8.4249 2.777433 600 1.66667 360000 216000000 24.4745 8.4343 2.77815 601 1.66667 360000 216000000 24.4949 8.4343 2.77815 601 1.66589 361201 217081801 24.5153 8.4390 2.77887 602 1.66567 362404 21816728 24.5357 8.4437 2.77807 602 1.665847 362404 21816728 24.5357 8.4434 2.77805	592	1.68010	350464	207474688		8.3067	
594 1.68350 352836 209584584 24.3721 8.4061 2.77379 595 1.68067 354025 210644875 24.3926 8.4108 2.77452 596 1.67785 355216 211708736 24.4131 8.4155 2.77525 597 1.67504 356409 212776173 24.4336 8.4202 2.77597 598 1.67224 357604 213847192 24.4540 8.4249 2.77670 599 1.66645 358801 214921799 24.4745 8.4296 2.77815 600 1.66667 360000 216000000 24.4949 8.4343 2.77887 601 1.66589 361201 217081801 24.5153 8.4390 2.77887 602 1.66133 362404 218167208 24.5357 8.4437 2.778670 603 1.66537 363000 216000000 24.4949 8.4343 2.77887 602 1.66133 362404 21816728 24.5357 8		1.68634	351649	208527857		8.4014	
590 I.07785 355216 211708736 24.4131 8.4155 2.77525 597 I.67504 356409 212776173 24.4336 8.4202 2.77597 598 I.67224 357604 213847192 24.4540 8.4249 2.77670 599 I.66945 358801 214921799 24.4745 8.4296 2.77743 600 I.66667 360000 216000000 24.4949 8.4343 2.77815 601 I.66389 361201 217081801 24.5153 8.4390 2.77887 602 I.66113 362404 218167208 24.5157 8.4343 2.77867 602 I.66137 363000 216000000 24.4949 8.4343 2.77815 602 I.65389 361201 217081801 24.5153 8.4390 2.778670 602 I.65837 363600 219256227 24.5515 8.4434 2.778602		1.68350	352836	209584584		8.4061	
590 I.07785 355216 211708736 24.4131 8.4155 2.77525 597 I.67504 356409 212776173 24.4336 8.4202 2.77597 598 I.67224 357604 213847192 24.4540 8.4249 2.77670 599 I.66945 358801 214921799 24.4745 8.4296 2.77743 600 I.66667 360000 216000000 24.4949 8.4343 2.77815 601 I.66389 361201 217081801 24.5153 8.4390 2.77887 602 I.66113 362404 218167208 24.5157 8.4343 2.77867 602 I.66137 363000 216000000 24.4949 8.4343 2.77815 602 I.65389 361201 217081801 24.5153 8.4390 2.778670 602 I.65837 363600 219256227 24.5515 8.4434 2.778602		1.68067	354025	210644875	24, 2026	8.4108	2.77452
597 1.67504 356409 212776173 24.4336 8.4202 2.77597 598 1.67224 357604 213847192 24.4540 8.4249 2.77670 599 1.66945 358801 214921799 24.4745 8.4296 2.77743 600 1.66667 360000 216000000 24.4949 8.4343 2.77815 601 1.66389 361201 217081801 24.5153 8.4390 2.77887 602 1.66113 362404 218167208 24.5357 8.4434 2.77800 603 1.65837 363000 216000000 24.45454 8.4290 2.77815	596	1.67785	355210	211708726		8.4155	
599 1.66945 358801 214921799 24.4745 8.4296 2.77743 600 1.66667 360000 216000000 24.4949 8.4343 2.77815 601 1.66389 361201 217081801 24.5153 8.4390 2.77887 602 1.66113 362404 218167208 24.5357 8.4437 2.77960 603 1.65837 363600 219256227 24.5515 8.4434 2.77867	597		356400			8.4202	
599 1.66945 358801 214921799 24.4745 8.4296 2.77743 600 1.66667 360000 216000000 24.4949 8.4343 2.77815 601 1.66389 361201 217081801 24.5153 8.4390 2.77887 602 1.66113 362404 218167208 24.5357 8.4437 2.77960 603 1.65837 363600 219256227 24.5515 8.4434 2.77867	598	1.67224	357604				
601 1.66389 361201 217081801 24.5153 8.4390 2.77887 602 1.66113 362404 218167208 24.5357 8.4437 2.77960 603 1.65837 363609 219256227 24.561 8.4484 2.78672	599		358801				
601 1.66389 361201 217081801 24.5153 8.4390 2.77887 602 1.66113 362404 218167208 24.5357 8.4437 2.77960 603 1.65837 363609 219256227 24.561 8.4484 2.78672	600	1.66667	360000	21600000	24.4040	8.4242	2.77815
602 I.66113 362404 218167208 24.5357 8.4437 2.77960 603 I.65837 363609 219256227 24.5561 8.4484 2.78032		1.66389				8.4300	
603 1.65837 363609 210256227 24.5561 8.4484 2.78632		1.66113				8.4437	2.77060
604 I.65563 364816 220348864 24.5764 8.4530 2.78104	603	1.65837		219256227			2.78032
		1.65563					
							I

SMITHSONIAN TABLES.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

*	1000. ¹	71 ²	۶ <u>۶</u> ۴	√n.	∛n	log. #
605	- 6 9 -					
606	1.65289 1.65017	366025 367236	221445125	24.5967 24.617 I	8.4577 8.4623	2.78176
	1.64745	368449	222545016 223648543	24.6374	8.4670	2.78247 2.78319
607 608	1.64474	369664	224755712	24.0577	8.4716	2.78390
609	1.64204	370881	2247 5 57 1 2 22 5866 529	24.6779	8.4763	2.78462
610 611	1.63934	372100	226981000	24.6982	8.4809	2.78533 2.78604
612	1.63666 1.63399	373321	228099131	24.7184	8.4856	2.78004
613	1.03399	374544	229220928	24.7 386	8.4902	2.78675 2.78746
614	1.63132 1.62866	37 5769 376996	230346397 231475544	24.7588 24.7790	8.4948 8.4994	2.78/40
			-3-4/ 574	-4.//90	014994	2.700.17
615	1.62602	378225	23260 8375	24.7992	8.5040	2.78888
616	1.62338	379456	233744896	24.8193	8.5086	2.78958
617	1.62075	380689	234885113	24.8395	8.5132	2.79029
618	1.61812	381924	236029032	24.8596	8.5178	2.79099
619	1.61551	383161	237176659	24.8797	8.5224	2.79169
620	1.61290	384400	238328000	24.8998	8.5270	2.79239
621	1.61031	385641	239483061	24.9199	8.5316	2.79309
622	1.60772	385641 386884	240641848	24.9399	8.5362	2.79379
623	1.60514	388129	241804367	24.0000	8.5408	2.79449
624	1.60256	389376	242970624	24.9800	8.5453	2.79518
625	1.60000	mater				
626		390625 391876	244140625	25.0000	8.5499	2.79934
627	I.59744	391870	245314376	25.0200	8.5544	2.79657
628	1.59490 1.50226	3931 <i>2</i> 9 394384	246491883 247673152	25.0400 25.0599	8.5590 8.5635	2.79727 2.79796
629	1.59236 1.58983	395641	248858189	25.0799	8.5681	2.79865
				-2.0.27	-	20,9005
630	1.58730	396900	250047000	25.0998	8.5726	2.79934
631	I.58479	398161	251239591	25.1197	8.5772	2.80003
632	1.58228	399424	252435968	25.1396	8.5817	2.80072
633	1.57978	400689	253636137	25.1595	8.5862	2.80140
634	1.57729	401956	254840104	25.1794	8.5907	2.80209
635	1.57480	403225	256047875	25.1992	8.5952	2.80277
636	1.57233	404496	257259456	25.2100	8.5997	2.80346
637	1.57233 1.56986	405769	258474853	25.2389	8.6043 8.6088	2.80414
638	1.56740	407044	259694072	25.2587	8.6088	2.80482
639	1.56495	408321	260917119	25.2784	8.6132	2.80550
640	1 16210	409600	262744000	25 2082	8 6177	2.80618
641	1.56250 1.56006	409000 410881	262144000 263374721	25.2982 25.3180	8.6177 8.6222	2.80686
642	1.55763	412164	264609288	25.3100	8.6267	2.807 54
643	1.55521	413449	265847707	25.3574	8.6312	2.80821
644	1.55280	414736	267089984	25.3772	8.6357	2.80889
645	1.55039	416025	268336125 269586136	25.3969	8.6401	2.80956
646	1.54799	417316 418609	209580136	25.4165	8.6446	2.81023
647 648	1.54560		270840023	25-4362	8.6490 8.6525	2.81090 2.81158
649	1.54321 1.54083	419904 421201	272097 7 92 273359449	25 -4 558 25 -4 755	8.6535 8.6579	2.81224
1)		42.401		-2-+/33		
650	1.53846	422500	274625000	25.4951	8.6624	2.81291
651	1.53610	423801	27 58944 51	25.5147	8.6668	2.81358
652	1.53374	425104	277 167808	25.5343	8.6713	2.81425
653	1.53139	426409	278445077	25.5539	8.6757	2.81491
654	1.52905	427716	279726264	25.5734	8.6801	2.81558
655	1.52672	429025	281011375	25.5930	8.6845	2.81624
646	1.52439	430336	282300416	25.6125	8.6890	2.81690
657	1.52207	431649	283593393	25.6320	8.6934	2.81757
657 658	1.51976	432964	283593393 284890312	25.6515	8.6978	2.81823
659	1.51745	434281	286191179	25.6710	8.7022	2.81889
L						

SHITHSONIAN TABLES.

Digitized by GOOgle

·						r
71	1000. ¹	# ²	728	√n.	₹n	log. #
660	1.51515	435600	287496000	25.6905	8.7066	2.81954
661	1.51286	1 430021	288804781	25.7099	8.7110	2.82020
662	1.51057	438244	290117528	25.7294	8.7154	2.82086
663	1.50830	439569	291434247	25.7488	8.7198	2.821 51
664	1.50602	439569 440896	2927 54944	25.7682	8.7241	2.82217
665	1.50376	4 4222 5	294079625	25.7876	8.7285	2.82282
666	1.50150	443556 444889	295408296	25.8070	8.7329	2.82347
667	1.49925	444889	296740963	25.8263	8.7373	2.82413
668	1.49701	446224	298077632	25.8457	8.7416	2.82478
669	1-49477	447561	299418309	25.8650	8.7460	2.82543
670		448900		25.8844	8 7 7 0 7	2.82607
	1.49254	440900	300763000		8.7503 8.7547	2.82672
671	1.49031 1.48810	450241	302111711 303464448	25.9037	87.00	282727
672	1.48588	451584	303404440	25.9230	8.7590 8.7634	2.82737 2.82802
673	I.48368	452929	306182024	25.9422 25.961 5	8.7677	2.82866
674	1.40300	454276	300102024	23.9013	0.7077	
675	1.48148	455625	307546875	25.9808	8.7721	2.82930
676	1.47929	456976	308915776	26.0000	8.7764	2.82005
677	1.47710	458329	310288733	26.0192	8.7807	2.83059
678	1-47493	4 50684	31 166 57 52	26.0384	8.7850	2.83123
679	1.47275	459684 461041	313046839	26.0576	8.7893	2.83187
-//		44-	5-5-4-55	57 -		
680	1.47059	462400	314432000	26.0768	8.7937 8.7980 8.8023	2.83251
681	1.46843	463761	315821241	26.0960	8.7980	2.83315
682	1-46628	465124	317214568	26.1151	8.8023	2.83378
683	1.46413	466489	318611987	26.1343	8.8066	2.83442
684	1.46199	467856	32001 3504	26.1 534	8.8108	2.83506
685	1.45985	469225	321419125	26.1725	8.81 52	2.83569 2.83632
686	1.45773	470596	322828856	26.1910	8.8194	2.83032
687	1.45560	471969	324242703	26.2107	8.8237	1 2.83000 1
688	1.45349	47,3344	325660672	26.2298	8.8280	2.837 59 2.83822
689	1.45138	474721	327082769	26.2488	8.8323	2.83822
690	7.440.28	476100	328509000	26.2679	8.8366	2.83885
691	1.44928 1.44718	477481	329939371	26.2869	8.8408	2.83948
692	1.44509	478864	331 37 3888	26.3059	8.8451	2.84011
693	1.44300	480249	332812557	26.3249	8.8493	2.84073
694	I.44092	481636	334255384	26.3439	8.8536	2.84136
-74			304-333-4			
695	1.43885	483025	335702375	26.3629	8.8578	2.84198
696	1.43678	484416	337153536	26.3818	8.8621	2.84261
697	1.43472	485809	33715353 6 338608873	26.4008	8.8663	2.84323
698	1.43266	487204	340068392	26.4197	8.8706	2.84386
699	1.43062	488601	341 532099	26.4386	8.8748	2.84448
7 00				.	00	
700	1.42857	490000	343000000	26.4575	8.8790	2.84510
701	1.42653	491401	344472101	26.4764	8.8833	2.84572
702	1.42450	492804	345948408	26.4953	8.8875	2.84634
703	1.42248	494209	347428927	26.5141	8.8917	2.84696
704	1.42045	495616	34891 3664	26.5330	8.8959	2.847 57
705	1.41844	497025	350402625	26.5518	8.9001	2.84819
706	1.41643	498436	351895816	26.5707	8.9043	2.84880
707	1.41443	499849	353393243	26 .5895	8.9085	2.84942
708	I.41243	501264	354894912	26.6083	8.9127	2.85003
709	1.41044	502681	356400829	26.6271	8.9169	2.85065
				•		<u> </u>
710	1.40845	504100	357911000	26.6458	8.9211	2.85126
711	1.40647	505521	359425431	26.6646	8.9253	2.85187
712	1.40449	506944	360944128	26.6833	8.9295	2.85248
713	1.40252	5 08369	362467097	26.7021	8.9337	2.85309
714	1.40056	5 09796	363994344	26.7208	8.9378	2.85370
L		l				

SMITHSONIAN TABLES.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

#	1000.1	# ²	12 ⁸	Jn.	¥я	log. #
715	1.39860	511225	365525875	26.7395 26.7582	8.9420	2.85431
716	1.39665	512656	365525875 367061696	26.7 582	8.9462	2.85401
717	1.39470	514089	368601813	26.7769	8.9503	2.85552
718	1.39276	51 5524	370146232	26.7955	8.9545	2.85012
719	1.39082	516961	371694959	26.8142	8.9587	2.85673
720	1.38889	518400	373248000	26.8328	8.9628	2.85733
721	1.38696	519841	374805361	26.8514	8.9670	2.85794
722	1.38504	521284	376367048	26.8701	8.9711	2.85854
723	1.38313	522729	377933067	26.8887	8.9752	2.85914
724	1.38122	524176	379503424	26.9072	8.9794	2.85974
725		101601	381078125	of 00.58	8.9835	2.86034
726	1.37931	525625	382657176	26.9258 26.9444	8.9876	2.86094
	1.37741	527076	30205/1/0	26.9629	8.9918	2.861 53
727 728	1.37552	528529	384240583		8.9959	2.86213
	1.37363	529984	385828352	26.9815	9.0000	2.86273
729	1.37174	531441	387420489	27.0000	9.000	
730	1.36986	532900	389017000	27.0185	9.0041	2.86332
731	1.36799	534361 535824	390617891	27.0370	9.0082	2.86392
732	1.36612	535824	392223168	27.0555	9.0123	2.86451
733	1.36426	537289	393832837	27.0740	9.0164	2.86510
734	1.36240	538756	395446904	27.0924	9.0205	2.86570
735	1.36054	540225	397065375	27.1109	9.0246	2.86629
736	1.35870	541696	398688256	27.1293	9.0287	2.86688
737	1.35685	543169	400315553	27.1477	9.0328	2.86747
738	1.35501	544644	401947272	27.1662	9.0369	2.86806
739	1.35318	546121	403583419	27.1846	9.0410	2.86864
			+-33-31-2		2.10	- 1
740	1.35135	547600	405224000	27.2029	9.0450	2.86923
741	1.34953	549081	406869021	27.2213	9.0491	2.86982
742	1.34771	550564	408518488	27.2397 27.2580	9.0532	2.87040
743	1.34590	552049	410172407	27.2580	9.0572	2.87099
744	1.34409	553536	411830784	27.2764	9.0613	2.871 57
745	1.34228	555025	41 349 362 5	27.2947	9.0654	2.87216
746	1.34048	555025 556516	415160036	27.3130	9.0694	2.87274
747	1.33869	558009	416832723	27.3313	9.0735	2.87332
748	1.33690	559504	418508002	27.3496	9.0775	2.87,390
749	1.33511	561001	420189749	27.3679	9.0816	2.87448
750	x 22222	562500	42187 5000	27.3861	9.0856	2.87 506
	1.33333 1.33156	562500 564001	423564751	27.4044	9.0896	2.87564
751 752	1 22070	565504	425259008	27.4226	9.0937	2.87622
	1.32979 1.32802	567009	426957777	27.4408	9.0977	2.87679
753 754	1.32626	568516	428661064	27.4591	9.1017	2.87737
755	-		430368875	37 1880	0.1057	
	1.32450	570025	430300075	27.4773	9.1057	2.87795 2.87852
756	1.32275	571536	432001210	27.4955	9.1098	2.87910
757	1.32100	573049	433798093	27.5136	9.1138	2.87967
758	1.31926	574564	435519512	27.5318	9.1178 9.1218	2.88024
7 59	1.31752	576081	437245479	27.5500		
760	1.31 579	577600	438976000	27.5681	9.1258	2.88081
761	1.31406	579121	440711081	27.5862	9.1298	2.881 38
762	1.31234	580644	442450728	27.6043	9.1338	2.88195
763 764	1.31062 1.30890	582169 583696	444194947 445943744	27.6225 27.6405	9.1378 9.1418	2.88252 2.88309
			443743/44			
765	1.30719	58522 5	447697125	27.6586	9.1458	2.88366
766	1.30548	586756	449455096	27.6767	9.1498	2.88423
767	1.30378	588289	451217663	27.6948	9.1537	2.88480
768	1.30208	589824	452984832	27.7128	9.1 577	2.88536
769	1.30039	591 361	454756609	27.7308	9.1617	2.88593

SMITHSONIAN TASLES.

.

Digitized by GOOSIC

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

			1			1
*	1000.1	n ²	n ⁸	√n	∛n	log. <i>n</i>
770	1.29870	592900	456533000	27.7489	9.1657	2.88649
771	1.29702	594441	458314011	27.7669	9.1696	2.88705
772	1.29534	595984	460000648	27.7840	9.1736	2.88762
773	1.29366	597 529	461880017	27.8029	9-1775	2.88818
774	1.29199	599076	463684824	27.8209	9.1815	2.88874
775	1.20022	600625	465484375	27.8388	9.1855	2.88930
776	1.29032 1.28866	602176	467288576	27.8568	9.1894	2.88986
777	1.28700	603729	469097433	27.8747	9.1933	2.89042
778	1.28535	605284	470910952	27.8927	9.1973	2.89098
779	1.28370	606841	472729139	27.9106	9.2012	2.891 54
780	1.28205	608400	474552000	27.9285	9.2052	2.89209
781	1.28041	609961	474552000	27.9464	9.2091	2.89265
782	1.27877	611524	476379541 478211768	27.9643	9.2130	2.89321
783		613089	480048687	27.9821	9.2130	2.89376
784	1.27714	614656	481890304	28.0000	9.2209	2.89432
704	1.27551	014050	401090304		9.2209	
785	1.27 389	616225	483736625	28.0179	9.2248	2.89487
786	1.27226	617796	485587656	28.0357	9.2287	2.89542
787	1.27065	619369	487443403	28.0535	9.2326	2.89597
788	1.26904	620944	489303872	28.0713	9.2365	2.89653
789	1.26743	622521	491169069	28.0891	9.2404	2.89708
790	1.26582	624100	493039000	28.1069	9.2443	2.89763
791	1.26422	625681	494913671	28.1247	9.2482	2.89818
792	1.26263	627264	496793088	28.1425	9.2521	2.80873
793	1.26103	628849	498677257	28.1603	9.2560	2.89927
793	1.25945	630436	500566184	28.1780	9.2599	2.89982
				•		
795	1.25786	632025	502459875 504358336	28.1957	9.2638	2.90037
796	1.25628	633616	504358330	28.2135	9.2677	2.90091
797 798	I.2547I	635209	500201573	28.2312	9.2716	2.90146
798	1.25313	636804	508169592	28.2489	9-27 5 4	2.90200
799	1.25156	638401	510082399	28.2666	9.2793	2.90255
800	1.25000	640000	512000000	28.2843	9.2832	2.90309
8ot	1.24844 1.24688	641601	51 3922401	28.3019	9.2870	2.90363
802	1.24688	643204	51 5849608	28.3190	9.2909	2.90417
803	1.24533	644809	517781627	28.3373	9.2948	2.90472
804	1.24378	646416	519718464	28.3549	9. 2 986	2.90526
805	I.24224	648025	521660125	28.3725	9.3025	2.90580
806	1.24069	649636	523606616	28.3901	9.3063	2.90634
807	1.23916	651249	525557943	28.4077	9.3102	2.90687
808	1.23762	652864	527514112	28.4253	9.3140	2.90741
809	1.23609	654481	529475129	28.4429	9.3179	2.90795
810		656100		28.4605		2.90849
811	1.23457		531441000	28.4781	9.3217	
812	1.23305	657721	533411731 535387328	28.4956	9-3255	2.90902 2.00016
	1.23153	659344 660969	53530/320	28.51 32	9.3294	2.90956
813	1.23001 1.22850	662596	537367797	20.31.32	9-3332	2.91009 2.91062
814			539353144	28.5307	9.3370	2.91002
815	1.22699	664225	541 34337 5	28.5482	9.3408	2.91116
816	I.22549	665856	543338496	28.5657	9-3447	2.91169
817 818	1.22399	667489	545338513	28.5832	9.3485	2.91 222
	1.22249	669124	547343432	28.6007	9.3523	2.91275
819	1.22100	670761	549353259	28.6182	9-3561	2.91 328
820	1.21951	672400	551368000	28.6356	9-3599	2.91381
821	1.21803	674041	553387661	28.6531	9.3637	2.91434
822	1.21655	675684	555412248	28.6705	9.3675	2.91487
823	1.21 507		557441767	28.6880	9.3713	2.91 540
824	1.21 359	677 329 678 976	559476224	28 .70 54	9.3751	2.91 593
		L			l	

SMITHSONIAN TABLES.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

я	1000. <mark>1</mark>	n ²	77 ⁸	√n	∛n	log. n
825		680625			Po	
826	1.21212 1.21065	682276	561515625 563559976	28.7228 28.7402	9.3789 9.3827	2.91645 2.91698
827	1.20019	683929	565609283	28.7 576	9.3865	2.91751
828	1.20773	685584	567663552	28.7750	9.3902	2.91803
829	1.20627	687241	569722789	28.7924	9.3940	2.91855
-						
830	1.20482	688900	571787000	28.8097	9.3978	2.91908
831	1.20337	690561	573856191	28.8271	9.4016	2.91960
832	1.20192 1.20048	692224 693889	57 5930368 578009537	28.8444 28.8617	9-4053	2.92012
833 834	1.19904	695556	580093704	28.8791	9.4091 9.4129	2.92065 2.92117
-34	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-9555-	300093704		5-15	
835	1.19760	697225	582182875	28.8964	9.4166	2.92169
836	1.19617	698896	584277056	28.91 37	9.4204	2.92221
837	1.19474	700569	586376253	28.9310	9.4241	2.92273
838	1.19332	702244	588480472	28.9482	9.4279	2.92324
839	1.19190	703921	590589719	28.9655	9.4316	2.92376
840	1.19048	705600	592704000	28.9828	9-4354	2.92428
841	1.18906	707281	504823321	29.0000	94391	2.92480
842	1.18765	708964	596947688	29.0172	9.4429	2.92531
843	1.18624	710649	599077107	29.0345	9.4466	2.92583
844	1.18483	712336	601211584	29.0517	9-4503	2.92634
845	1.18343	714025	603351125	29.0689	9.4541	2.92686
846	1.18203	71 57 16	605495736	29.0861	9-4578 9-4578	2.92737
847	1.18064	717409	607645423	29.1033	9.45/0	2.92788
848	1.17925	719104	609800192	29.1204	9.4652	2.92840
849	1.17786	720801	611960049	29.1376	9.4690	2.92891
		•				
850	1.17647	722500	614125000	29.1 548	9.4727	2.92942
851	1.17509	724201	616295051	29.1719	9.4764	2.92993
852	1.17371	725904	618470208	29.1890 29.2062	9.4801	2.93044
853 854	1.17233 1.17096	727609 729316	620650477 622835864	29.2002	9.4838 9.4875	2.93095 2.93146
054	1.17090	729310	022033004		9-4-75	
855	1.16959	731025	62 50 26 37 5	29.2404	9.4912	2.93197
856	1.16822	732736	627222016	29.2575	9.4949	2.93247
857	1.16686	734449	629422793	29.2746	9.4986	2.93298
858	1.16550	736164	631628712	29.2916	9.5023	2.93349
859	1.16414	737881	633839779	29.3087	9.5060	2.93399
860	1.16279	739600	636056000	29.3258	9.5097	2.93450
861	1.16144	741321	638277381	29.3428	9.5134	2.93500
862	1.16009	743044	640503928	29.3598	9.5171	2.93551
863	1.15875	744769	642735647	29.3769	9.5207	2.93601
864	1.15741	746496	644972544	29.3939	9.5244	2.93651
865	1.15600	748005	647214625	20 4700	0 5287	2 02702
866	1.15607	748225 749956	649461896	29.4109 29.4279	9.5281 9.5317	2.93702
867	1.15473 1.15340	749950	651714363	29.4449	9-5354	2.937 52 2.93802
868	1.15207	753424	653972032	29.4618	9-5391 9-5391	2.93852
869	1.1 507 5	755161	656234909	29.4788	9.5427	2.93902
870	1.14943	756900	658503000	29.4958	9.5464	2.93952
871	1.14811	758641	660776311 663054848	29.5127	9.5501	2.94002
872 873	1.14679 1.14548	760384 762129	665338617	29.5296 29.5466	9-5537 9-5574	2.94052 2.94101
874	1.14546	763876	667627624	29.5635	9-55/4 9-5610	2.94151
875	1.14286	765625	669921875	29.5804	9.5647	2.94201
876	1.14155	767 376	672221376	29.5973	9.5683	2.94250
877 878	I.14025	769129 770884	674526133 676836152	29.6142	9.5719	2.94300
870 879	1.13895 1.13766	770004 772641	679151439	29.631 I 29.6479	9.5756 9.5792	2.94349 2.94399
· ·/9		//~~~	~/7-3-439		J'J'Y"	
L	·					

SMITHSONIAN TABLES.

Digitized by GOOgle

π 1000_{π}^{1} π^{3} π^{3} $\sqrt{\mu}$ $\sqrt{\eta}$ $\log \pi$ 8801.136567774400 68147200 29.6643 9.5528 2.94448 8121.13279770244 68147200 29.695 9.5501 2.9447 8131.13250779440 68346397 297321 9.5973 2.9447 8141.13122797440 68346397 297321 9.5973 2.94645 8651.13267798456 69354100 39.7655 9.6046 2.04743 8861.13267798524 70023707 39.7935 9.6046 2.04743 8881.1248679931 70259356 39.7655 9.6046 2.04734 8901.1236079180 707347971 39.8956 9.6152 2.04837 8011.12230799831 70259356 39.7658 9.6616 2.04939 8011.12360791801 707347971 39.8956 9.6526 2.94939 8031.11692 897449 71212197 39.8956 9.6334 2.95354 8951.11692 80464 71697375 39.9930 9.6424 2.95374 8951.11793 800424 7245709 39.9933 9.64374 2.95376 8961.11235 80424 7245709 39.9933 9.6434 2.95376 8961.11235 80424 72457369 39.9933 9.6434 2.95376 9001.11111 810000 7							
881 1.13307 770161 68129068 296816 9.9863 2.04498 882 1.13320 770989 68846397 29.7133 9.5973 2.94495 883 1.13122 781456 690807104 29.731 9.5973 2.94645 885 1.12004 781225 603154123 29.7453 9.6010 2.94694 886 1.12677 784990 60550415 29.7545 9.6010 2.94694 887 1.12467 786769 697864103 2.97635 9.6010 2.94690 889 1.12480 790321 702593369 2.94504 9.6110 2.94493 891 1.12480 790321 702593369 2.9616 9.6134 2.96976 893 1.11627 797497 2.98496 9.6126 2.94939 8.933 1.01260 2.95733 894 1.11627 797497 2.98498 9.6134 2.95733 2.95733 895 1.111732 80102 7.12110377	n	1000.1	n ²	#8	√ π	∛ n	log. <i>n</i>
882 1.13379 777924 688.45397 2-9591 2-9457 883 1.13322 781456 668.46397 2-9731 9-5973 2-94645 884 1.13122 781456 695845397 2-97459 9-6010 2-94645 885 1.1267 745996 69556457 2-97453 9-6012 2-94743 886 1.1247 78554 70025973 2-9785 9-6622 2-94731 887 1.12486 790321 702595369 2-98139 9-6100 2-94891 889 1.12236 790564 70237972 29.9931 9-6102 2-94898 891 1.1237 793581 707373288 29.864 9.6298 2.9393 892 1.12337 799350 71431694 2.94831 9.6298 2.9393 893 1.11857 7997479 71232130 29.9333 9.6464 2.9573 8965 1.1167 802616 71322130 2.99033 9.6462 2.9573 </th <th></th> <th>1.13636</th> <th></th> <th>681472000</th> <th>29.6648</th> <th>9.5828</th> <th>2.94448</th>		1.13636		681472000	29.6648	9.5828	2.94448
883 1.1322 776480 668465387 257153 55071 2.41305 885 1.13122 781456 690807104 297731 9.5073 2.94645 885 1.12004 78125 60315412 297489 9.6010 2.94645 885 1.12007 78125 60315412 297493 9.6010 2.94604 886 1.12467 788544 70023977 2.97933 9.6110 2.94604 887 1.12487 790367 70147971 29.8466 9.6100 2.94930 890 1.12260 790365 71411934 29.8464 9.6226 2.94930 801 1.1237 790346 70347971 29.8464 9.6226 2.94938 803 1.11082 7903464 71932137 29.9669 9.6334 2.95734 804 1.11027 80163 71932137 29.9969 9.6334 2.95734 805 1.11627 80163 719323177 29.9969 9.6334			776161	683797841		9.5865	2.94498
884 1.13122 781456 690807104 25,731 55073 2.54645 885 1.12807 784900 605150456 20.7685 9.6010 2.04644 886 1.12807 784900 60550457 2.97855 9.6082 2.04731 887 1.1240 785544 7002277 27.9031 9.6116 2.04644 889 1.12437 790321 702395309 29.8161 9.6126 2.04831 889 1.12437 79381 707347971 29.8495 9.6126 2.04039 891 1.12233 79381 707347971 29.8495 9.6526 2.94938 892 1.1182 7979449 71212197 29.9133 9.6506 2.9573 894 1.1182 801025 716917375 29.9166 9.6534 2.95873 895 1.11732 801025 71411693 2.99333 9.6406 2.95231 806 1.11857 80164 714337048 30.0167 9.6545		1.13379	777924			9.5901	
BBS Lizod Phizit Phizit <th></th> <th></th> <th>779689</th> <th></th> <th></th> <th>9-5937</th> <th></th>			779689			9-5937	
886 1.12367 786096 6053043 25.7658 5.0646 2.04733 887 1.12401 78676 697864101 20,7635 5.0648 2.04733 888 1.12480 79331 7002393369 29,8151 9.6154 2.94841 889 1.12436 79331 703495000 29,8339 9.6159 2.94930 891 1.12437 793661 707347971 29,8469 9.6159 2.94936 802 1.12135 797449 71212197 29,8431 9.6509 2.95134 803 1.11637 799235 71431694 29,8933 9.6534 2.95734 804 1.11733 801045 7193273 2.99333 9.6602 2.95328 805 1.11673 80840 7143173 2.99333 9.6513 2.95376 807 1.11433 804609 72134273 2.99333 9.6513 2.95378 809 1.11235 808201 7143473 2.993033 9.6513	884	1.13122	781456	690807104	29.7321	9-5973	2.94645
886 1.12867 784096 6055045 29.763 9.6046 2.94743 887 1.1246 780769 697864103 29.7933 9.6118 2.94941 889 1.12486 790311 702593369 29.8161 9.6119 2.94841 889 1.12486 790311 702593369 29.8161 9.6119 2.94939 890 1.12350 793811 70747971 29.4865 9.6126 2.94939 891 1.1235 793931 70747971 29.4861 9.6528 2.94938 892 1.1192 797449 712121957 29.8831 9.6534 2.9578 893 1.1193 801600 7143173 29.9166 9.6177 2.95184 895 1.1173 801607 7143173 29.9060 9.6442 2.9573 896 1.1111 810000 7249572 2.9965 9.6513 2.9512 890 1.11111 810000 736973249 2.99833 9.6513 <t< th=""><th></th><th>1.12994</th><th>783225</th><th>693154125</th><th>29.7489</th><th>9.6010</th><th>2.94694</th></t<>		1.12994	783225	693154125	29.7489	9.6010	2.94694
887 1.1240 785769 607864103 29.7835 9.6082 2.94792 888 1.1240 790321 70259356 29.8161 9.6154 2.94890 889 1.12436 790321 70259356 29.8161 9.6154 2.94890 890 1.12237 79381 70734797 29.7934 9.6150 2.94938 891 1.12237 79381 70734797 29.8464 9.6262 2.94938 892 1.1162 797449 71212197 29.8464 9.6262 2.95055 893 1.11732 80102 71431797 2.99365 9.6312 2.95134 895 1.11733 80102 7143177 2.99305 9.6442 2.95279 806 1.11135 80404 724150792 2.99833 9.6513 2.95376 900 1.1118 80000 730514327 30.0333 9.6652 2.95376 901 1.10698 811801 71437878 30.0333 9.6652	886	1.12867	784996	695506456	29.7658	9.6046	2.94743
888 1.12436 705311 70259336 29,703 9,6118 2.94841 889 1.12486 790311 70259336 29,8161 9,6154 2.94890 890 1.1230 793281 707347971 29,8464 9,6159 2.94938 891 1.1233 793881 707347971 29,8464 9,6226 2.94938 802 1.1218 799564 70973288 29,8564 9,6233 2.9573 803 1.11637 799235 71451694 29,898 9,6334 2.9573 804 1.11733 801025 71451594 29,960 9,6442 2.9573 805 1.11637 802816 7257732 29,960 9,6513 2.95376 900 1.11111 810007 72397022 30,050 9,6549 2.95473 901 1.1058 811801 73376868 30,0333 9,6502 2.95571 903 1.10698 811801 733769868 30,0333 9,6562 <t< th=""><th></th><th></th><th>786760</th><th>697864103</th><th>29.7825</th><th>9.6082</th><th></th></t<>			786760	697864103	29.7825	9.6082	
889 1.12486 790321 702595369 29.8161 9.6154 2.94890 890 1.123160 7992100 704965000 2.94393 9.6150 2.94938 891 1.12233 793811 70731288 2.94664 9.6526 2.94938 892 1.12108 799564 70973288 2.95864 9.6526 2.95985 893 1.11857 799236 714516984 2.95998 9.6334 2.95134 895 1.11732 801025 716917375 2.90166 9.65370 2.95182 896 1.11857 799236 711323136 2.99000 0.6442 2.9579 898 1.11335 80404 724150792 2.99653 9.6513 2.95376 900 1.1111 810000 72903000 0.6549 2.95424 2.9579 901 1.10988 811801 731432701 30.0050 9.6543 2.95424 2.9579 902 1.10868 811600 731432701 30.016		1.12613	788544		29.7993	9.6118	
Bgit 1.12233 703881 707347971 20306 64226 2.9108 Bgit 1.12108 709564 70973288 29.8631 9.6226 2.95035 Bgit 1.1108 709409 71212197 29.8831 9.6228 2.95035 Bgit 1.11057 799235 714516944 29.8998 9.6334 2.95134 Bgit 1.11677 Bootas 71121297 29.9605 9.6406 2.95231 Bgit 1.11837 Bootas 712134271 29.9605 9.6447 2.95238 Bgit 1.11359 Bodau 7245799 29.9633 9.6513 2.95376 B00 1.1111 Bitoca 731432701 30.0167 9.6582 2.95424 901 1.10088 Bitibat 731432701 30.0167 9.6583 2.95472 903 1.10742 Bitson 731432701 30.0167 9.6583 2.95761 904 1.10619 Bitzto 73876364 30.0505 9.6573	889	1.12486	790321	702595369		9.61 54	2.94890
Bot I.12333 705481 707347971 25.8464 9.6266 2.94988 Bogz I.12108 79564 7097449 712121957 29.8831 9.6266 2.95076 Bogs I.1108z 799449 712121957 29.8831 9.6266 2.95134 Bogs I.11637 Boatos 714316944 29.5908 9.6334 2.95134 Bogs I.11637 Boatos 71921316 29.9166 9.6534 2.95134 Bogs I.11637 Boatos 721734273 29.9500 9.64462 2.95231 Bogs I.11353 Bodeon 721734273 29.9500 9.6447 2.95376 Boot I.11353 Bodeon 721734273 30.0167 9.6549 2.95424 901 I.1088 B11801 731432701 30.0167 9.6542 2.95424 901 I.1088 B11801 731432701 30.0333 9.6542 2.95501 902 I.10619 B17216 731637044 <	890	1.12360	702100	704060000	29.8320	9.6190	2.04030
892 I.12108 799564 70973288 29.8664 9.66298 2.9505 893 I.110857 799236 714516984 29.8998 9.6334 2.95134 895 I.11732 801025 719323136 29.9333 9.6424 2.95231 896 I.11757 802816 719323136 29.900 9.6442 2.95279 898 I.11359 806404 724150792 29.9665 9.6442 2.95326 899 I.11355 805201 736572699 29.9533 9.65513 2.95376 900 I.110858 811801 731432701 30.0167 9.6542 2.95472 901 I.10988 811801 731432701 30.0000 9.6554 2.95571 902 I.10865 813604 738763264 30.0632 9.66752 2.95713 903 I.10478 815025 741377416 30.00832 9.6773 2.95761 905 I.10497 822649 746142643 30.1164 <t< th=""><th>891</th><th></th><th>793881</th><th></th><th>20.8406</th><th></th><th>2.94988</th></t<>	891		793881		20.8406		2.94988
893 1.1185z 797449 712121937 29.883 9.6334 2.95035 894 1.11857 799236 714516984 29.8998 9.6334 2.95134 895 1.11732 801025 716917375 29.9166 9.6370 2.95182 896 1.11857 80469 721734273 29.99506 9.6442 2.95231 897 1.11433 804699 721734273 29.99506 9.6442 2.952376 900 1.11111 810000 726572699 29.9633 9.6513 2.95376 901 1.1088 811801 7347378 30.0333 9.6522 2.95424 901 1.1088 813601 738763843 30.0333 9.6562 2.95537 903 1.10742 815409 73814327 30.0260 9.6542 2.95617 904 1.10619 817216 738763243 30.1164 9.6793 2.95713 905 1.10375 82836 743677416 30.0237 9.6876	892	1.12108	795664	7007 32288	20.8664		2.95036
894 1.11857 799236 714516984 29.8998 9.6334 2-95134 895 1.11732 801025 716917375 29.9166 9.6370 2.95138 896 1.11607 802816 71323133 29.9300 9.6442 2.95279 898 1.11335 806404 724150792 29.9666 9.6477 2.95376 900 1.11111 810000 729000000 30.0000 9.6549 2.95424 901 1.11111 810000 729000000 30.0000 9.6549 2.95424 902 1.10655 813604 731870888 30.0333 9.06502 2.95517 903 1.10712 819027 741217625 30.0832 9.6727 2.95665 904 1.10375 88269 746173143 30.1164 9.6792 2.95761 905 1.10497 819225 741217625 30.0832 9.6727 2.95665 906 1.10375 838300 753571000 30.1662 9.	893				20.8831		2.95085
896 1.11607 802816 719323136 299333 96465 2.95231 897 1.11433 804609 721734273 29.9666 9.6447 2.9538 898 1.11235 805201 726573699 29.9633 9.6513 2.95376 900 1.11111 81000 729000000 30.0000 9.6549 2.95424 901 1.10865 813601 73143270 30.0167 9.6585 2.95424 902 1.10865 813604 733870808 30.0333 9.65652 2.95173 903 1.10742 815409 73876324 30.0500 9.66552 2.95017 905 1.10497 819025 741217625 30.0832 9.6773 2.9565 906 1.10375 820836 743677416 30.0398 9.6763 2.95713 907 1.10254 822449 746143433 30.1164 9.6799 2.9565 909 1.0013 826810 753571000 30.1662 9.6905 </th <th></th> <th>1.11857</th> <th></th> <th></th> <th>29.8998</th> <th></th> <th></th>		1.11857			29.8998		
896 1.11607 802816 719323136 299333 96465 2.95231 897 1.11433 804609 721734273 29.9666 9.6447 2.9538 898 1.11235 805201 726573699 29.9633 9.6513 2.95376 900 1.11111 81000 729000000 30.0000 9.6549 2.95424 901 1.10865 813601 73143270 30.0167 9.6585 2.95424 902 1.10865 813604 733870808 30.0333 9.65652 2.95173 903 1.10742 815409 73876324 30.0500 9.66552 2.95017 905 1.10497 819025 741217625 30.0832 9.6773 2.9565 906 1.10375 820836 743677416 30.0398 9.6763 2.95713 907 1.10254 822449 746143433 30.1164 9.6799 2.9565 909 1.0013 826810 753571000 30.1662 9.6905 </th <th>895</th> <th>1.11722</th> <th>801025</th> <th>716017275</th> <th>20.0166</th> <th>0.6270</th> <th>2.05182</th>	895	1.11722	801025	716017275	20.0166	0.6270	2.05182
867 1.11483 804600 721734273 29.9500 96.442 2.95270 898 1.11359 806404 724150792 29.9603 9.6513 2.95328 899 1.11235 805801 72657699 29.9833 9.6513 2.95328 900 1.11111 810000 720000000 30.0000 9.6549 2.95472 901 1.10088 811801 731432701 30.0167 9.6585 2.95472 902 1.10088 811801 731432701 30.0066 9.6592 2.95173 903 1.10742 815409 738763264 30.0333 9.0602 2.95173 905 1.10375 820830 74367716 30.0098 9.6773 2.9565 906 1.10375 820830 74367416 30.0098 9.6793 2.9576 907 1.10247 819025 741217625 30.0832 9.6797 2.9565 905 1.10132 824404 74861312 30.1149 9.6797 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>2.05221</th>							2.05221
899 I.11235 808201 726572699 29.9833 9.6513 2.95376 900 I.11111 810000 729000000 30.0000 9.6549 2.95424 901 I.10088 811801 731432701 30.0167 9.6585 2.95472 903 I.1048 811801 731432701 30.0167 9.6585 2.95472 903 I.10497 819025 741217625 30.0300 9.66562 2.95761 905 I.10497 819025 741217625 30.0832 9.6727 2.95665 906 I.10325 822649 746142643 30.1164 9.6799 2.95761 907 I.10254 822649 745142643 30.1496 9.6870 2.9580 908 I.1032 828100 75357100 30.1662 9.6905 2.95924 910 I.09800 828100 75357100 30.1662 9.6905 2.95924 911 I.09769 839227 756558031 30.1828 9.604	807	1.11482				0.6442	
899 I.11235 808201 726572699 29.9833 9.6513 2.95376 900 I.11111 810000 729000000 30.0000 9.6549 2.95424 901 I.10088 811801 731432701 30.0167 9.6585 2.95472 903 I.1048 811801 731432701 30.0167 9.6585 2.95472 903 I.10497 819025 741217625 30.0300 9.66562 2.95761 905 I.10497 819025 741217625 30.0832 9.6727 2.95665 906 I.10325 822649 746142643 30.1164 9.6799 2.95761 907 I.10254 822649 745142643 30.1496 9.6870 2.9580 908 I.1032 828100 75357100 30.1662 9.6905 2.95924 910 I.09800 828100 75357100 30.1662 9.6905 2.95924 911 I.09769 839227 756558031 30.1828 9.604	868				20.0666	0.6477	2.05228
900 I.IIIII 810000 72900000 30.0000 9.6549 2.95424 901 I.I088 811801 731432701 30.0167 9.6585 2.95472 902 I.I085 813604 7336763264 30.0333 9.6620 2.95472 903 I.I0742 815409 73614327 30.0500 9.6666 2.95569 904 I.I0619 817216 738763264 30.0666 9.6692 2.95671 905 I.I0497 819025 741217625 30.0832 9.6773 2.95761 906 I.I0375 820836 743677416 30.0908 9.6763 2.95909 907 I.I0254 822649 74164343 30.1164 9.6834 2.99509 908 I.I011 826281 751089429 30.1496 9.6874 2.99594 910 I.09800 828100 753571000 30.1662 9.69076 2.95999 911 I.09769 833505 761648497 30.2139 9.697	800		808201		20.0822	0.6512	
901 1.10088 811801 731432701 30.0107 9.6585 2.95472 902 1.10865 813604 738763264 30.0333 9.6622 2.95569 903 1.10474 815400 738763264 30.0666 9.6655 2.95569 905 1.10497 819025 741217625 30.0832 9.6727 2.95665 906 1.10375 820836 743677416 30.0908 9.6763 2.95761 907 1.10254 822449 746142643 30.1164 9.6799 2.95761 908 1.10011 826281 751571000 30.1662 9.6905 2.95896 910 1.09890 828100 753571000 30.1662 9.6905 2.95994 911 1.09769 83921 75605831 30.1393 9.6676 2.95999 912 1.09649 831744 75855928 30.1993 9.6762 2.95999 913 1.09529 833596 761351944 30.3255 9711				/203/2099			955/0
902 I. 10865 81 3604 738763868 30.0333 9.6620 2.9521 903 I. 10742 81 5409 738763264 30.0500 9.6656 2.95567 905 I. 10497 819025 741217625 30.0832 9.6727 2.95665 906 I. 10375 820836 74367746 30.0998 9.6773 2.95865 907 I. 10254 822649 746142643 30.1164 9.67799 2.95869 908 I. 10132 824464 74861312 30.1305 9.68344 2.95896 910 I.09800 828100 753571000 30.1662 9.6905 2.959924 911 I.09769 83921 75035031 30.1828 9.6641 2.95992 912 I.09649 831744 75855031 30.1239 9.7012 2.96047 914 I.09409 831396 76351944 30.2324 9.7047 2.96037 915 I.09200 837225 76666875 30.2490 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							
903 1.10742 815400 736314327 30.0500 9.66556 2.9559 904 1.10619 817216 738763264 30.0666 9.6692 2.95617 905 1.10497 819025 741217625 30.0832 9.6727 2.95655 906 1.10375 820836 743677416 30.0908 9.6773 2.95761 908 1.10132 824464 748613312 30.1164 9.6799 2.95761 909 1.10011 826281 751089429 30.1496 9.66870 2.95856 910 1.00800 828100 75351000 30.1622 9.60941 2.95992 911 1.00949 831744 75855028 30.1993 9.60976 2.95995 913 1.09290 833296 766351944 30.2159 9.7012 2.96047 914 1.09409 835396 776351936 30.2820 9.7188 2.965392 915 1.09290 837225 766606875 30.2490 <th< th=""><th></th><th></th><th></th><th>731432701</th><th></th><th></th><th></th></th<>				731432701			
904 1.10619 817216 738763264 30.0666 9.6692 2.95617 905 1.10497 819025 741217625 30.0832 9.6773 2.95665 906 1.10375 820836 743677416 30.0998 9.6763 2.95713 907 1.10254 822649 746142643 30.1164 9.6799 2.95761 908 1.10132 824464 74861312 30.1330 9.6834 2.95899 909 1.10011 826281 751089429 30.1496 9.69691 2.95952 910 1.09800 828100 753571000 30.1662 9.6905 2.95994 911 1.09769 829021 75058031 30.1828 9.6941 2.95952 912 1.09529 833569 7610497 30.2159 9.7012 2.95047 914 1.09409 835396 76857539 30.2490 9.7082 2.96142 916 1.0920 837225 766606875 30.2455 9.7118			813604		30.0333		
905 I.10497 819025 741217625 30.0832 9.67727 2.9565 906 I.10375 820836 743677416 30.0998 9.6763 2.95713 907 I.10254 822649 746142643 30.1164 9.6799 2.95761 908 I.10132 824464 748613312 30.130 9.6834 2.95856 910 I.09890 828100 751089429 30.1662 9.6095 2.95904 911 I.09649 831744 758550528 30.1993 9.6976 2.95952 912 I.09649 831744 758550528 30.1993 9.6976 2.95999 913 I.09529 833596 7613551944 30.2324 9.7047 2.96047 914 I.09409 835396 76857539 30.2490 9.7082 2.96142 916 I.09170 839057 76857539 30.2825 9.7183 2.96337 918 I.08032 842724 77362632 30.2855 9.71	903		81 5409		30.0500		2.95569
966 1.10375 826836 743677416 30.0998 9.6753 2.93713 907 1.10254 822649 746142643 30.1164 9.67999 2.95761 908 1.10132 824464 74861312 30.1330 9.6834 2.95859 909 1.0011 826281 7508429 30.1496 9.6870 2.95952 911 1.09769 829921 75058031 30.1828 9.6941 2.95952 912 1.09649 831744 758550528 30.1993 9.6976 2.95999 913 1.09230 833569 763551944 30.239 9.7047 2.96047 914 1.09409 835396 763551944 30.2459 9.7047 2.96035 915 1.09200 837225 76660875 30.2490 9.7082 2.96142 917 1.00051 840889 77105213 30.2820 9.7153 2.96237 918 1.08532 84241 778122032 30.3480 9.7224 <th>904</th> <th>1.10619</th> <th>817216</th> <th>738763264</th> <th>30.0666</th> <th>9.6692</th> <th>2.95617</th>	904	1.10619	817216	738763264	30.0666	9.6692	2.95617
905 I.10375 820836 743677416 30.0908 9.6763 2.95713 907 I.10234 822649 746142643 30.1164 9.6799 2.95761 908 I.10132 82464 746143132 30.1330 9.6834 2.95856 910 I.09800 82461 75189429 30.1496 9.6870 2.95856 911 I.09769 829921 75058031 30.1828 9.6941 2.95952 912 I.09649 831744 758550528 30.1999 9.7012 2.96047 914 I.09409 835396 761351944 30.2324 9.7042 2.96047 914 I.09409 83596 76351944 30.2490 9.7082 2.96142 916 I.09170 839056 76857529 30.2490 9.7082 2.96142 916 I.08051 840859 77105151559 30.2480 9.7118 2.96337 918 I.08032 844724 773620632 30.2850 9.7188	905	1.10407	819025	741217625	30.0832	9.6727	2.95665
907 I.10254 822649 746142643 30.1164 9.6799 2.95761 908 I.10132 824644 748613312 30.1330 9.6834 2.93809 909 I.10011 826281 751089429 30.1496 9.6870 2.95856 910 I.09890 828100 753571000 30.1662 9.6905 2.95904 911 I.09649 831744 75855028 30.1993 9.6976 2.95999 913 I.09529 833569 761048497 30.2159 9.7012 2.96047 914 I.09409 835396 763551944 30.2324 9.7047 2.96095 915 I.09290 837225 76666875 30.2490 9.7082 2.96142 916 I.09170 839056 76857526 30.2855 9.7118 2.96237 918 I.08932 84724 773620632 30.2985 9.7188 2.96332 917 I.09051 840889 77105151559 30.3150 9.7	906		820836	743677416	30.0008	9.6763	
908 1.10132 824464 748613312 30.130 9.6834 2.95809 909 1.10011 826281 751089429 30.1496 9.6870 2.95856 910 1.09800 828100 753571000 30.1662 9.6905 2.95904 911 1.09769 829921 75058031 30.1828 9.6941 2.95952 912 1.09529 831744 758550528 30.1993 9.6976 2.95904 914 1.09409 835396 763551944 30.2324 9.7047 2.96047 915 1.09290 837225 766606875 30.2490 9.7082 2.96142 916 1.09170 839056 768575296 30.2820 9.7118 2.96132 918 1.08032 842724 771052513 30.2820 9.7153 2.96344 919 1.08814 844561 776151559 30.315 9.7259 2.96379 921 1.08578 848241 781229961 30.3485 9.73			822649			9.6799	2.95761
909 $I.100II$ $82628i$ 751089429 30.1496 9.6870 2.95856 910 $I.09890$ 828100 753571000 30.1662 9.6905 2.95904 911 $I.0769$ 829921 75658031 30.1828 9.6941 2.95952 912 $I.09529$ 833569 761048497 30.2159 9.7012 2.95047 914 $I.09409$ 835396 761048497 30.2324 9.7047 2.95095 915 $I.09290$ 837225 766060875 30.2490 9.7082 2.96142 916 $I.09170$ 839056 768575296 30.2490 9.7082 2.96142 917 $I.00251$ 840889 771095131 30.2820 9.7183 2.96237 918 $I.08932$ 842724 77505032 30.3150 9.7224 2.96332 920 $I.08696$ 846400 778688000 30.3315 9.7259 2.06379 921 $I.08578$ 848241 781229961 30.3480 9.7344 2.96520 923 $I.08460$ 85064 78637047 30.3480 9.7294 2.06473 924 $I.08275$ 853776 786889024 30.3480 9.7294 2.06426 925 $I.08108$ 855625 791453125 30.4138 9.7435 2.96677 924 $I.07291$ 857476 790597983 30.4467 9.7400 2.96671 925 $I.07991$ 857476 790597983 30.4467 9.7400 <	908		824464			9.6834	2.95809
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			826281				2.95856
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	910	1.00800	828100	753571000	30.1662	0.6005	2.95004
912 1.09049 831744 758550528 30.1993 9.0976 2.99999 913 1.09529 833569 761048497 30.2159 9.7012 2.96047 914 1.09409 835396 763551944 30.2324 9.7047 2.96095 915 1.09290 837225 766660875 30.2490 9.7082 2.96142 916 1.09170 839056 768575296 30.2655 9.7118 2.96297 917 1.09051 840859 771095213 30.2820 9.7153 2.96284 919 1.08814 844561 776151559 30.3150 9.7224 2.96332 920 1.08596 846400 778688000 30.3315 9.7259 2.96379 921 1.08578 848241 781229961 30.3809 9.7364 2.96426 922 1.08460 85084 78377448 30.3645 9.7394 2.96661 923 1.08242 851929 786889024 30.3974 9.7		1.00760		750058031	30.1828	0.6041	
913 1.09529 833569 761048497 30.2159 9.7012 2.96047 914 1.09409 835396 763551944 30.2324 9.7047 2.96095 915 1.09290 837225 766666875 30.2490 9.7082 2.96142 916 1.09170 839056 768575296 30.2655 9.7118 2.96190 917 1.09051 840889 771095213 30.2820 9.7153 2.96234 918 1.08032 842724 773620632 30.2985 9.7188 2.96332 920 1.08696 846400 778688000 30.3315 9.7224 2.96379 921 1.08578 848241 781229961 30.3480 9.7394 2.96473 923 1.08578 848241 781229961 30.3645 9.7392 2.96473 923 1.08466 850084 78330467 30.3809 9.7364 2.96550 924 1.08225 853776 788889024 30.3974 9.			831744	758550528		0.6076	
914 1.09409 835396 763551944 30.2324 9.7047 2.96095 915 1.09200 837225 766060875 30.2490 9.7082 2.96142 916 1.09170 839056 768575296 30.2655 9.7118 2.96190 917 1.09051 840889 771095213 30.2820 9.7153 2.96237 918 1.08032 842724 773620632 30.3985 9.7188 2.96237 919 1.08514 844561 776151559 30.3150 9.7224 2.96332 920 1.08696 846400 778688000 30.3315 9.7259 2.96473 921 1.08578 848241 781229961 30.3645 9.7354 2.96473 923 1.08578 848241 781229961 30.3645 9.7354 2.96473 923 1.08460 85084 78330467 30.3645 9.7354 2.96577 924 1.08225 853776 788889024 30.3974 9.7			833560	761048407			
916 I.09170 839056 768575296 30.2655 9.7118 2.96190 917 I.08051 840889 771095213 30.2820 9.7153 2.96237 918 I.08032 842724 773620632 30.2985 9.7188 2.96284 919 I.08814 844561 776151559 30.3150 9.7224 2.96332 920 I.08696 846400 778688000 30.3315 9.7224 2.96426 921 I.08578 848241 781229961 30.3480 9.7294 2.96426 922 I.08460 850084 78177448 30.3645 9.7329 2.96473 923 I.08342 851929 786330467 30.3809 9.7364 2.96550 924 I.08225 853776 788889024 30.3974 9.7400 2.96567 925 I.08108 855625 791453125 30.4138 9.7435 2.96614 926 I.07991 857476 794022776 30.4302 9.			835396				
916 I.09170 839056 768575296 30.2655 9.7118 2.96190 917 I.08051 840889 771095213 30.2820 9.7153 2.96237 918 I.08032 842724 773620632 30.2985 9.7188 2.96284 919 I.08814 844561 776151559 30.3150 9.7224 2.96332 920 I.08696 846400 778688000 30.3315 9.7224 2.96426 921 I.08578 848241 781229961 30.3480 9.7294 2.96426 922 I.08460 850084 78177448 30.3645 9.7329 2.96473 923 I.08342 851929 786330467 30.3809 9.7364 2.96550 924 I.08225 853776 788889024 30.3974 9.7400 2.96567 925 I.08108 855625 791453125 30.4138 9.7435 2.96614 926 I.07991 857476 794022776 30.4302 9.	915	1.00200	837225	76606087 5	30.2400	0.7082	2.06142
917 1.09051 840889 771095213 30.2820 9.7153 2.96237 918 1.08932 842724 773620632 30.2985 9.7153 2.96234 919 1.08814 844561 776151559 30.3150 9.7224 2.96332 920 1.08696 846400 778688000 30.3315 9.7259 2.96379 921 1.08578 848241 781229961 30.3480 9.73294 2.96426 922 1.08460 850084 783777448 30.3645 9.7329 2.96473 923 1.08460 850084 78377748 30.3690 9.7364 2.06520 924 1.08225 853776 788889024 30.3974 9.7400 2.96567 925 1.08108 855625 791453125 30.4138 9.7435 2.96614 926 1.07991 857476 794022776 30.4302 9.7470 2.96661 927 1.07875 859329 796597983 30.4467 9			830016	768575206			2.06100
918 1.08932 842724 773620632 30.2985 9.7188 2.06284 919 1.08814 844501 770151559 30.3150 9.7224 2.96332 920 1.08814 844501 770151559 30.3150 9.7224 2.96379 921 1.08578 848241 781229961 30.3315 9.7294 2.96426 922 1.08460 85084 783777448 30.3645 9.7329 2.96473 923 1.08342 851929 786330467 30.3809 9.7364 2.96550 924 1.08225 853776 788889024 30.3974 9.7400 2.96567 925 1.08108 855625 791453125 30.4138 9.7435 2.96614 926 1.07991 857476 794022776 30.4302 9.7470 2.96661 927 1.07875 859329 790597983 30.4467 9.7505 2.96708 928 1.07759 861184 799178752 30.4031 9.	017		840880				
919 1.08814 844561 776151559 30.3150 9.7224 2.96332 920 1.08696 846400 778688000 30.3315 9.7259 2.96379 921 1.08578 848241 781229961 30.3315 9.7294 2.96426 922 1.08578 848241 781229961 30.3480 9.7294 2.96426 923 1.08342 851929 786330467 30.3609 9.7364 2.96520 924 1.08225 853776 788889024 30.3974 9.7400 2.96567 925 1.08108 855625 791453125 30.4138 9.7435 2.96614 926 1.07091 857476 794022776 30.4302 9.7470 2.96661 927 1.07875 859329 706597983 30.4467 9.7505 2.96708 928 1.07759 861184 799178752 30.4031 9.7540 2.96755 929 1.07643 863041 801765089 30.4959 9	616	1.08932				0.7188	
921 I.08578 848241 781229961 30.3480 9.7294 2.96426 922 I.08460 850084 783777448 30.3645 9.7329 2.06473 923 I.08342 851929 786330467 30.3809 9.7364 2.06570 924 I.08225 853776 78888024 30.3974 9.7400 2.96567 925 I.08108 855625 791453125 30.4138 9.7435 2.96614 926 I.07991 857476 794022776 30.4302 9.7470 2.96661 927 I.07875 859329 796597983 30.4467 9.7505 2.96708 928 I.07759 861184 799178752 30.4631 9.7540 2.96708 928 I.07559 861184 799178752 30.4631 9.7575 2.96802 930 I.07527 864900 804357000 30.4959 9.7610 2.96885 931 I.07206 868624 809557568 30.5123 9.		1.08814					
921 I.08578 848241 781229961 30.3480 9.7294 2.96426 922 I.08460 850084 783777448 30.3645 9.7329 2.06473 923 I.08342 851929 786330467 30.3809 9.7364 2.06570 924 I.08225 853776 78888024 30.3974 9.7400 2.96567 925 I.08108 855625 791453125 30.4138 9.7435 2.96614 926 I.07991 857476 794022776 30.4302 9.7470 2.96661 927 I.07875 859329 796597983 30.4467 9.7505 2.96708 928 I.07759 861184 799178752 30.4631 9.7540 2.96708 928 I.07559 861184 799178752 30.4631 9.7575 2.96802 930 I.07527 864900 804357000 30.4959 9.7610 2.96885 931 I.07206 868624 809557568 30.5123 9.	920	1.08606	846400	778688000	30.221 5	0.7250	2.06270
922 I.o8460 850084 783777448 30.3645 9.7329 2.96473 923 I.o8342 851929 786330467 30.3809 9.7364 2.96520 924 I.o8225 853776 788889024 30.3974 9.7400 2.96567 925 I.o8108 855625 791453125 30.4138 9.7435 2.96614 926 I.07091 857476 794022776 30.4302 9.7470 2.96661 927 I.07875 859329 796597983 30.4467 9.7505 2.96708 928 I.07759 861184 799178752 30.4631 9.7540 2.96755 929 I.07643 863041 801765089 30.4795 9.7575 2.96802 930 I.07527 864900 804357000 30.4959 9.7610 2.96888 931 I.07296 868624 809557568 30.587 9.7680 2.969942 932 I.07296 868624 809557568 30.5870 9		1.08578	848241	781220061	30.3480		2.06426
923 1.08342 851929 786330467 30.3809 9.7364 2.06520 924 1.08225 853776 788889024 30.3974 9.7400 2.96567 925 1.08108 855625 791453125 30.4138 9.7435 2.96614 926 1.07991 857476 794022776 30.4302 9.7470 2.96661 927 1.07875 859329 796597983 30.4467 9.7505 2.96708 928 1.07759 861184 799178752 30.4631 9.7540 2.96782 929 1.07643 863041 801765089 30.4795 9.7575 2.96802 930 1.07527 864900 804357000 30.4959 9.7610 2.968848 931 1.07411 865761 805954491 30.5123 9.76645 2.96895 932 1.07181 870489 812166237 30.5450 9.7715 2.96988		1.08460		783777448	30.264 5		
924 1.08225 853776 788889024 30.3974 9.7400 2.96567 925 1.08108 855625 791453125 30.4138 9.7435 2.96614 926 1.07991 857476 794022776 30.4302 9.7470 2.96661 927 1.07875 859329 796597983 30.4467 9.7505 2.96708 928 1.07759 861184 799178752 30.4631 9.7540 2.96785 929 1.07643 863041 801765089 30.4795 9.7575 2.96802 930 1.07527 864900 804357000 30.4959 9.7610 2.968848 931 1.07411 866761 805954491 30.5123 9.7665 2.96895 932 1.07296 868624 80557568 30.5287 9.7660 2.969942 933 1.07181 870489 812166237 30.5450 9.7715 2.9688		1.08342	851020	786330467	30.3800		
925 1.08108 855625 791453125 30.4138 9.7435 2.96614 926 1.07991 857476 794022776 30.4302 9.7470 2.96661 927 1.07875 859329 796597983 30.4467 9.7505 2.96708 928 1.07759 861184 799178752 30.4631 9.7540 2.96708 929 1.07643 863041 801765089 30.4795 9.7575 2.96802 930 1.07527 864900 804357000 30.4959 9.7610 2.96882 931 1.07411 866761 805954491 30.5123 9.7645 2.96895 932 1.07296 868624 809557568 30.5287 9.7680 2.969942 933 1.07181 870489 812166237 30.5450 9.7715 2.96988		1.08225	853776	788889024			
926 I.07991 857476 794022776 30.4302 9.7470 2.96661 927 I.07875 859329 796597983 30.4467 9.7505 2.96708 928 I.07759 861184 799178752 30.4631 9.7540 2.96708 929 I.07643 863041 801765089 30.4795 9.7575 2.96802 930 I.07527 864900 804357000 30.4959 9.7610 2.96848 931 I.07411 866761 806954491 30.5123 9.7645 2.96895 932 I.07206 868624 809557568 30.5287 9.7645 2.96942 933 I.07181 870489 812166237 30.5450 9.7715 2.96988	925	1.08108	855625		20,4128	0.7425	2.06614
927 I.07875 859329 796597083 30.4467 9.7505 2.96708 928 I.07759 861184 799178752 30.4631 9.7540 2.06755 929 I.07643 863041 801765089 30.4795 9.7575 2.96802 930 I.07527 864900 804357000 30.4959 9.7610 2.96882 931 I.07411 866761 806954491 30.5123 9.7645 2.96895 932 I.07296 868624 80957568 30.5287 9.7645 2.969942 933 I.07181 870489 812166237 30.5450 9.7715 2.96888			857476		20,4202		2.06661
928 I.07759 861184 799178752 30.4031 9.7540 2.90755 929 I.07643 863041 801765089 30.4795 9.7575 2.96802 930 I.07527 864900 804357000 30.4959 9.7610 2.96848 931 I.07411 866761 806954491 30.5123 9.7645 2.96895 932 I.07296 868624 809557568 30.5287 9.7645 2.96942 933 I.07181 870489 812166237 30.5450 9.7715 2.96888			850220				2.06708
929 I.07543 863041 801765089 30.4795 9.7575 2.96802 930 I.07527 864900 804357000 30.4959 9.7610 2.96848 931 I.07411 866761 806954491 30.5123 9.7645 2.96895 932 I.07296 868624 809557568 30.5287 9.7680 2.96942 933 I.07181 870489 812166237 30.5450 9.7715 2.96988		1.077 50	861184	700178762			
931 1.07411 866761 806954491 30.5123 9.7645 2.96895 932 1.07296 868624 809557568 30.5287 9.7680 2.96942 933 1.07181 870489 812166237 30.5450 9.7715 2.96988		1.07643		801765089			2.96802
931 1.07411 866761 806954491 30.5123 9.7645 2.96895 932 1.07296 868624 809557568 30.5287 9.7680 2.96942 933 1.07181 870489 812166237 30.5450 9.7715 2.96988	930	1.07527	864000	804257000	20.4050	0.7610	2.06848
932 I.07296 868624 809557568 30.5287 9.7680 2.96942 933 I.0718I 870489 812166237 30.5450 9.7715 2.96988			866761	806054405		0.764	
933 1.07181 870489 812166237 30.5450 9.7715 2.96988				800517168		57/043	
934 1.07066 872356 814780504 30.5614 9.7750 2.97035				812166227			2.06088
<u></u>			872256				
	904	1.0,000	0/2350	0.4/00304	30.3014	5115	

SMITHSONIAN TABLES.

VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, COBE ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS.

*	1000.1	n²	# ⁸	√n	¥n.	log. n
935			812 100022			
936	1.06952 1.06838	874225 876096	817400375 820025856	30.5778 30.5941	9.7785 9.7819	2.97081 2.97128
	1.06724	877969	822656953	30.6105	9.7854	2.97174
937 938	1.06610	879844	825293672	30.6268	9.7889	2.97220
939	1.06496	881721	827936019	30.6431	9.7924	2.97 267
940	1.06383	883600	830584000	30.6594	0 70 70	0.07.77.0
941	1.06270	885481	833237621	30.6757	9.7959	2.97313
942	1.06157	887 364	835896888	30.6920	9.7993 9.8028	2.97359 2.97405
943	1.06045	889249	838561807	30.7083	9.8063	2.97451
944	1.05932	891136	841232384	30.7246	9.8097	2.97497
945	1.05820	893025	843908625	30.7409	9.81 32	2.97543
946	1.05708	894916	846590536	30.7571	9.8167	2.97 589
947	1.05597	894916 896809	849278123	30.7734	9.8201	2.07635
948	1.05485	898704	851971392	30.7896	9.8236	2.97681
949	1.05374	900601	854670349	30.8058	9.8270	2.97727
950	1.05263	902500	857375000	30.8221	9.8305	2.97772
951	1.05152	904401	86008<3<1	30.8383	9.8339	2.97818
952	1.05042	906304	862801408	30.8545	9.8374	2.97864
953	1.04932	908209	865523177	30.8707	9.8408	2.97909
954	1.04822	91011G	868250664	30.8869	9.8443	2.97955
955	1.04712	91 202 5	870983875	30.9031	9.8477	2.98000
956	1.04603	91,3936	873722816	30.9192	9.8511	2.98046
957	1.04493	91 3936 91 5849	876467493	30.9354	9.8546	2.08001
958	1.04384	QI7764	879217912	30.9516	9.8580	2.081 37
959	1.04275	919681	881974079	30.9677	9.8614	2.98182
960	1.04167	921600	884736000	30.9839	9.8648	2.98227
961	1.04058	923521	887 503681	31.0000	9.8683	2.08272
962	1.03950	925444	800277128	31.0161	9.8717	2.08318
963	1.03832	927369	893056347	31.0322	9.8751	2.98363
964	1.03734	929296	895841344	31.0483	9.8785	2.98408
965	1.03627	931225	898632125	31.0644	9.8819	2.98453 2.98498
966	1.03520	933156	901428696	31.0805	9.8854 9.8888	2.98498
967	1.03413	935089	904231063	31.0966	9.8888	2.98543 2.98588
968	1.03306	037024	907039232	31.1127	9.8922	2.98588
969	1.03199	938961	909853209	31.1288	<u>9</u> .8956	2.98632
970	1.03093	940900	912673000 915498611	31.1448	9.8990	2.98677
97 I	1.02987	942841	915498611	31.1609	9.9024	2.98722
972	1.02881	944784	918330048	31.1769	9.9058	2.98767
973	1.02775	946729	921167317	31.1929	9.9092	2.98811
974	1.02669	948676	924010424	31.2090	9.9126	2.98856
975	1.02564	950625	926859375	31.2250	9.9160	2.98900
976	1.02459	952576	929714176	31.2410	9.9194	2.98945
977 978	1.02354	954529	932574833	31.2570	9.9227	2.98989
	1.02249	956484	935441352	31.2730	9.9261	2.99034
979	1.02145	958441	938313739	31.2890	9.9295	2.99078
980	1.02041	960400	941192000	31.3050	9.9329 9.9363	2.99123
981	1.01937	962361	944076141	31.3209	9.9363	2.99167
982	1.01833	964324	946966168	31.3369	9.9396	2.99211
983 984	I.01729 I.01626	966289 968256	949862087 952763904	31.3528 31.3688	9.9430 9.9464	2.99255 2.99300
		,,.			771-7	
9 85 986	1.01 523	970225	955671625	31.3847	9-9497	2.99344
960	1.01420	972196	958585256	31.4006	9.9531	2.99388
987 988	1.01317	974169 076144	961 504803	31.4166	9.9565	2.99432
989	1.01215 1.01112	976144 978121	964430272 967361669	31.4325 31.4484	9.9598 9.9632	2.99476 2.99520
~~~		7,0121	Joi 201 000	3	J.7.0"	

SMITHSONIAN TABLES.

Digitized by GOOgle

.

.

.

n	1000.1 <u>.</u>	n ²	n ⁸	172	₹ <i>n</i>	log. n
990	1.01010	980100	970299000	31.4643	9.9666	2.99564
991	1.00908	982081	97 3242271	31.4802	9.9699	2.99607
992	1.00806	984064	976191488	31.4960	9.9733	2.99651
993	1.00705	986049	979146657	31.5119	9.9766	2.99695
994	1.00604	988036	982107784	31.5278	9.9800	2.99739
995	1.00503	990025	985074875	31.5436	9.9833	2.99782
996	1.00402	992016	988047936	31.5595	00860	2.99826
	1.00301	994009	991026973	31.5753	9.9900	2.99870
997 998	1.00200	996004	994011992	31.5911	9.9933	2.99913
999	1.00100	998001	997002999	31.6070	9.9967	2.99957
1000	1.00000	1000000	1000000000	31.6228	10.0000	3.00000

SMITHSONIAN TABLES.

22



#### TABLE 4.

## CIRCUMFERENCE AND AREA OF CIRCLE IN TERMS OF DIAMETER d.

d	<b>∓</b> d	$\frac{1}{4} = d^2$	đ	<b>∓</b> d	1 = d ²	d	<b>=</b> d	<u>‡</u> <b>=</b> d ²
10 11 12	31.416 34.558 37.699	78.5398 95.0332 113.097	40 41 42	125.66 128.81 131.95	1256.64 1320.25 1385.44	70 71 72	219.91 223.05 226.19	3848.45 3959.19 4071.50
13 14 15	40.841 43.982 47.124	132.732 153.938 176.715	43 44 45	135.09 138.23 141.37	1452.20 1520.53 1590.43	73 74 75	229.34 232.48 235.62	4185.39 4300.84 4417.86
16 17 18	50.265 53.407	201.062 226.980	45 46 47 48	144.51 147.65	1661.90 1734.94	75 76 77 78	238.76 241.90	4536.46 4656.63
19 20	56.549 59.690 62.832	254.469 283.529 314.159	49 50	1 50.80 1 53.94 1 57.08	1809.56 1885.74 1963.50	79 80	245.04 248.19 251.33	4778.36 4901.67 5026.55
21 22 23	65.973 69.115 72.257	346.361 380.133 415.476	51 52 53	160.22 163.36 166.50	2042.82 2123.72 2206.18	81 82 83	254.47 257.61 260.75	51 53.00 5281.02 5410.61
24 25 20	7 5.398 78.540 81.681	452.389 490.874 530.929	54 55 56	169.65 172.79 175.93	2290.22 2375.83 2463.01	84 85 86	263.89 267.04 270.18	5541.77 5674.50 5808.80
27 28 29	84.823 87.965 91.106	572.555 615.752 660.520	57 58	179.07 182.21 185.35	2551.76 2642.08 2733.97	87 88 89	273.32 276.46 279.60	5944.68 6082.12 6221.14
30 31 32	94.248 97.389 100.53	706.858 754.768 804.248	59 60 61 62	188.50 191.64 194.78	2827.43 2922.47 3019.07	90 91 92	282.74 285.88 289.03	6361.73 6503.88 6647.61
33 34	103.67 106.81	855.299 907.920	63 64	197.92 201.06	3117.25 3216.99	93 94	292.17 295.31	6792.91 6939.78 7088.22
35 36 37 38	109.96 113.10 116.24	962.113 1017.88 1075.21	65 66 67	204.20 207.35 210.49	3318.31 3421.19 3525.65	95 96 97 98	298.45 301.59 304.73 307.88	7238.23 7389.81
38 39	119.38 122.52	1134.11 11 <b>94.5</b> 9	68 69	213.63 216.77	3631.68 3739-28	98 99	307.88 311.02	7542.96 7697.69

SHITHSONIAN TABLES.

23



## LOCARITHMS OF NUMBERS.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Parts.								
10 11 12 13 14	0414 0792 1139	0453 0828 1173	0492 0864	0531 0899 1239	0170 0569 0934 1271 1584	0607 0969 1303	0645 1004 1335	0682 1038 1367	0719 1072 1399	0374 0755 1106 1430 1732	443	8 7 6	12 11 10	17 15 14 13	<b>5</b> 21 19 17 16 15	25 23 21 19	29 26 24 23	8 33 30 28 26 24	37 34 31 29
15 16 17 18 19	2041 2304 2553 2788	2068 2330 2577 2810		2122 2380 2625 2856	2148 2405 2648 2878	2175 2430 2672 2900	2201 2455 2695 2923	2227 2480 2718 2945	2253 2504 2742 2967	2014 2279 2529 2765 2989		6 5 5 5 4	8 8 7 7 7	11 10 9 9	14 13 12 12 11	16 15 14 13	18 17 16	22 21 20 19 18	24 22 21
20 21 22 23 24	3222 3424 3617 3802	3243 3444 3636 3820	3263 3464 3655 3838	3284 3483 3674 3856	3502 3692 3874	3324 3522 3711 3892	3345 3541 3729 3909	3160 3365 3560 3747 3927	3385 3579 3766 3945	3404 3598 3784 3962	2 2 2 2 2	4 4 4 4	6 6 6 5	8 8	-	12 12 11 11	14 14 13	17 16 15 15 14	18 17 17
25 26 27 28 29	41 50 4314 4472 4624	4166 4330 4487 4639	4014 4183 4346 4502 4654	4200 4362 4518 4669	4216 4378 4533 4683	4232 4393 4548 4698	4249 4409 4564 4713	4099 4265 4425 4579 4728	4281 4440 4594 4742	4298 4456 4609 4757	2 2 2 2 1	3 3 3 3 3 3 3 3 3	5 5 5 5 4	77666	8 8 7	-	11 11 11 10	14 13 13 12 12	15 14 14 13
<b>30</b> 31 32 33 34	4914 5051 5185 5315	4928 5065 5198 5328	4800 4942 5079 5211 5340	4955 5092 5224 5353	4969 5105 5237 5366	4983 5119 5250 5378	4997 5132 5263 5391	4871 5011 5145 5276 5403	5024 5159 5289 5416	5038 5172 5302 5428	I I I I I	3 3 3 3 3 3 3 3	4 4 4 4 4	6 6 5 5 5 5	77766	9888888	10 9 .9	11 11 11 10 10	12 12 12
<b>35</b> 36 37 38 39	5563 5682 5798 5911	5575 5694 5809 5922	5465 5587 5705 5821 5933	5599 5717 5832 5944	5611 5729 5843 5955	5740 5855 5966	5752 5866 5977	5527 5647 5763 5877 5988	5775 5888 5999	5786 5899 6010	I I I I I	2 2 2 2 2 2	4 4 3 3 3	5 5 5 5 4	6 6 6 5	77777	8 8 8 8	9 9	11 10 10 10
<b>40</b> 41 42 43 44	6128 6232 6335	6138 6243 6345	6042 6149 6253 6355 6454	6160 6263 6365	6170 6274 6375	6180 6284 6385	6191 6294 6395	6096 6201 6304 6405 6503	6212 6314 6415	6222 6325 6425	I I I I	2 2 2 2 2 2	3 3 3 3 3 3 3	4 4 4 4	5 5 5 5 5 5	6666	8 7 7 7 7 7	988 888 888	10 9 9 9 9
<b>45</b> 46 47 48 49	6628 6721 6812	6637 6730 6821	6551 6646 6739 6830 6920	6656 6749 6839	6665 6758 6848	6675 6767 6857 6946	6684 6776 6866 6955	6599 6693 6785 6875 6964	6702 6794 6884 6972	6712 6803 6893 6981	I I I I I	2 2 2 2 2	3 3 3 3 3 3 3	4 4 4 4	5 5 4 4	6 6 5 5 5 5	77666	8 7 7 7 7 7	98 8 8 8
50 51 52 53 54	7076 7160 7243	7084 7168 7251	7007 7093 7177 7259 7340	7101 7185 7267	7110 7193 7275	7202	7210 7292	7050 7135 7218 7300 7380	7226 7308	7235 7316	I I I I I	2 2 2 2 2 2	3 3 2 2 2		4 4 4 4	5 5 5 5 5 5 5	6 6 6 6 6 6	77766	8 8 7 7 7 7
N.	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9

SHITHSONIAN TABLES.



. |

i.

TABLE 5.

## LOCARITHMS OF NUMBERS.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Parts.								
<b>55</b> 56 57 58 59	7482 7559 7634	7490 7566 7642	7419 7497 7574 7649 7723	7505 7582 7657	7513 7589 7664	7520 7597 7672	7451 7528 7604 7679 7752	7536 7612 7686	7543 7619 7694	7551 7627 7701	1 1 1 1 1 1	2 2 2 1 1	<b>3</b> 2 2 2 2 2 2 2 2	4 3 3 3 3 3 3 3	5 4 4 4 4 4	<b>6</b> 5 5 5 4 4	<b>7</b> 5 5 5 5 5 5 5 5	<b>8</b> 666666	9 7 7 7 7 7 7 7 7
<b>60</b> 61 62 63 64	7853 7924 7993	7860 7931 8000	7796 7868 7938 8007 8075	7875 7945 8014	7882 7952 8021	7889 7959 8028	7825 7896 7966 8035 8102	7903 7973 8041	7910 7980 8048	7917	I I I I I	1 1 1 1 1	2 2 2 2 2 2	3 3 3 3 3 3	4 3 3 3	4 4 4 4	5 5 5 5 5 5 5	6 6 5 5	6 6 6 6 6
<b>5</b> 8888	8195 8261 8325	8202 8267 8331	8142 8209 8274 8338 8401	8215 8280 8344	8222 8287 8351	8228 8293 8357		8241 8306 8370	8248 8312 8376	8254 8319 8382	I I I I I	I I I I I	2 2 2 2 2 2	3 3 3 3 2	3 3 3 3 3 3	4 4 4 4	5 5 5 4 4	5 5 5 5 5	6 6 6 6 6
70 71 72 73 74	8513 8573 8633	8519 8579 8639	8463 8525 8585 8645 8704	8531 8591 8651	8537 8597 8657	8543 8603 8663 8722	8488 8549 8609 8669 8727	8555 8615 8675 8733	8561 8621 8681 8739	8567 8627 8686 8745	I I I I I	I I I I I	2 2 2 2 2 2	2 2 2 2 2 2 2 2	3 3 3 3 3 3	4 4 4 4	<b>4</b> 4 4 4 <b>4</b>	5 5 5 5 5 5 5	6 5 5 5 5 5 5
<b>75</b> 76 77 78 79	8808 8865 8921	8814 8871 8927	8762 8820 8876 8932 8987	8825 8882 8938	8831 8887 8943	8837 8893 8949	8785 8842 8899 8954 9009	8848 8904 8960	8854 8910 8965	8859 8915 8971	I I I I I	I I I I	2 2 2 2 2 2	2 2 2 2 2 2 3	3 3 3 3 3 3	3 3 3 3 3 3 3	4 4 4 4	5 5 4 4 4	5 5 5 5 5 5 5
<b>80</b> 81 82 83 84	9085 9138 9191	9090 9143 9196	9042 9096 9149 9201 9253	9101 9154 9206	9106 9159 9212	9112 9165 9217 9269	9063 9117 9170 9222 9274	9122 9175 9227 9279	9128 9180 9232 9284	9133 9186 9238 9289	I I I I I	I I I I	2 2 2 2 2 2 2	2 2 2 2 2 2 2	3 3 3 3 3 3 3	3 3 3 3 3 3	4 4 4 4 4	4 4 4 4 4	5 5 5 5 5 5 5
<b>85</b> 86 87 88 89	9345 9395 9445	9350 9400 9450	9304 9355 9405 9455 9504	9360 9410 9460	9365 9415 9465	9420 9469	9325 9375 9425 9474 9523	9430 9479	9435 9484	9440 9489	I I 0 0	I I I I I	2 2 1 1 1	2 2 2 2 2 2 2	3 3 2 2 2 2	3 3 3 3 3 3 3	4 4 3 3 3	4 4 4 4	5 5 4 4 4
<b>90</b> 91 92 93 94	9590 9638 9685 9731	9595 9643 9689 9736	9552 9600 9647 9694 9741	9605 9652 9699 9745	9609 9657 9703 9750	9614 9661 9708 9754	9571 9619 9666 9713 9759	9624 9671 9717 9763	9628 9675 9722 9768	9633 9680 9727 9773	0 0 0 0 0	I I I I	I I I I	2 2 2 2 2 2 2	2 2 2 2 2	3 3 3 3 3 3	33333	<b>4</b> 4 4 4	4 4 4 4 4
<b>95</b> 96 97 98 99	9823 9868 9912	9827 9872 9917	9786 9832 9877 9921 9965	9836 9881 9926	9841 9886 9930	9845 9890 9934	9805 9850 9894 9939 9983	9854 9899 9943	9859 9903 9948	9863 9908 9952	0 0 0 0 0	I I I I I	I I I I	2 2 2 2 2 2	2 2 2 2 2	3 3 3 3 3	3 3 3 3 3	4 4 4 3	4 4 4 4 4
N.	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9

SHITHSONIAN TABLES.

.

25

i

#### ANTILOCARITHMS.

•

L	0	1	2	3	4	5	6	7	8	9			I	Joi	p. 1	Par	ts.		
.00			1005				1014				1 0	0	3 1	<b>4</b> 1	5 1	6 1	<b>7</b> 2	2	9 2
.01			1028				1038				0		I I	I	I	I I	2	22	2 2
.02 .03			1052 1076				1062 1086						ī	ī	I	ī	2	2	2
.04			1102				1112				0	I	I	1	1	2	2	2	2
.05 .06	1122	1125	1127 1153	1130	1132					1146	0	I I	I I	III	I I	2 2	2 2	2 2	2 2
.07	1175	1178	1180	1183	1186		1164 1191				ŏ	î	ī	î	î	2	2	2	2
.08	1202	1205	1208	1211	1213	1216	1219	1222	1225	1227	0	I	I	I	I	2	2	2	3
.09	1230	1233	1236	1239	1242	1245	1247	1250	1253	1256	°	I	I	I	I	2	2	2	3
<b>10</b> .11	1259 1288	1262	1265 1294	1268	1271		1276 1306				0	I I	I I	I I	1 2	2 2	2 2	2 2	3 3
.12	1318	1321	1324	1327	1330		1337				ō	ī	ī	ī	2	2	2	2	3
.13	1349	1352	1355 1387	1358	1361	1365	1 368	1371	1374	1377		I	I	I	2	2	2	3	3 3
.14						1396	1400	1403	1400	1409	°	I	I	I	2	2	2	3	3
.15			1419			1429	1432	1435	1439	1442		I	I	I	2	2	2	3	3
.16 .17	1445	1449 1482	1452 1486	1455	1459		1466 1500				0	I I	I I	I I	2 2	2 2	2 2	3 3	3 3
.18			1 521				1 535					ī	ī	ī	2	2	2	3	3
.19			1 5 56				1 570				٥	I	I	I	2	2	3	3 3	3 3
.20	1 585	1 589	1 592	1 596	1600		1607				٥	t	I	I	2	2	3	3	3
.21	1622	1626	1629	1633	1637		1644				0		I	2	2	2	33333	3333	3
.22 .23			1667 1706			1079	1683 1722	1007	1720	1094	0	I	I I	2 2	2 2	2 2	3	3	3 4
.24			1746			1758	1762	1766	1770	1774	ō		Ī	2	2	2	3	3	4
.25	1778	1782	1786	1791	1795	1799	1803	1807	1811	1816	0		I	2	2	2	3 3	3	4
.26 .27			1828 1871			1041	1845 1888	1849	1854	1050	0	I I	I I	2 2	2 2	3	3 3	3 3	4
.28			1914			1928	1932	1936	1941	1945		î	Î	2	2	3 3	3	3 4	4 4
.29			1959			1972	1977	1982	1986	1991	٥	I	I	2	2	3	3 3	4	4
.30			2004				2023				0		I	2	2	3	3	4	4
.31 .32			2051 2099				2070 2118				0	I I	I I	2 2	2 2	3 3	3 3 3	4	4
.33			2148				2168				ō		ī	2	2	3	3	4	4
•34	2188	2193	2198	2203	2208		2218				I	I	2	2	3	3	3 4	4	5
.35			2249				2270						2	2	3	3 3	4	4	5
.36 .37			2301 2355				2323 2377				II	I I	2 2	22	3 3	3	4	4	5 5
.38	2399	2404	2410	2415	2421	2427	2432	2438	2443	2449	I	I	2	2	33	3 3 3	4	4	5
•39	2455	2460	2466	2472	2477	2483	2489	2495	2500	2506	I	I	2	2	3	3	4	5	5
.40	2512	2518	2523 2582	2529	2535	2541	2547 2606	2553	2559 2618	2564	I I	I I	2 2	2 2	3 3 3 3 3	4	4	55555	ş
-41 -42	2630	2636	2502 2642	2640	2655	2661	2000	2012	2010	2685	I	I	2	2	37	4	4 4	5	5
-43	2692	2698	2704	2710	2716	2723	2729	2735	2742	2748	Ĩ	I	2	3	3	4	4	5	6
•44	2754	2761	2767	2773	2780	2786	2793	2799	2805	2812	I	I	2	3	3	4	4	5	6
.45			2831				2858				I	I	2	.3	3	4	5	5	6
•46 •47			2897 2965			2917 208r	2924 2992	293I	2938	2944	I	I I	2 2	33333	3 3 3 4	4	55555	55506	6
-47 -48			3034			3055	3062	3060	3076	3083	ī	ī	2	3	3 4	4	5	Ş	6 1
-49			3105			3126	3133	3141	3148	3155		I		3	4	4	5	6	6
L	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9

SMITHSONIAN TABLES.



TABLE 6.

ANTILOGARITHMS.

r	0	1	2	3	4	5	6	7	8	9			P	rol	). I	°ar	ts.		
.50 .51 .52 .53 .54	3236 3311 3388	3243 3319 3396	3177 3251 3327 3404 3483	3258 3334 3412	3266 3342 3420	3273 3350 3428	3206 3281 3357 3436 3516	3289 3365 3443	3296 3373 3451	3304 3381 3459	1 I I I I I	2 1 2 2 2 2	<b>3</b> 2 2 2 2 2 2 2	4 3 3 3 3 3 3	5 4 4 4 4 4 4	6 4 5 5 5 5 5	<b>7</b> 5 5 5 6 6	<b>8</b> 6 6 6 6 6 6	9 7 7 7 7 7 7
.56 .56 .57 .58 .59	3715 1802	3724 3811	3565 3648 3733 3819 3908	3741 3828	37 50 3837	3673 3758 3846	3597 3681 3767 3855 3945	3690 3776 3864	3698 3784 3873	3707 3793 3882	I I I I I	2 2 2 2 2 2 2	2 3 3 3 3 3	3 3 3 4 4	4 4 4 5	5 5 5 5 5 5 5 5	6 6 6 6 6	7 7 7 7 7 7	7 8 8 8 8
. <b>60</b> .61 .62 .63 .64	4074 4169 4266	4083 4178 4276	3999 4093 4188 4285 4385	4102 4198 4295	4111 4207 4305	4121 4217 4315	4036 4130 4227 4325 4426	4140 4236 4335	41 50 4246 434 5	41 59 42 56 43 55	I I I I I	2 2 2 2 2 2 2	3 3 3 3 3 3 3	4 4 4 4	5 5 5 5 5 5 5	6 6 6 6 6 6	6 7 7 7 7	7 8 8 8 8	8 9 9 9 9
. <b>65</b> .66 .67 .68 .69	4571 4677 4786	4581 4688 4797	4487 4592 4699 4808 4920	4603 4710 4819	461 3 4721 4831	4624 4732 4842	4529 4634 4742 4853 4966	4645 4753 4864	4656 4764 4875	4667 4775 4887	I I I I I	2 2 2 2 2 2 2	3 3 3 3 3 3 3 3	4 4 4 5	55566	6 6 7 7 7	7 7 8 8 8	9 9 9	9 10 10 10 10
. <b>70</b> .71 .72 .73 .74	5129 5248 5370	5140 5260 5383	5035 5152 5272 5395 5521	5164 5284 5408	5176 5297 5420	5188 5309 5433	5082 5200 5321 5445 5572	5212 5333 5458	5224 5346 5470	5236 5358 5483	I I I I I		4 4 4 4 4	5 5 5 5 5 5 5 5	6 6 6 6 6	7 7 7 8 8	8 9 9	9 10 10 10	11 11
. <b>75</b> .76 .77 .78 79	57 54 5888 6026	5768 5902 6039	5649 5781 5916 6053 6194	5794 5929 6067	567 5 5808 5943 6081 6223	5821 5957 6095	5702 5834 5970 6109 6252	5848 5984 6124	5861 5998 6138	5875 6012 6152	I I I I I	3 3 3 3 3 3	4 4 4 4	55506	7 7 7 7 7 7	8 8 8 8 9	9 10	11 11 11	12 13
<b>.80</b> .81 .82 .83 .84	6457 6607 6761	6471 6622 6776	6339 6486 6637 6792 6950	6501 6653 6808	6516 6668 6823	6531 6683 6839	6397 6546 6699 6855 7015	6561 6714 6871	6577 6730 6887	6592 6745 6902	I 2 2 2 2	3 3 3 3 3 3 3	4 5 5 5 5 5	6 6 6 6 6	8 8	9 9 9 9	10 11 11 11 11	12 12 13	14 14
<b>.85</b> .86 .87 .88 .89	7244 7413 7586	7261 7430 7603	7112 7278 7447 7621 7798	7295 7464 7638	731 I 7482 7656	7328 7499 7674	7178 7345 7516 7691 <b>7</b> 870	7362 7534 7709	7379 7551 7727	7396 7568 7745	2 2 2 2 2 2	3 3 3 4 4	5 5 5 5 5 5 5 5 5	7 7 7 7 7	8 9 9	10 10 10 11 11	12	13 14 14	
.90 .91 .92 .93 .94	8318 8511	8337 8531	7980 8166 8356 8551 8750	8375 8570	8395 8590	8222 8414 8610	8054 8241 8433 8630 8831	8260 8453 8650	8279 8472 8670	8299 8492	2 2	4 4 4	6 6 6 6 6	8 8	9 9 10 10	I2 I2	14 14	15 15 16	17
. <b>95</b> .96 .97 .98 .99	9120 9333 9550	9141 9354 9572	9376 9594	9183 9397 9616	8995 9204 9419 9638 9863	9226 9441 9661	9247 9462	9268 9484 9705	9290 9506 9727	9528 9750	2 2	4 4 4 5	6 6 7 7 7	8 9 9		13	15 15 16	17 17 18	19 19 20 20 20
r	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9

SMITHSONIAN TABLES.

Ì

#### NATURAL SINES AND COSINES.

Natural Sines.

Angle.	0'	10′	20'	30′	40'	50′	60′	Angle.	Prop. Parts for 1'.
00	.0000.00	.0029.09	.0058 18	.0087 27	.01 16 35	.0145 44	.0174 52	89°	2.9
I	.0174 52	.02036	.02327	.0261 8	.01 16 35 .0290 8	.03199	.03490	88	2.9
2	.0349 0	.0378 1	.0407 1	.0436 2	.0465 3	.0494 3 .0668 5	.05234 .06976	87	2.9
3	.05234 .06976	.0552 4	.0581 4	.0610 5	.06395 .08136	.0668 5	.0697 6	86	2.9 2.9
4	.0097 0	.07266	.07556	.0784 <b>č</b>	.08130	.0042 0	.08716	85	2.9
5	.0871 6	.0900 5	.0929 5	.0958 5	.0987 4	.10164	.1045 3 .1218 7	84	2.9
6	.10453 .12187	.1074 2	.11031	.11320	.1160.9	.11898 .1363		83 82	2.9
78	.12107	.1247 6 .1421	.1276 4 .1449	.1305 3 .1478	.1334 .1507	.1 536	.1 392 .1 564	81	2.9
9	.1564	.1 593	.1622	.1650	.1679	.1708	.1736	80	2.9
10	.1736	.1765	.1794	.1822	.1851	.1880	.1908	79	2.9
11	.1908		.1965	.1994	.2022	.2051	.2079	78	2.9 2.8
12	.2079	.1937 .2108	.1965 .2136	.2164	.2193	.222I	.2250	77	
13	.2250	.2278	.2306	.2334	.2363	.2391	.2419	76	2.8
14	.2419	.2447	.2476	.2504	.2532	.2560	.2588	75	2.8
15	.2588	.2616	.2644	.2672	.2700	.2728	.27 56	74	2.8
16	.27 56	.2784	.2812	.2840	.2868	.2896	.2924	73	2.8
17 18	.2924	.2952	•2979	.3007	.3035	.3062	.3090	72	2.8 2.8
10 19	.3090 .3256	.3118 .3283	.3145 .3311	.3173 .3338	.3201 .3365	.3228 •3393	.3256 .3420	71 70	2.0
						.2222		1 ·	
20	.3420	.3448	.3475 .3638	.3502 .3665	.3529 .3692	-3557	.3584	69	2.7
2I 22	.3584	.3611	.3638 .3800	.3665 .3827	.3692	.3719 .3881	.3746	68 67	2.7
22	.3746 .3907	·3773 ·3934	.3800 .3961	.3027 .3987	.3854 .4014	.3001 .4041	.3907 .4067	66	2.7 2.7
24	.4067	.4094	.4120	.4147	-4173	.4200	.4226	65	2.7
25	.4226	.4253	.4279	-4305	.4221	.4358	-4384	64	2.6
26	.4384	.4410	.4436	-4462	.4331 .4488	.4514	-4540	63	2.6
27	.45 <b>40</b> .4695	<b>-4566</b>	.4592	.4617	.4643	.4514 .4669	.4605	62	2.6
28	-4695	-4720	.4746 .4899	-4772	·4797	.4823	.4848	61	2.6
29	.4848	-4874	.4899	-4924	.4950	·4975	.5000	60	2.5
30	.5000	.5025	.5050	.5075	.5100	.5125	.51 50	59	2.5
31	.5150	.5175	.5200	.5225	.5250	.5275	.5299	58	2.5
32 33	.5299 .5446	.5324 .5471	.5348	·5373	.5398	.5422 .5568	.5446 .5592	57 56	2.5 2.4
34	.5592	.5616	·5495 .5640	.5519 .5664	·5544 ·5688	.5300	.5736	55	2.4
35				.5807			-	54	
35 36	.5736 .5878	.5760	.5783	.5007 5048	.5831	.5854	.5878 .6018	53	2.4 2.3
27	.50/0	.5901 .6041	.5925 .6065	. 5948 .6088	.5972 .6111	-5995 .61 34	.61 57	53 52	2.3
37 38	.61 57	.6180	.6202	.6225	.6248	.6271	.6293	ξī	2.3
39	.6293	.631 <b>6</b>	.6338	.6361	.6383	.6406	.6428	50	2.3
40	.6428	.6450	.6472	.6494	.6517	.6539	.6561 .6691	49	2.2
41	.6561 .6691	.6450 .6583	.6604	.6626	.6517 .6648	.6539 .6670	.6691	48	2.2
42	.6691 .6820	.6713 .6841	.6734 .6862	.67 56 .6884	.6777	.6799	.6820	47 46	2.2 2.1
43 44	.0820 .6947	.6967	.0802	.0884 .7009	.6905 .7030	.6926 .7050	. <b>694</b> 7 .707 I	40	2.1 2.1
					<u> </u>				
	60′	50′	40'	30′	20′	10'	o	Angle.	

SMITHSÓNIAN TABLES.

Natural Cosines.



#### NATURAL SINES AND COSINES.

Natural Sines.

Angle.	ď	10′	20′	30′	40′	50′	60′	Angle.	Prop. Parts for 1/,
<b>45°</b> 46 47 48	.7071 .7193 .7314 .7431	.7092 .7214 .7333	.7112 .7234 .7353 .7470	.7133 .7254 .7373 .7490	.7153 .7274 .7392 .7509	.7173 .7294 .7412 .7528	.7193 .7314 .7431	<b>44</b> ° 43 42 41	2.0 2.0 2.0 1.9
49 50	·7547 ·7660	.7451 .7566	.7585 .7698	.7604	.7623	.7642	.7547 .7660	40 39	1.9 1.9
51 52 53 54	.7000 .7771 .7880 .7986 .8090	.7679 .7790 .7898 .8004 .8107	.7098 .7808 .7916 .8021 .8124	.7716 .7826 .7934 .8039 .8141	·7735 ·7844 ·7951 .8056 .8158	·77 53 .7862 .7969 .807 3 .817 5	.7771 .7880 .7986 .8090 .8192	38 37 36 35	1.9 1.8 1.8 1.7 1.7
<b>55</b>	.8192	.8208	.8225	.8241	.8258	.8274	.8290	<b>34</b>	1.6
56	.8290	.8307	.8323	.8339	.8355	.8371	.8387	33	1.6
57	.8387	.8403	.8418	.8434	.8450	.8465	.8480	32	1.6
58	.8480	.8496	.8511	.8526	.8542	.8557	.8572	31	1.5
59	.8572	.8587	.8601	.8616	.8631	.8646	.8660	30	1.5
60	.8660	.8675	.8689	.8704	.8718	.8732	.8746	<b>29</b>	I.4
61	.8746	.8760	.8774	.8788	.8802	.8816	.8829	28	I.4
62	.8829	.8843	.8857	.8870	.8884	.8897	.8910	27	I.4
63	.8910	.8923	.8936	.8949	.8962	.8975	.8988	26	I.3
64	.8988	.9001	.9013	.9026	.9038	.9051	.9063	25	I.3
<b>65</b> 66 67 68 69	.9063 .9135 .9205 .9272 .9336	.907 5 .91 47 .92 16 .928 3 .9346	.9088 .91 59 .9228 .9293 .9356	.9100 .9171 .9239 .9304 .9367	.9112 .9182 .9250 .9315 .9377	.9124 .9194 .9261 .9325 .9387	.9135 .9205 .9272 .9336 .9397	24 23 22 21 20	I.2 I.2 I.1 I.1 I.1 I.0
<b>70</b>	.9397	.9407	.9417	.9426	.9436	.9446	.9455	<b>19</b>	1.0
71	.9455	.9465	.9474	.9483	.9492	.9502	.9511	18	0.9
72	.9511	.9520	.9528	.9537	.9546	.9555	.9563	17	0.9
73	.9563	.9572	.9580	.9588	.9596	.9605	.9613	16	0.8
74	.9613	.9621	.9628	.9636	.9644	.9652	.9659	15	0.8
<b>75</b>	.9659	.9667	.9674	.9681	.9689	.9696	.9703	14	0.7
76	.9703	.9710	.9717	.9724	.9730	.9737	.9744	13	0.7
77	.9744	.9750	.9757	.9763	.9769	.9775	.9781	12	0.6
78	.9781	.9787	.9793	.9799	.9805	.9811	.9816	11	0.6
79	.9816	.9822	.9827	.9833	.9838	.9843	.9848	10	0.5
<b>80</b>	.9848	.9853	.9858	.9863	.9868	.9872	.9877	<b>9</b>	0.5
81	.9877	.9881	.9886	.9890	.9894	.9899	.9903	8	0.4
82	.9903	.9907	.9911	.9914	.9918	.9922	.9925	7	0.4
83	.9925	.9929	.9932	.9936	.9939	.9942	.9945	6	0.3
84	.9945	.9948	.9951	.9954	.9957	.9959	.9962	5	0.3
<b>85</b>	.9962	.9964	.9967	.9969	.997 I	.9974	.9976	4	0.2
86	.9976	.9978	.9980	.9981	.9983	.9985	.9986	3	0.2
87	.9986	.9988	.9989	.9990	.9992	.9993	.9994	2	0.1
88	.9994	.9995	.9996	.9997	.9997	.9998	.9998	1	0.1
89	.9998	.9999	.9999	1.0000	I.0000	1.0000	1.0000	0	0.0
	60′	50'	40'	30′	20'	10'	o	Angle.	

SMITHSONIAN TABLES.

Natural Cosines.

#### NATURAL TANCENTS AND COTANCENTS.

Natural Tangents.

Angle	0′	10′	20′	30′	40'	50′	60′	Angle.	Prop. Parts for 1'.
· 0°	.00000 0	.0029 I	.0058 2	.0087 3	.01164			<b>89</b> °	2.9
I I	.01746	.00291	.02328	.000/3	.0201 0	.0145 5 .0320 I	.0174 6 .0349 2	88	2.9
2	.0349 2	.0378 3	.0407 5	.04366	.04658	.0494 9	.0524 I	87	2.9
3	.0524 I		.0582 4	.06116	.0640 8	.0670.0	.0699 3	86	2.9
4	.0699.3	.0553 3 .0728 5	.07578	<b>.07</b> 87 0	.08163	.08456	.0874 9	85	2.9
5	.0874 9	.0904 2	.0933 5	.0962 9	.0992 3	.1021 6	.1051 0	84	2.9
6	.1051 0	.1080 5	.1109.9	.11394	.1168 8	.1198 3	.1227 8	83	2.9
78	.1227 8	.1257 4	.12869 .1465	.1316 5	.1346	.1 376	.1405	82 81	30
9	.1405	.1435 .1614	.1405	.1495 .1673	.1 524 .1703	.1554 .1733	.1584 .1763	80	3.0 3.0
10	.1763	.1793	.1823	.1853	.1883	.1914	.1944	79	3.0
11	.1944	.1974	.2004	.2035	.2065		.2126	78	3.0
12	.2126	.2156	.2186	.2217	.2247	.2095 .2278	.2309	77	3.1
13	.2309	.2339	.2370	.2401	.2432	.2462	.2493	76	3.1
14	.2493	.2524	.2555	.2586	.2617	.2648	.2679	75	3.1
15	.2679	.2711	.2742	.2773	.2805	.2836	.2867	74	3.1
16	.2867	.2899	.2931	.2962	.2994	.3026	.3057	73	3.2
1 17	.3057	.3089	.3121	.3153	.3185	.3217	.3249	72	3.2
18	·3249	.3281	.3314	.3346	.3378	.3411	.3443	71	3.2
19	•3443	.3476	.3508	.3541	·3574	.3607	.3640	70	3.3
20	.3640	.3673	.3706	· <b>3</b> 739	.3772	.3805	.3839	69	3.3
21	.3839	.3872	.3906	·3939	·3973	.4006	.4040	68	3.4
22	.4040	.4074	.4108	.4142	.4176	.4210	-4245	67	3-4
23 24	-4245 -4452	.4279 .4487	.4314 .4522	.4348	.4383	.4417 .4628	.4452 .4663	66 67	3.5
			.4322	·4557	.4592	•	.4003	65	3.5
<b>25</b> 26	.4663	.4699	-4734	.4770	.4806	-484 t	.4877	64	3.6
20 27	-4877	.4913	-4950	.4986	.5022	.5059 .5280	.5095	63	3.6
28	.5095 .5317	.5132	.5169	.5206	.5243		-5317	62 61	3.7 3.8
29	-5543	-5354 -5581	.5392 .561 <b>9</b>	.5430 .5658	.5467 .5696	.550 <b>5</b> .5735	·5543 ·5774	60	3.8 3.8
30	.5774	.5812	.5851	.5890	.5020	. 5969	.6000	59	3.9
31	·5774 .6009	.5812 .6048	.5851 .6088	.6128	.5930 .6168	.6208	.6249	58	3.9 4.0
32	.6249	.6280	.6330	.6371	.6412	.6453	.6494	57	4.1
33	.6494	.6536 .6787	.6577 .6830	.6619	.6661	.6703	.6745	56	4.2
34	.6745	.6787	.6830	.6873	.6916	.6959	.7002	55	43
35	.7002	.7046	.7089	.7133	.7177	.7221	.7265	54	44
36	.7265	.7310	.7355	.7400	.7445	.7490	.7536	53	
37 38	.7 536 .7813	.7581	.7627	.7673	.7720 .8002	.7766 .8050	.7813	52	4.5 4.6
38	.7813	.7860 .8146	.7907	·7954		.8050	.8098	51	47
39	-		.8195	.8243	.8292	.8342	.8391	50	4.9
40	.8391 .8693	.8441	.8491	.8541	.8591	.8642	.8693	49	مو
41	.0093	.8744	.8796	.8847	.8899	.8952	.9004	48	5.2
42	.9004 .9325	.9057 .9380	.9110	.9163	.9217	.9271	.9325	47	54
43 44	.9657	.9300	·9435 ·9770	.9490 .9827	.9545 .9884	.9601 .9942	.9657 1.0000	46 45	5-5 5-7
	60′	50′	40'				<u></u>		
	~	50	<b>B</b> U	30′	20′	10′	0	Angle.	

SMITHSONIAN TABLES.

Natural Cotangents.

#### NATURAL TANCENTS AND COTANGENTS.

Natural Tangents.

Angla.	0'	10'	20′	30′	40′	50′	60′	Angle.	Prop. Parts for 1'.
<b>45°</b>	1.0000	1.0058	1.0117	1.0176	1.0235	1.0295	1.0355	<b>44</b> °	5.9
46	1.0355	1.0416	1.0477	1.0538	1.0599	1.0661	1.0724	43	6.1
47	1.0724	1.0786	1.0850	1.0913	1.0977	1.1041	1.1106	42	6.4
48	1.1106	1.1171	1.1237	1.1303	1.1369	1.1436	1.1504	41	6.6
49	1.1504	1.1571	1.1640	1.1708	1.1778	1.1847	1.1918	40	6.9
<b>50</b>	1.1918	1.1988	1.2059	1.2131	1.2203	1.2276	1.2349	<b>39</b>	7.2
51	1.2349	1.2423	1.2497	1.2572	1.2647	1.2723	1.2799	38	7.5
52	1.2799	1.2876	1.2954	1.3032	1.3111	1.3190	1.3270	37	7.9
53	1.3270	1.3351	1.3432	1.3514	1.3597	1.3680	1.3764	36	8.2
54	1.3764	1.3848	1.3934	1.4019	1.4106	1.4193	1.4281	35	8.6
<b>55</b>	1.4281	1.4370	1.4460	1.4550	1.4641	1.4733	1.4826	<b>34</b>	9.1
56	1.4826	1.4919	1.5013	1.5108	1.5204	1.5301	1.5399	33	9.6
57	1.5399	1.5497	1.5597	1.5697	1.5798	1.5900	1.6003	3 ²	10.1
58	1.6003	1.6107	1.6212	1.6319	1.6426	1.6534	1.6643	31	10.7
59	1.6643	1.6753	1.6864	1.6977	1.7090	1.7205	1.7321	30	11.3
60	1.7321	1.7437	1.7556	1.7675	1.7796	1.7917	1.8040	<b>29</b>	12.0
61	1.8040	1.8165	1.8291	1.8418	1.8546	1.8676	1.8807	28	12.8
62	1.8807	1.8940	1.9074	1.9210	1.9347	1.9486	1.9626	27	13.6
63	1.9626	1.9768	1.9912	2.0057	2.0204	2.0353	2.0503	26	14.6
64	2.0503	2.0655	2.0809	2.0965	2.1123	2.1283	2.1445	25	15.7
<b>65</b>	2.1445	2.1609	2.1775	2.1943	2.2113	2.2286	2.2460	24	16.9
66	2.2460	2.2637	2.2817	2.2998	2.3183	2.3369	2.3559	23	18.3
67	2.3559	2.3750	2.3945	2.4142	2.4342	2.4545	2.4751	22	19.9
68	2.4751	2.4960	2.5172	2.5386	2.5605	2.5826	2.6051	21	21.7
69	2.6051	2.6279	2.6511	2.6746	2.6985	2.7228	2.7475	20	23.7
<b>70</b>	2.7475	2.7725	2.7980	2.8239	2.8502	2.8770	2.9042	<b>19</b>	
71	2.9042	2.9319	2.9600	2.9887	3.0178	3.0475	3.0777	18	
72	3.0777	3.1084	3.1397	3.1716	3.2041	3.2371	3.2709	17	
73	3.2709	3.3052	3.3402	3.3759	3.4124	3.4495	3.4874	16	
74	3.4874	3.5261	3.5656	3.6059	3.6470	3.6891	3.7321	15	
<b>75</b>	3.7321	3.7760	3.8208	3.8667	3.91 36	3.9617	4.0108	14	
76	4.0108	4.0611	4.1126	4.1653	4.2193	4.2747	4.3315	13	
77	4.3315	4.3897	4.4494	4.5107	4.57 36	4.6382	4.7046	12	
78	4.7046	4.7729	4.8430	4.9152	4.9894	5.0658	5.1446	11	
79	5.1446	5.2257	5.3093	5.3955	5.4845	5.5764	5.6713	10	
<b>80</b>	5.6713	5.7694	5-8708	5.9758	6.0844	6.1970	6.3138	<b>9</b>	
81	6.3138	6.4348	6.5606	6.6912	6.8269	6.9682	7.1154	8	
82	7.1154	7.2687	7.4287	7.5958	7.7704	7.9530	8.1443	7	
83	8.1443	8.3450	8.5555	8.7769	9.0098	9.2553	9.5144	6	
84	9.5144	9.7882	10.0780	10.3854	10.7119	11.0594	11.4301	5	
<b>85</b>	11.4301	11.8262	12.2505	12.7062	13.1969	13.7267	14.3007	4	
86	14.3007	14.9244	15.6048	16.3499	17.1693	18.0750	19.0811	3	
87	19.0811	20.2056	21.4704	22.9038	24.5418	26.4316	28.6363	2	
88	28.6363	31.2416	34.3678	38.1885	42.9641	49.1039	57.2900	1	
89	57.2900	68.7501	85.9398	114.5887	171.8854	343-7737	20	0	
	60′	50′	40'	30′	20′	10'	0′	Angle.	

SHITHSONIAN TABLES.

.

Natural Cotangents.

TABLE 9.

.

#### TRAVERSE TABLE. Differences of latitude and departure.

şî.	.e	C	p	1	0	2	0	.ee	-
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance.	Minutes.
0	1 2 3 4 5 6 7 8 9	1.00000 2.00000 4.00000 5.00000 6.00000 7.00000 8.00000 9.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.99984 1.99969 2.99954 3.99939 4.99923 5.99908 6.99893 7.99878 8.99862	0.01745 0.03490 0.05235 0.06980 0.08726 0.10471 0.12216 0.12961 0.13961 0.15707	0.99939 1.99878 2.99878 4.99756 4.99695 5.99634 6.99573 7.99512 8.99451	0.03490 0.06980 0.10470 0.13960 0.17450 0.20940 0.24430 0.24430 0.27920 0.31410	<b>1</b> 2 3 4 5 6 7 8 9	60
15	1 2 3 4 5 6 7 8 9	0.99999 1.99998 2.99997 3.99996 4.99995 5.99994 6.99993 7.99992 8.99991	0.00436 0.00872 0.01308 0.01745 0.02181 0.02617 0.03054 0.03490 0.03926	0.99976 1.99952 2.99928 3.99904 4.99881 5.99857 6.99833 7.99889 8.99785	0.02181 0.04363 0.06544 0.08725 0.10907 0.13089 0.15270 0.17452 0.19633	0.99922 1.99845 2.99768 3.99691 4.99614 5.99537 6.99460 7.99383 8.99306	0.03025 0.07851 0.11777 0.15703 0.19629 0.23555 0.27481 0.31407 0.35333	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 5 6 7 8 9	0.99996 1.99992 2.99988 3.99984 4.99981 5.99977 6.99973 7.99969 8.99965	0.00872 0.01745 0.02617 0.03490 0.04363 0.05235 0.06108 0.06981 0.07853	0.99965 1.99931 2.99897 3.99862 4.99828 5.99794 6.99760 7.99725 8.99691	0.02617 0.05235 0.07853 0.10470 0.13088 0.15706 0.18323 0.20941 0.23559	0.99904 1.99809 2.99714 3.99619 4.99524 5.99428 0.99333 7.99238 8.99143	0.04361 0.08723 0.13085 0.17447 0.21809 0.26171 0.30533 0.34895 0.39257	1 2 3 4 550 7 8 9	30
45	<b>1</b> 3 4 5 6 7 8 9	0.99991 1.99982 2.999974 3.999957 4.99957 5.99948 6.99940 7.99931 8.99922	0.01308 0.02617 0.03926 0.05235 0.05544 0.07853 0.09162 0.10471 0.11780	0.99953 1.99966 2.99860 3.99813 4.99766 5.99720 6.99673 7.99626 8.99580	0.03053 0.06107 0.09161 0.12215 0.15269 0.18323 0.21376 0.24430 0.27484	0.99884 1.99769 2.99654 3.99424 5.99309 6.99193 7.99078 8.98963	0.04797 0.09595 0.14393 0.19191 0.23989 0.28786 0.33584 0.38382 0.43180	<b>1</b> 2 3 4 5 6 7 8 9	15
Minutes.	Distance.	Dep. 8	Lat. 9°	Dep. <b>8</b>	Lat. B ^o	Dep. <b>8</b>	Lat. 7°	Distance.	Minutes.

SMITHSONIAN TABLES.

## TRAVERSE TABLE.

SHITHSONIAN TABLES.

Digitized by Google

#### 9. TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE.-CONTINUED.

Minutes.	τ κ ω μ Distance.	6 Lat. 0.99452 1.95904 2.98356 3.97808	Dep. 0.10452 0.20005 0.31358 0.41811	7 Lat. 0.99254 1.98509 2.97763 3.97018	Dep. 0.12186 0.24373 0.36560 0.48747	Eat. 0.99026 1.98053 2.97080 3.96107	Dep. 0.13917 0.27834 0.41751 0.55669		+ 5 a L Distance.
	50789 <b>1</b> 23450	4.97 261 5.967 13 6.961 65 7.9561 7 8.95069 0.99405 1.988 11 2.982 16 3.97622 4.97028 5.964 33	0.52264 0.62717 0.73169 0.83622 0.94075 0.108866 0.21773 0.32660 0.43546 0.43546 0.5320 0.75266	4.96273 5.95519 6.94782 7.94038 8.93291 0.99200 1.98400 2.97601 3.96801 4.96002 5.95202	0.60934 0.73121 0.85308 0.97495 1.09682 0.12619 0.25239 0.37859 0.50479 0.63099 0.75719	4-95134 5-94160 6-93187 7-92214 8-91241 0-98965 1-97930 2-96895 3-95860 4-94825 5-93790	0.69586 0.83503 0.97421 1.11338 1.25255 0.14349 0.28698 0.43047 0.57397 0.71746 0.86095	56789 123456	
30	789 <b>1</b> 23456789	6.95839 7.95245 8.94650 0.99357 1.98714 2.98071 3.97428 4.96786 5.96143 5.96143 6.95500 7.94857 8.94214	0.76206 0.87093 0.97980 0.11 320 0.22040 0.33960 0.45281 0.56601 0.67921 0.79242 0.90562 1.01882	6.94403 7.93603 8.92804 0.99144 1.98288 2.97433 3.96577 4.95722 5.94866 6.94011 7.93155 8.92300	0.883339 1.00959 1.13579 0.13052 0.20105 0.39157 0.52210 0.65263 0.78315 0.78315 0.78315 1.04420 1.17473	6.92755 7.91721 8.90686 0.98901 1.97803 2.96704 3.95506 4.94508 5.93409 6.92311 7.91212 8.90114	1.00444 1.14794 1.29143 0.14780 0.29561 0.44342 0.59123 0.73904 0.88685 1.03466 1.18247 1.33028	789 123450789	
45	1 2 3 4 50 7 8 9	0.99306 1.98613 2.97920 3.97227 4.96534 5.95841 6.95147 7.94454 8.93761	0.11753 0.23507 0.35261 0.47014 0.58768 0.70522 0.82276 0.94029 1.05783	0.99086 1.98173 2.97259 3.96346 4.95432 5.94519 6.93606 7.92692 8.91779	0.13485 0.26970 0.40455 0.53940 0.67425 0.80910 0.94305 1.07880 1.21365	0.98836 1.97672 2.96508 3.95344 4.94180 5.93016 6.91853 7.90689 8.89525	0.15212 0.30424 0.45637 0.60849 0.76061 0.91274 1.06486 1.21698 1.36911	1 2 3 4 5 6 7 8 9	
Minutes.	Distance.	Dep.	Lat. 3°	Dep.	Lat. 2º	Dep.	Lat. 1º	Distance.	

SMITHSONIAN TABLES.

Digitized by Google

.

utes.	Minutes	45	30	15	o	Minutes.
Distance.	Dist	1 2 3 4 550 7 8 9	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	<b>1</b> 2 3 4 5 0 7 8 9	Distance.
9	Dep.	0.98555 1.97111 2.95666 3.94222 4.92778 5.91333 6.89889 7.88444 8.87000	0.98628 1.97257 2.95885 3.94514 4.93142 5.91771 6.90399 7.89028 8.87657	a.98699 1.97399 2.96098 3.94798 4.93498 5.92197 6.90897 7.89597 8.88296	0.98768 1.97537 2.96306 3.95075 4.93844 5.92612 6.91381 7.90150 8.88919	9 Lat.
0°	Lat.	0.16035 0.33870 0.50805 0.67740 0.84675 1.01610 1.18545 1.35480 1.52415	0.16504 0.33009 0.49514 0.66019 0.82523 0.99028 1.15533 1.32038 1.48542	0.16074 0.32148 0.48222 0.64297 0.80371 0.96445 1.12519 1.28594 1.44668	0.15643 0.31286 0.462573 0.78217 0.93860 1.09504 1.25147 1.40791	° Dep.
7	Dep.	0.98245 1.96490 2.94735 3.92980 4.91225 5.89470 6.87715 7.85960 8.84205	0.98325 1.96650 2.94976 3.93301 4.91627 5.89952 6.88278 7.86603 8.84929	0.98404 1.96808 2.95212 3.93616 4.92020 5.90424 6.88828 7.87232 8.85636	0.98480 1.96961 2.95442 3.93923 4.92403 5.90884 6.80365 7.87846 8.86327	l( Lat.
<b>9</b> °	Lat.	0.18652 0.37304 0.55957 0.74609 0.93262 1.11914 1.30566 1.49219 1.67871	0.18223 0.36447 0.54670 0.72894 0.91117 1.09341 1.27564 1.45788 1.64011	0.17794 0.35588 0.53383 0.71177 0.88971 1.06766 1.24566 1.42354 1.60149	0.17364 0.34729 0.52094 0.69459 0.86824 1.04188 1.21553 1.38918 1.56283	po Dep.
7	Dep.	0.97904 1.95809 2.93713 3.91618 4.89522 5.87427 6.85331 7.83236 8.81140	0.97992 1.95984 2.93977 3.91969 4.89962 5.87954 6.85947 7.83939 8.81932	0.98078 1.96157 2.94235 3.92314 4.90392 5.88471 6.86549 7.84628 8.82706	0.98162 1.96325 2.94488 3.92650 4.90813 5.88976 0.87139 7.85301 8.83464	1] Lat.
B°	Lat.	0.20364 0.40728 0.61092 0.81456 1.01820 1.22185 1.42549 1.62913 1.83277	0.19936 0.39873 0.59810 0.79747 0.99683 1.19620 1.39557 1.59494 1.79431	0.19509 0.30018 0.58527 0.78036 0.97545 1.17054 1.36563 1.56072 1.75581	0.19081 0.38162 0.57243 0.76324 0.95405 1.14486 1.33566 1.52048 1.71729	Dep.
Distance.	Dist	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9	1 2 3 4 5 0 7 8 9	<b>1</b> 2 3 4 5 6 7 8 9	Distance.
utes.	Minutes	15	30	45	60	Minutes.

SMITHSONIAN TABLES.

.

TABLE 9.

## TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE.-CONTINUED.

#### TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE.-Continued.

1	r								1
ites.	Distance.	1	<b>2</b> °	1	<b>3</b> °	1	<b>€</b> °	Distance.	Minutes.
Minutes.	Dist	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Dist	Mint
o	<b>1</b> 2 3 4 5 6 7 8 9	0.97814 1.95629 2.93444 3.91259 4.89073 5.86888 6.84703 7.82518 8.80332	0.20791 0.41582 0.62373 0.83164 1.03955 1.24747 1.45538 1.66329 1.87120	0.97437 1.94874 2.92311 3.89748 4.87185 5.84622 6.82059 7.79496 8.76933	0.22495 0.44990 0.67485 0.89980 1.12475 1.34970 1.57465 1.79960 2.02455	0.97029 1.94059 2.91088 3.88118 4.85147 5.82177 6.79206 7.76236 8.73266	0.24192 0.48384 0.72576 0.90768 1.20961 1.45153 1.69345 1.93537 2.17729	1 2 3 4 5 6 7 8 9	60
15	1 2 3 4 56 78 9	0.97723 1.95446 2.93169 3.90892 4.88615 5.86338 6.84061 7.81784 8.79507	0.21217 0.42435 0.63653 0.84871 1.06088 1.27306 1.48524 1.69742 1.90959	0-97337 1-94675 2-92013 3-89351 4-86689 5-84027 6-81365 7-78703 8-76041	0.22020 0.45840 0.08760 0.91680 1.14600 1.37520 1.60440 1.83360 2.06280	0.96023 1.93846 2.90769 3.87692 4.84615 5.81538 6.78461 7.75384 8.72307	0.2461 5 0.492 30 0.7 384 5 0.98461 1.2 3076 1.47691 1.7 2 307 1.96922 2.21 537	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 5 6 7 8 9	0.97629 1.95259 2.92888 3.90518 4.88148 5.85777 6.83407 7.81036 8.78666	0.21644 0.43288 0.64932 0.86576 1.08220 1.29864 1.51508 1.73152 1.94796	0.97237 1.94474 2.91711 3.88948 4.86185 5.83422 6.80659 7.77896 8.75133	0.23344 0.46689 0.70033 0.93378 1.16722 1.40067 1.63411 1.86756 2.10100	0.96814 1.93629 2.90444 3.87259 4.84073 5.80888 6.77703 7.74518 8.71332	0.25038 0.50076 0.75114 1.00152 1.25190 1.50228 1.75266 2.00304 2.25342	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 6 7 8 9	0.97 534 1.95068 2.92602 3.90136 4.87671 5.85205 6.82739 7.80273 8.77808	0.22069 0.44139 0.66209 0.88278 1.10348 1.32418 1.54488 1.76557 1.98627	0.97134 1.94268 2.91402 3.88536 4.85671 5.82805 6.79939 7.77073 8.74207	0.23768 0.47537 0.71305 0.95074 1.18843 1.42611 1.66380 1.90148 2.13917	0.96704 1.93409 2.90113 3.86818 4.83523 5.80227 6.76932 7.73636 8.70341	0.25460 0.50920 0.76380 1.01840 1.27301 1.52761 1.78221 2.03681 2.29141	1 2 3 4 50 7 8 9	15
Minutes	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance	Minutes
es.	nce.	7	<b>7</b> °	7	<b>6</b> °	7	<b>5</b> °	100.	<u></u>

SMITHSONIAN TABLES.

#### TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE.-CONTINUED.

, si	શું	1	<b>5</b> °	1	.6°	1	<b>7</b> °	ej.	y,
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance.	Minutes.
0	1 2 3 4 5 6 7 8 9	0.96592 1.93185 2.89777 3.86370 4.82962 5.79555 6.76148 7.72740 8.69333	0.25881 0.51763 0.77645 1.03527 1.29409 1.55291 1.81173 2.07055 2.32937	0.96126 1.92252 2.88378 3.84504 4.80030 5.76757 6.72883 7.69009 8.65135	0.27 563 0.551 27 0.82691 1.0254 1.37818 1.65382 1.92946 2.20509 2.48073	0.95630 1.91260 2.86891 3.82521 4.78152 5.73782 6.69413 7.65043 8.60674	0.29237 0.58474 0.87711 1.16948 1.46185 1.75423 2.04660 2.33897 2.63134	1 2 3 4 5 6 7 8 9	60
15	1 2 3 4 5 6 7 8 9	0.96478 1.02957 2.89436 3.85914 4.82393 5.78872 6.75351 7.71829 8.68308	0.26303 0.52606 0.78909 1.05212 1.31515 1.57818 1.84121 2.10424 2.36728	0.96005 1.92010 2.88015 3.84020 4.80025 5.76030 6.72035 7.68040 8.64045	0.27982 0.55965 0.83948 1.11931 1.39914 1.67897 1.95880 2.23863 2.51846	0.95502 1.91004 2.86506 3.82008 4.77510 5.73012 6.68514 7.64016 8.59518	0.29654 0.59308 0.88962 1.18616 1.48270 1.77924 2.07579 2.37233 2.66887	1 2 3 4 5 0 7 8 9	45
30	1 2 3 4 50 7 8 9	0.96363 1.92726 2.89089 3.85452 4.81815 5.78178 6.74541 7.70904 8.67267	0.26723 0.53447 0.80171 1.06895 1.33619 1.60343 1.87066 2.13790 2.40514	0.95882 1.91764 2.87646 3.83528 4.79410 5.75292 0.71174 7.67056 8.62938	0.28401 0.56803 0.85204 1.13606 1.42007 1.70409 1.98810 2.27212 2.55613	0.95371 1.00743 2.86115 3.81486 4.76858 5.72230 6.67601 7.62973 8.58345	0.30070 0.60141 0.90211 1.20282 1.50352 1.80423 2.10494 2.40564 2.70635	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 6 7 8 9	0.96245 1.92491 2.88736 3.84982 4.81227 5.77473 6.73718 7.69964 8.66209	0.27144 0.54288 0.81432 1.08576 1.35720 1.62864 1.90008 2.17152 2.44296	0-95757 1.91514 2.87271 3.83028 4.78785 5.74542 6.70299 7.66057 8.61814	0.28819 0.57639 0.86458 1.15278 1.44098 1.72917 2.01737 2.30557 2.59376	0.95239 1.90479 2.85718 3.80958 4.76197 5.71437 5.71437 7.61916 8.57156	0.30486 0.60972 0.91459 1.21945 1.52432 1.82918 2.13405 2.43891 2.74377	1 2 3 4 5 6 7 8 9	15
Minutes.	Distance.	Dep. <b>7</b> 4	Lat. P	Dep. 7:	Lat. 3°	Dep. 72	Lat. 20	Distance.	Minutes.

SHITHSONIAN TABLES.



#### 9. TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE.-CONTINUED.

ites.	nce.	14	Bo	19	<b>9</b> °	2	0°	Distance.	utes.
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Dist	M inutes.
0	1 2 3 4 5 0 7 8 9	0.95105 1.90211 2.85316 3.80422 4.75528 5.70033 0.65739 7.60845 8.55950	0.30901 0.61803 0.92705 1.23606 1.54508 1.85410 2.16311 2.47213 2.78115	0.94551 1.89103 2.83655 3.78207 4.72759 5.67311 0.61863 7.56414 8.50966	0.32556 0.65113 0.97670 1.30227 1.62784 1.95340 2.27897 2.60454 2.93011	0.03969 1.87938 2.81907 3.75877 4.69846 5.63815 6.57784 7.51754 8.45723	0.34202 0.68404 1.02606 1.36808 1.71010 2.05212 2.39414 2.73616 3.07818	1 2 3 4 5 6 7 8 9	60
15	1 2 3 4 5 0 7 8 9	0.04969 1.89939 2.84909 3.79879 4.74849 5.69819 0.64789 7.59759 8.54729	0.31316 0.62632 0.93949 1.25265 1.56581 1.87898 2.19214 2.50531 2.81847	0.04408 1.88817 2.83226 3.77635 4.72044 5.66453 6.60862 7.55271 8.49680	0.32969 0.65938 0.98907 1.31876 1.64845 1.97814 2.30783 2.63752 2.96721	0.93819 1.87638 2.81457 3.75276 4.69095 5.62914 6.56733 7.50553 8.44372	0.34611 0.69223 1.03835 1.38446 1.73058 2.07670 2.44281 2.76893 3.11505	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 550 78 9	0.94832 1.89604 2.84497 3.79329 4.74161 5.68994 6.63826 7.58658 8.53491	0.31730 0.63460 0.95191 1.26921 1.58652 1.90382 2.22113 2.53843 2.85574	0.94264 1.88528 2.82792 3.77056 4.71320 5.65584 6.59849 7.54113 8.48377	0.33380 0.00761 1.00142 1.33522 1.00903 2.00284 2.33664 2.07045 3.00426	0.93667 1.87334 2.81001 3.74668 4.68336 5.62003 6.55670 7.49337 8.43004	0.35020 0.70041 1.05062 1.40082 1.75103 2.10124 2.45145 2.80165 3.15186	<b>1</b> 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 0 7 8 9	0.94693 1.89386 2.84079 3.78772 4.73465 5.68158 6.62851 7.57544 8.52237	0.32143 0.64287 0.96431 1.28575 1.60719 1.92863 2.25007 2.57151 2.89295	0.94117 1.88235 2.82352 3.76470 4.70588 5.64705 6.58823 7.52940 8.47058	0.33791 0.67583 1.01375 1.35166 1.68958 2.02750 2.36541 2.70333 3.04125	0.93513 1.87027 2.80540 3.74054 4.67567 5.61081 6.54594 7.48108 8.41621	0.35429 0.70858 1.06287 1.41716 1.77145 2.12574 2.48003 . 2.83432 3.18861	1 2 3 4 5 6 7 8 9	15
Minutes	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance.	Minutes
	nœ.	7.	1°	7	<b>0</b> °	6	9°	JCe.	) ja ja

SMITHSONIAN TABLES.

ļ

.

		RAVERSE TABLE		TABLE 9.
DIFF	ERENCES OF LA	TITUDE AND DEP	PARTURE CON	TINUED.

ites.	Distance.	2	L°	2:	<b>2</b> °	2	<b>3</b> °	Distance.	ttes.
Minutes.	Dist	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Dista	Minutes.
0	1 2 3 4 5 6 7 8 9	0.93358 1.86716 2.80074 3.73432 4.66790 5.60148 6.53506 7.46864 8.40222	0.35836 0.71673 1.07510 1.43347 1.79183 2.15020 2.50857 2.86694 3.22531	0.92718 1.85436 2.78155 3.70873 4.63591 5.56310 6.49028 7.41747 8.34465	0.37460 0.74921 1.12381 1.49842 1.87303 2.24763 2.62224 2.99685 3.37145	0.92050 1.84100 2.76151 3.68201 4.60252 5.52302 6.444353 7.36403 8.28454	0.30073 0.78146 1.17219 1.56292 1.95365 2.34438 2.73511 3.12584 3.51657	<b>1</b> 2 3 4 5 6 7 8 9	60
15	1 2 34 56 78 9	0.03200 1.86401 2.79602 3.72803 4.66004 5.59204 6.52405 7.45606 8.38807	0.36243 0.72487 1.08731 1.44975 1.81219 2.17462 2.53706 2.89950 3.26194	0.92554 1.85108 2.77662 3.70216 4.62770 5.55324 6.47878 7.40432 8.32986	0.37864 0.75729 1.13594 1.51459 1.89324 2.27189 2.65054 3.02918 3.40783	0.91879 1.83758 2.75637 3.67516 4.59395 5.51274 6.43153 7.35032 8.26912	0.30474 0.78948 1.18423 1.57897 1.97372 2.36846 2.76320 3.15795 3.55269	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 5 0 7 8 9	0.93041 1.86083 2.79125 3.72167 4.65208 5.58250 6.51292 7.44334 8.37375	0.36650 0.73300 1.09950 1.46600 1.83250 2.19900 2.56550 2.93200 3.29851	0.92388 1.84776 2.77164 3.69552 4.61940 5.54328 6.46716 7.39104 8.31492	0.38268 0.76536 1.14805 1.53073 1.91341 2.29610 2.67878 3.06146 3.44415	0.91706 1.83412 2.75118 3.66824 4.58530 5.50236 6.41942 7.33648 8.25354	0.39874 0.79749 1.19624 1.59499 1.99374 2.39249 2.79124 3.18999 3.58874	<b>1</b> 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 6 7 8 9	0.02881 1.8 5762 2.78643 3.71 524 4.64405 5.57286 0.50167 7.43048 8.35929	0.37055 0.74111 1.11167 1.48222 1.85278 2.22334 2.59390 2.96445 3.33501	0.92220 1.84440 2.76660 3.68880 4.61100 5.53320 6.45540 7.37760 8.29980	0.38671 0.77342 1.16013 1.54684 1.93355 2.32026 2.70697 3.00368 3.48039	0.91531 1.83062 2.74593 3.66124 4.57655 5.49186 0.40718 7.32249 8.23780	0.40274 0.80549 1.20824 1.61098 2.01373 2.41648 2.81922 3.22197 3.62472	1 2 3 4 5 6 7 8 9	15
Minutes	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance	Minutes
<u>ş</u>	ince	6	<b>B</b> °	6	7°	6	6°	nce.	ie.

SHITHSONIAN TABLES.

.

#### D. TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE.-CONTINUED.

tes.	nce.	24	<b>4</b> °	2	<b>5</b> °	2	<b>6</b> °	e Poe	tes.
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance.	Minutes.
o	1 2 3 4 5 6 7 8 9	0.91354 1.82709 2.74063 3.65418 4.56772 5.48127 0.39481 7.30836 8.22190	0.40673 0.81347 1.22020 1.62694 2.03368 2.44041 2.84715 3.25389 3.66062	0.90630 1.81261 2.71892 3.62523 4.53153 5.43784 6.34415 7.25046 8.15677	0.42261 0.84523 1.26785 1.69047 2.11309 2.53570 2.95832 3.38094 3.80356	0.89879 1.79758 2.69638 3.59517 4.49397 5.39276 6.29155 7.19035 8.08914	0.43837 0.87674 1.31511 1.75348 2.19185 2.63022 3.06859 3.50696 3.94533	<b>1</b> 2 3 4 5 0 7 8 9	60
15	<b>1</b> 2 3 4 5 6 7 8 9	0.91176 1.82352 2.73528 3.64704 4.55881 5.47057 6.38233 7.29409 8.20585	0.41071 0.82143 1.23215 1.64287 2.05359 2.46431 2.87503 3.28575 3.69647	0.90445 1.80891 2.71336 3.61782 4.52227 5.42673 6.33118 7.23564 8.14009	0.42656 0.85313 1.27970 1.70627 2.13284 2.55941 2.98598 3.41254 3.83911	0.89687 1.79374 2.60061 3.58749 4.48436 5.38123 6.27810 7.17498 8.07185	0.44228 0.88457 1.32686 1.76915 2.21144 2.65373 3.09602 3.53830 3.98059	1 2 3 4 56 78 9	45
30	1 2 3 4 5 6 7 8 9	0.90996 1.81992 2.72988 3.63984 4.54980 5.45976 6.36972 7.27969 8.18965	0.41469 0.82938 1.24407 1.65877 2.07346 2.48815 2.90285 3.31754 3.73223	0.90258 1.80517 2.70775 3.61034 4.51292 5.41551 6.31809 7.22068 8.12326	0.43051 0.86102 1.29153 1.72204 2.15255 2.58306 3.01357 3.44408 3.87459	0.80493 1.78986 2.68480 3.57973 4.47467 5.36960 6.26454 7.15947 8.05440	0.44619 0.89239 1.33859 1.78479 2.23098 2.67718 3.12338 3.56958 4.01578	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 50 78 9	0.90814 1.81628 2.72442 3.63257 4.54071 5.44885 6.35700 7.26514 8.17328	0.41866 0.83732 1.25598 1.67464 2.09330 2.51196 2.93062 3.34928 3.76794	0.90069 1.80139 2.7029 3.60279 4.50349 5.40418 6.30488 7.20558 8.10628	0.43444 0.86889 1.30333 1.73778 2.17222 2.60667 3.04111 3.47556 3.91000	0.89297 1.78595 2.67893 3.57191 4.46489 5.35787 6.25085 7.14383 8.03681	0.45009 0.90019 1.35029 1.80039 2.25049 2.70059 3.15068 3.60078 4.05088	1 2 3 4 5 6 7 8 9	15
Minutes	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance.	Minutes
ġ	nce.	6	5°	6	<b>4</b> °	6	<b>3</b> °	nce.	tes.

SMITHSONIAN TABLES.

SMITHSONIAN TABLES.

i i	ice.	2'	<b>7</b> °	2	B°	2	<b>9</b> °	ë	r,
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance.	Minutes.
o	<b>1</b> 2 3 4 5 6 7 8 9	0.89100 1.78201 2.67301 3.56402 4.45503 5.34603 6.23704 7.12805 8.01905	0.45399 0.90798 1.36197 1.81596 2.26995 2.72394 3.17793 3.63193 4.08591	0.88204 1.76589 2.64884 3.53179 4.41473 5.29768 6.18063 7.06358 7.94652	0.46947 0.93894 1.40841 1.87788 2.34735 2.81682 3.28630 3.75577 4.22524	0.87462 1.74924 2.62386 3.49848 4.37310 5.24772 6.12234 6.99696 7.87156	0.48481 0.96962 1.45443 1.93924 2.42405 2.90886 3.39367 3.87848 4.36329	1 2 3 4 5 6 7 8 9	60
15	1 2 3 4 5 0 7 8 9	0.88001 1.77803 2.66705 3.55606 4.44508 5.33410 6.22311 7.11213 8.00115	0.45787 0.91574 1.37362 1.83149 2.28937 2.74724 3.20511 3.66299 4.12086	0.88089 1.76178 2.64267 3.52356 4.40445 5.28534 6.16623 7.04712 7.92801	0.47332 0.94664 1.41996 1.89328 2.36660 2.83992 3.31324 3.78656 4.25988	0.87249 1.74499 2.61748 3.48998 4.36248 5.23497 6.10747 6.97996 7.85246	0.48862 0.97724 1.46566 1.95448 2.44310 2.93172 3.42034 3.90896 4.39759	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 5 0 7 8 9	0.88701 1.77402 2.66103 3.54804 4.43505 5.32206 6.20007 7.09608 7.98309	0.46174 0.92349 1.38524 1.84699 2.30874 2.77049 3.23224 3.69398 4.15573	0.87881 1.7 5763 2.63645 3.51 526 4.39408 5.27290 6.1 5171 7.03053 7.90935	0.47715 0.95431 1.43147 1.90863 2.38579 2.86295 3.34011 3.81727 4.29442	0.87035 1.74071 2.61106 3.48142 4.35177 5.22213 6.09248 6.06284 7.83320	0.49242 0.98484 1.47727 1.96969 2.46211 2.95454 3.44696 3.93938 4.43181	1 2 3 4 5 6 7 8 9	30
45	<b>1</b> 2 3 4 50 7 8 9	0.88498 1.76997 2.65496 3.53995 4.42493 5.30992 6.19491 7.07990 7.96488	0.46561 0.93122 1.30684 1.86245 2.32807 2.79368 3.25930 3.72491 4.19053	0.87672 1.75345 2.63018 3.50690 4.38363 5.26036 6.13708 7.01381 7.89054	0.48098 0.96197 1.44296 1.92395 2.40494 2.88593 3.36692 3.84791 4.32889	0.86819 1.73639 2.60459 3.47279 4.34099 5.20919 6.07739 6.04559 7.81378	0.49621 0.99243 1.48864 1.98486 2.48108 2.97729 3.47351 3.96973 4-46594	1 2 3 4 5 6 7 8 9	15
Minutes	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance	Minutes
tes.	mce.	6	<b>2</b> °	6	<b>1</b> °	6	<b>o</b> °	nce.	tes.

# TRAVERSE TABLE.

TABLE 9.

#### 9. TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE. - CONTINUED.

tes.	nce.	34	Do	3	Lo	3:	<b>2</b> °	nce.	tes.
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance.	Minutes.
0	1 2 3 4 5 6 7 8 9	0.86602 1.7 3205 2.59807 3.46410 4.33012 5.1961 5 0.06217 6.92820 7.79422	0.50000 1.50000 2.00000 2.50000 3.60000 3.50000 4.50000 4.50000	0.85716 1.71433 2.57150 3.42866 4.28583 5.14300 6.00017 6.85733 7.71450	0.51503 1.03007 1.54511 2.05015 2.57519 3.09022 3.60526 4.12030 4.63534	0.84804 1.69609 2.54414 3.39219 4.24024 5.08828 5.93633 6.78438 7.63243	0.52991 1.05983 1.58975 2.11967 2.64959 3.17951 3.70943 4.23935 4.76927	1 2 3 4 5 6 7 8 9	60
15	<b>1</b> 2 3 4 5 6 7 8 9	0.86383 1.72767 2.59150 3.45534 4.31917 5.18301 6.04684 6.91068 7.77451	0.50377 1.00754 1.51132 2.01509 2.51887 3.02264 3.52641 4.03019 4.53396	0.85491 1.70982 2.56473 3.41964 4.27456 5.12947 5.98438 6.83929 7.69420	0.51877 1.03754 1.55631 2.07509 2.59386 3.11263 3.63141 4.15018 4.66895	0.84572 1.69145 2.53718 3.38291 4.22863 5.07436 5.92009 0.76582 7.61155	0.53361 1.06722 1.60084 2.13445 2.66807 3.20168 3.73530 4.26891 4.80253	<b>1</b> 2 3 4 5 6 7 8 9	45
30	1 2 3 4 550 78 9	0.86162 1.72325 2.58488 3.44651 4.30814 5.16977 6.03140 6.89303 7.75466	0.50753 1.01507 1.52261 2.03015 2.53769 3.04523 3.55276 4.06030 4.50784	0.85264 1.70528 2.55792 3.41056 4.26320 5.11584 5.96948 6.82112 7.67376	0.52249 1.04499 2.08999 2.61249 3.13499 3.65749 4.17998 4.70248	0.84339 1.68678 2.53017 3.37356 4.21695 5.06034 5.90373 6.74713 7.59052	0.53730 1.07460 1.61190 2.14920 2.68650 3.22380 3.76110 4.29840 4.83570	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 6 7 8 9	0.85940 1.71881 2.57821 3.43762 4.29703 5.15643 6.01584 6.87525 7.73465	0.51129 1.02258 1.53387 2.04517 2.55646 3.06775 3.57905 4.09034 4.60163	0.85035 1.70070 2.55105 3.40140 4.25176 5.10211 5.95246 6.80281 7.65316	0.52621 1.05242 1.57864 2.10485 2.63107 3.15728 3.68349 4.20971 4.73592	0.84103 1.68207 2.52311 3.36415 4.20519 5.04623 5.88827 6.72831 7.56935	0.54097 1.08194 1.62292 2.16389 2.70487 3.24584 3.78682 4.32779 4.86877	1 2 3 4 5 6 7 8 9	15
Minutes.	Distance.	Dep. 55	Lat. 90	Dep. 5	Lat. B ^o	Dep. 5	Lat. <b>7</b> °	Distance.	Minutes.

SMITHSONIAN TABLES.

Digitized by Google

#### TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE.-CONTINUED.

ites,	Minutes	45	30	15	o	Minutes.
mce.	Distance	1 2 3 4 5 0 7 8 9	1 2 3 4 50 7 8 9	H 2 3450 78 9	1 2 3 4 5 6 7 8 9	Distance.
5	Dep.	0.83147 1.66294 2.49441 3.32588 4.15735 4.98882 5.82029 6.65176 7.48323	0.83388 1.66777 2.50165 3.33554 4.16942 5.00331 5.83720 6.67108 7.50497	0.83628 1.67257 2.50855 3.34514 4.18143 5.01771 5.85400 6.69028 7.52657	0.83867 1.67734 2.51601 3.35468 4.19335 5.03202 5.87069 6.70936 7.54803	3 Lat.
6°	Lat.	0.55557 1.11114 1.66671 2.22228 2.77785 3.33342 3.88899 4.44456 5.00013	0.55193 1.10387 1.65581 2.20774 2.75968 3.31162 3.86355 4.41549 4.96743	0.54829 1.09658 1.64487 2.19317 2.74146 3.28975 3.83805 4.38634 4.93463	0.54463 1.68927 1.63391 2.17855 2.72319 3.26783 3.81247 4.35711 4.90175	<b>3</b> ⁰ Dep.
5	Dep.	0.82164 1.64329 2.46494 3.28658 4.10823 4.92988 5.75152 6.57317 7.39482	0.82412 1.64825 2.47237 3.29650 4.12063 4.94475 5.76888 0.59300 7.41713	0.82659 1.65318 2.47977 3.30636 4.13295 4.95954 5.78613 0.61272 7.43931	0.82003 1.65807 2.48711 3.31615 4.14518 4.97422 5.80326 6.63230 7.46133	3 Lat.
5°	Lat.	5.56999 1.13999 1.70999 2.27998 2.84998 3.41998 3.98997 4.55997 5.12997	0.56640 1.13281 1.69921 2.26562 2.83203 3.39843 3.996484 4.53124 5.09765	0.56280 1.12560 1.68841 2.25121 2.81402 3.37682 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.93963 3.9396552 3.93965555555555555555555555555555555555	0.55919 1.11838 1.67757 2.23677 2.79596 3.35515 3.91435 4.47354 5.03273	€° Dep.
5	Dep.	0.81157 1.62314 2.43472 3.24629 4.05787 4.86944 5.68101 6.49260 7.30416	0.81411 1.62823 2.44234 3.25646 4.07057 4.88469 5.69880 6.51292 7.32703	0.81664 1.63328 2.44992 3.26656 4.08320 4.89984 5.71649 6.53313 7.34977	0.81915 1.63830 2.45745 3.27660 4.09576 4.91491 5.73406 6.55321 7.37236	3. Lat.
<b>t</b> °	Lat.	0.58425 1.16850 1.75275 2.33700 2.92125 3.50550 4.08975 4.67400 5.25825	0.58070 1.16140 1.74210 2.32281 2.90351 3.48421 4.06492 4.64562 5.22632	0.57714 1.15429 1.73143 2.30858 2.88572 3.46287 4.04001 4.61716 5.19430	0.57357 1.14715 1.72072 2.20430 2.86788 3.44145 4.01503 4.58861 5.16218	<b>5</b> ° Dep.
ince.	Distance	<b>1</b> 2 34 56 78 9	<b>1</b> 2 3 4 56 78 9	<b>1</b> 2 3 4 5 6 7 8 9	<b>1</b> 2 3 4 50 78 9	Distance.
ites.	Minutes	15	30	45	60	Minutes.

SMITHSORIAN TABLES.

Digitized by Google

.

1

## Digitized by Google

SHITHSONIAN	TABLES.

ţ	ince.	3	<b>6</b> °	3	<b>7</b> °	3	Bo	unce.	ites.
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance.	Minutes.
o	<b>1</b> 2 3 4 5 6 7 8 9	0.80001 1.61803 2.42705 3.23606 4.04508 4.85410 5.66311 6.47213 7.28115	0.58778 1.17557 1.76335 2.35114 2.93892 3.52671 4.11449 4.70228 5.29006	0.79863 1.59727 2.39590 3.19454 3.99317 4.79181 5.59044 6.38908 7.18771	0.60181 1.20363 1.80544 2.40726 3.00907 3.61089 4.21270 4.81452 5.41633	0.78801 1.57602 2.36403 3.15204 3.94005 4.72806 5.51607 6.30408 7.09209	0.61566 1.23132 1.84698 2.46264 3.07830 3.69336 4.30963 4.92529 5.54095	1 2 3 4 5 6 7 8 9	60
15	1 2 3 4 5 6 7 8 9	0.80644 1.61288 2.41933 3.22577 4.03222 4.83866 5.645111 6.45155 7.25800	0.59130 1.18261 1.77392 2.36523 2.95654 3.54785 4.13916 4.73047 5.32178	0.79600 1.59200 2.38800 3.18400 3.98001 4.77601 4.77601 6.36801 7.16401	0.60529 1.21058 1.81588 2.42117 3.02647 3.63176 4.23705 4.84235 5.44764	1.78531 1.57053 2.35595 3.14126 3.92658 4.71190 5.49721 6.282533 7.06785	0.61009 1.23818 1.85728 2.47637 3.09547 3.71456 4.33305 4.95275 5.57184	1 2 3 4 5 6 7 8 9	45
30	<b>1</b> 2 3 4 5 6 7 8 9	0.80385 1.60771 2.41157 3.21542 4.01928 4.82314 5.62699 6.43085 7.23471	0.59482 1.18964 1.78446 2.37929 2.97411 3.56893 4.16375 4.75858 5.35340	0.79335 1.58670 2.38005 3.17341 3.96076 4.76011 5.55347 6.34682 7.14017	0.60876 1.21752 1.82628 2.43504 3.04380 3.65256 4.20132 4.87009 5.47885	0.78260 1.56521 2.34782 3.13043 3.91304 4.69564 5.47825 6.26086 7.04347	0.62251 1.24502 1.86754 2.49005 3.11257 3.73508 4.35760 4.98011 5.60263	<b>1</b> 2 3 4 5 0 7 8 9	30
45	<b>1</b> 2 3 4 5 6 7 8 9	0.80125 1.60250 2.40376 3.20501 4.00026 4.80752 5.60877 6.41003 7.21128	0.59832 1.19664 1.79497 2.39329 2.99162 3.58994 4.18827 4.78659 5.38492	0.70068 1.58137 2.37206 3.16275 3.95344 4.74413 5.53482 6.32551 7.11620	0.61221 1.22443 1.83665 2.44886 3.06108 3.67330 4.28552 4.89773 5.50995	0-77988 1.55946 2.33965 3.11953 3.89942 4.67930 5.45919 6.23907 7.01896	0.62592 1.25184 1.87777 2.50369 3.12961 3.75554 4.38146 5.00738 5.63331	1 2 3 4 5 6 7 8 9	15
Minutes.	Distance.	Dep. 5	Lat. 3°	Dep.	Lat. 2°	Dep. 5	Lat. L ^o	Distance.	Minutes.

#### TABLE 9. 9. TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE.-CONTINUED.

•

#### TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE.-CONTINUED.

tes.	nce.	3:	<b>9</b> °	4	Do	4	L°	nce.	tes.
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance.	Minutes.
o	1 2 3 4 5 6 7 8 9	0.77714 1.55429 2.33143 3.10858 3.88573 4.66287 5.44002 6.21716 6.99431	0.62032 1.25864 1.85796 2.51728 3.14660 3.77592 4.40524 5.03456 5.66388	0.76604 1.53208 2.29813 3.06417 3.83022 4.59626 5.36231 6.12835 6.89439	0.64278 1.28557 1.92836 2.57115 3.21393 3.85672 4.49951 5.14230 5.78508	0.75470 1.50941 2.26412 3.01883 3.77354 4.52825 5.28295 6.03767 6.79238	0.65605 1.31211 1.96817 2.62423 3.28029 3.93635 4.50241 5.24847 5.90453	1 2 3 4 5 0 7 8 9	60
15	1 2 3 4 5 6 7 8 9	0.77439 1.54878 2.32317 3.09757 3.87196 4.64635 5.42074 6.19514 6.96953	0.63270 1.26541 1.89811 2.53082 3.16352 3.79623 4.42893 5.0664 5.69434	0.76323 1.52040 2.28969 3.05293 3.81616 4.57939 5.34262 6.10586 6.86909	0.64612 1.29224 1.93837 2.58449 3.23062 3.87674 4.52286 5.16899 5.81511	0.75184 1.50368 2.25552 3.00736 3.75920 4.51104 5.26288 6.01472 6.76656	0.65934 1.31869 1.97803 2.63738 3.29672 3.95607 4.61542 5.27476 5.93411	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 550 78 9	0.77162 1.54324 2.31487 3.08649 3.85812 4.62974 5.40137 6.17299 6.94462	0.63607 1.27215 1.90823 2.54431 3.18039 3.81646 4.45254 5.08862 5.72470	0.76040 1.52081 2.28121 3.04162 3.80203 4.56243 5.32284 6.08324 6.8324 6.84365	0.64944 1.29889 1.94834 2.59779 3.24724 3.89668 4.54613 5.19558 5.84503	0.74895 1.49791 2.24686 2.99582 3.74477 4.49373 5.24268 5.99164 6.74060	0.66262 1.32524 1.98786 2.65048 3.31310 3.97572 4.63834 5.30096 5.96358	1 2 3 4 5 6 7 8 9	30
45	1 2 3 4 5 6 7 8 9	0.76884 1.53768 2.30652 3.07536 3.84420 4.61305 5.38189 6.15073 6.91957	0.63943 1.27887 1.91831 2.55775 3.19719 3.83663 4.47607 5.11551 5.75495	0.7 57 56 1.51 51 3 2.27 269 3.0 30 26 3.78 78 2 4.54 539 5.30 295 6.06 52 6.81 808	0.65276 1.30552 1.95828 2.61104 2.26380 3.91656 4.56932 5.22208 5.87484	0.74605 1.49211 2.23817 2.98422 3.73028 4.47634 5.22240 5.96845 6.71451	0.66588 1.33176 1.99764 2.66352 3.32940 3.99529 4.66117 5.32705 5.99293	<b>1</b> 2 3 4 5 6 7 8 9	15
Minutes.	Distance	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Distance	Minutes
tes.	nce.	5	<b>0</b> °	4	<b>9</b> °	4	<b>8</b> °	nce.	tes.

SMITHSONIAN TABLES.

#### U. TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE.-CONTINUED.

tes.	nce.	4:	<b>2</b> °	4	<b>3</b> °	4	<b>4</b> °	nce.	tes.
Minutes.	Distance.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Distance.	Minntes.
0	1 2 3 4 5 0 7 8 9	0.74314 1.48628 2.22943 2.97257 3.71572 4.45886 5.20201 5.94515 6.68830	0.66913 1.33826 2.00739 2.67652 3.34565 4.01478 4.68391 5.35304 6.02217	0.73135 1.46270 2.19406 2.92541 3.65676 4.38812 5.11947 5.85082 6.58218	0.68199 1.36399 2.04599 2.72799 3.40999 4.09199 4.77398 5.45598 6.13798	0.71933 1.43867 2.15801 2.87735 3.59669 4.31603 5.03537 5.75471 6.47405	0.69465 1.38931 2.08397 2.77863 3.47329 4.16795 4.86260 5.55726 6.25192	1 2 3 4 5 0 7 8 9	60
15	<b>1</b> 2 3 4 5 6 7 8 9	0.74021 1.48043 2.22065 2.96087 3.70109 4.44130 5.18152 5.92174 6.66196	0.67236 1.3473 2.01710 2.68946 3.36183 4.03420 4.70656 5.37893 6.05130	0.72837 1.45674 2.18511 2.01348 3.64185 4.37022 5.09859 5.82696 6.55533	0.68518 1.37036 2.05554 2.74073 3.42591 4.11109 4.79628 5.48146 6.16664	0.71630 1.43260 2.14890 2.86520 3.58151 4.29781 5.01411 5.73041 6.44671	0.69779 1.39558 2.09337 2.79116 3.48895 4.18674 4.88453 5.58232 6.28011	1 2 3 4 5 6 7 8 9	45
30	1 2 3 4 5 6 7 8 9	0.73727 1.47455 2.21183 2.94910 3.68638 4.42366 5.16094 5.89821 6.63549	0.67559 1.35118 2.02677 2.70236 3.37795 4.05354 4.72913 5.40472 6.08031	0.72537 1.45074 2.17612 2.00149 3.62687 4.35224 5.67762 5.80299 6.52836	0.68835 1.37670 2.06506 2.75341 3.44177 4.13012 4.81848 5.50683 6.19519	0.71325 1.42050 2.13975 2.85300 3.56025 4.27950 4.99275 5.70600 0.41925	0.70000 1.40181 2.10272 2.80363 3.50454 4.20545 4.90636 5.60727 0.30818	1 2 3 4 5 0 7 8 9	30
45	<b>1</b> 2 3 4 5 0 7 8 9	0-73432 1.46864 2.20296 2.93729 3.67161 4.40593 5.14025 5.87458 6.66890	0.67880 1.35760 2.071520 3.39400 4.07280 4.75160 5.43040 6.10920	0.72236 1.44472 2.16709 2.88945 3.61182 4.33418 5.05654 5.77891 6.50127	0.601 51 1.38302 2.07453 2.7665 3.457 56 4.14907 4.84059 5.53210 6.22361	0.71018 1.42037 2.13055 2.84074 3.55092 4.26111 4.97129 5.68148 6.39166	0.70401 1.40802 2.11204 2.81605 3.52007 4.22408 4.92810 5.63211 6.33613	1 2 3 4 5 0 7 8 9	15
Minutes.	Distance.	Dep.	Lat. <b>7</b> °	Dep.	Lat. <b>6</b> °	Dep.	Lat. 5°	Distance.	Minutes.

SHITHSONIAN TABLES.

uice.	4	5°	nce.
Distance.	Lat.	Dep.	Distance.
1	0.70710	0.70710	1
2	1.41421	I.4142I	2
3	2.12132	2.12132	3
4	2.82842	2.82842	4
5	3-53553	3.53553	5
6	4.24264	4.24264	6
7	4·94974	4.94974	7
8	5.65685	5.65685	8
9	6.36396	6.36396	9
Dist	Dep.	Lat.	Distance.
Distance.	4	<b>5</b> °	ance.

TRAVERSE TABLE. DIFFERENCES OF LATITUDE AND DEPARTURE.-CONTINUED.

SMITHSONIAN TABLES.

47

.

.

•

TABLE 9.



#### TABLE 10. LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE $\rho_{\rm m}$ in English FEET.

	1								1			1	
Lat.	°	Io	2 ⁰	3°	4°	5°	6°	7°	8°	9°	100	P.	Р.
	7.817	7.817	7.817	7.817	7.817	7.817	7.817	7.317	7.317	7.317	7.317		
ø	7379	7392	7433	7500	7593	7714	7861	8034	8233	8458	8709		
1 2 3	7379 7379 7379	7392 7393 7394	7434 7435 7436	7501 7503 7504	7595 7597 7599	7716 7719 7721	7864 7866 7869	8037 8040 8043	8237 8240 8244	8462 8466 8470	8713 8718 8722	ļ	1
4	7379	7394	7437	7506	7600	7723	7872	8046	8247	8474	8727		_
5	7379 7379	7395 7395	7438 7438	7507 7508	7602 7604	7726 7728	7875 7877	8050 8053	8251 8255	8478 8483	8731 8735	10 20	.2 -3
7 8 9	7379 7379 7379	7396 7396 7397	7439 7440 7441	7510 7511 7513	7606 7608 7610	7730 7732 7735	7880 7883 7885	8056 8059 8062	8258 8262 8265	8486 8490 8494	8740 8744 8749	50 40 50	-5 -7 .8
10	7379	7397	7443	7514	7612	7737	7848	8065	8269	8498	8753	60	1.0
11 12	7379 7379	7398 7398	7443 7444	7515 7517	7614 7616	7739 7742	7891 7894	8068 8071	8273 8276 8280	8502 8506	8758 8762		
13 14	7379 7379	7399 7399	7445 7446	7518 7520	7618 7619	7744 7746	7896 7899	8075 8078	8283	8510 8514	8767 8771		2
15 16	7380 7380	7400 7401	7447 7448	7527 7522	7621 7623	7749 7751	7902 7905	808 t 8084	8287 8291	8518 8523	8776 8780	10 20	•3
17 18	7380 7380	7401 7402	7449 7450	7524 7525	7625 7627	7753 7755	7908 7910	8087 8091	8294 8298	8527 8531	8785 8789	30 40	.7 1.0 1.3
19 20	7380 7380	7402	7451 7452	7527	7639 7631	7757 7760	7913 7916	8094 8097	8301 8305	8535 8539	8794 8798	50 60	1.7
					7633	7762	7910	8100	8309	8543	8803		
21 22 23	7380 7380 7381	7404 7404 7405	7453 7454 7455	7530 7531 7533	7635 7637	7765 7767	7928 7924	8104 8107	8312 8316	8547 8551	8807 8812		3
24 25	7381 7381	7405 7400	7456 7458	7534 7535	7638 7640	7770 7772	7927 7930	8110 8114	8320 8324	8555 8559	8816 8821		
2Õ	7381	7407	7459	7537	7642	7774	7933	8117	8327	8564	8826	10 20	-5 1.0
27 28	7381 7382	7407 7408	7460 7461	7538 7540	7644 7646	7777 7779 7782	7936 7938	8120 8123	8331 8335 8338	8568 8572	8830 8835	30 40	1.5
29	7382	7408	7462	7541	7648		7941	8127		8576	8839	50 50	2.5 3.0
30	7382	7409	7463	7543	7650	7784	7944	8130	8342	8580	8844		
31 32	7382 7383	7410 7410	7464 7465	7545 7546	7652 7654	7786 7789	7947 7950	8133 8137	8346 8350	8584 8588	8849 8853		. 1
33	7383 7383	7411	7466 7467	7548	7656 7658	7791 7704	7953 7956	8140 8144	8353 8357	8593 8597	8858 8862	4	
34 35	7384	7412 7413	7469	7549 7551	7661 7663	7794 7796	7959	8147	8361	8601	8867	10	
36 37	7384 7384	7413 7414	7470 7471	7553 7554	7003 7665	7799 7801	7961 7964	8150 8154	8365 8369	8605 8609	8872 8876	20	.7 1.3
38 39	7384 7385	7415	7472 7473	7556	7667	7804 7806	7967 7970	8157 8161	8372 8376	8614 8618	8881 8885	30 40	2.0 2.7
40	7385	7416	7474	7559	7671	7809	7973	8164	8380	8622	8890	50 60	3-3 4-0
41	7385	7417	7475	7561	7673	7811	7975	8:67	8384	8626	8805		
42 43	7386	7418 7418	7476 7478	7562 7564	7675	7814 7816	7979 798a	8171 8174	8388 8392	863 T 863 S	8899 8904	ε	.
44	7386	7419	7479	7566	7679	7819	7985	8178	8396	8639	8909	,	
45 46	73 ⁸ 7 73 ⁸ 7	7420 7421	7480 7482	7567 7569	7682 7684	7821 7824	7988 7991	8181 8184	8400 8403	8643 8648	8914 8918	10	.8
47	7387	7422	7483	7571	7686	7826	7994	8188	8407	8652	8023	20 30	1.7
48 49	73 ⁸ 7 7388	7428 7423	7484 7486	7573 7574	7688 7690	7829 7831	7997 8000	8191 8195	8411 8415	8656 8661	8928 8932	40 50	3.3
50	7389	7424	7487	7576	7692	7834	8003	8618	8419	8665	8937	60	5.0
51 52	7388 7389	7425 7426	7488 7489	7578 7579	7694 7696	7837 7839	8006 8000	8201 8205	8423 8427	8669 8674	8942 8947		
53	7389	7427	7490	7581	7699	7842	. 8012	8208	8431	8678	8951		
54 55	7390 7390	7428 7429	749I 7493	75 ⁸ 3 75 ⁸ 4	7701 7703	7845 7848	8015 8019	8212 8215	8435 8439	8683 8687	8956 8961		
56	7390	7429	7494	7586	7705	7850	8022	8219	8443	869i	8966		
57 58	7391 7391	7430 7431	7496 7497	7588 7590	7707 7710	7853 7856	8025 8028	8222 8226	8446 8450	8696 8700	8971 8975		
59	7392	7432	7498	7591	7712	7858	8031	8229	8454	8705	8980		
60	7392	7433	7500	7593	7714	7861	8034	8233	8458	8709	8985	<u></u> [	

[Derivation of table explained on p. xlv.]

SMITHSONIAN TABLES.

## LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE $\rho_{\rm m}$ in English FEET.

[Derivation of table explained on p. zlv.]

8485         9485         9451         9451         9450         0333         0730         1144         1501         2054         2535           8400         9360         9411         9976         0331         0730         1146         1501         2054         2535           8400         9361         9421         9376         0331         0730         1171         1641         278         2545           9000         9313         9565         9000         0316         9771         1735         1650         277         30         2.0           9013         9333         9565         *0002         0316         0771         1735         1657         2134         259         277         30         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0 <th2.0< th=""> <th2.0< th=""> <th2.0< th=""></th2.0<></th2.0<></th2.0<>							1		<u> </u>	1		<u>r – – – – – – – – – – – – – – – – – – –</u>	
845         925         9611         9900         0333         9730         1140         1591         2054         2530         4           8400         9300         9611         9966         0340         9737         1156         1591         2054         2595         2595         2595         2595         2597         2595         2597         2595         2597         259         250         257         250         257         250         257         250         257         250         257         250         257         250         257         250         257         250         257         250         257         250         257         250         257         250         257         250         257         250         257         250         257         250         250         257         250         257         250         257         250         250         257         250         250         257         250         250         250         250         250         250         250         250         250         250         250         250         250         250         250         250         250         250         250         250 <th>Lat.</th> <th>110</th> <th>I 2⁰</th> <th>130</th> <th>140</th> <th>1 5°</th> <th>160</th> <th>17°</th> <th>18°</th> <th>19°</th> <th>20⁰</th> <th></th> <th>P. P.</th>	Lat.	110	I 2 ⁰	130	140	1 5°	160	17°	18°	19°	20 ⁰		P. P.
0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0		7.317	7.317	7.317	7.817	7.318	7.318	7.318	7.318	7.318	7.318		
Sorg         Sorg <thsorg< th="">         Sorg         Sorg         <ths< th=""><th>04</th><th>8985</th><th>9285</th><th>9611</th><th>9960</th><th>0333</th><th>0730</th><th>1149</th><th>1 591</th><th>2054</th><th>2539</th><th></th><th>4</th></ths<></thsorg<>	04	8985	9285	9611	9960	0333	0730	1149	1 591	2054	2539		4
8,990 9,916 9,917 9,900 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9,918 9	1												
9000         9300         9300         9700         9770         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170         1170 <td< th=""><th>3</th><th>8999</th><th>9301</th><th>9638</th><th>9978</th><th>0353</th><th>0750</th><th>1171</th><th>1614</th><th>2078</th><th>2564</th><th></th><th></th></td<>	3	8999	9301	9638	9978	0353	0750	1171	1614	2078	2564		
0014         0317         0455         0906         0378         1108         1644         110         1577         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1108         1677         1678         1107         1678         1107         1678         1108         16778         1108         1678 <th< th=""><th>4</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>30</th><th>2.0</th></th<>	4											30	2.0
Gara         Gara <th< th=""><th>56</th><th></th><th>93 I 7</th><th>9645</th><th>9996</th><th></th><th></th><th></th><th></th><th></th><th>2589</th><th>50</th><th></th></th<>	56		93 I 7	9645	9996						2589	50	
9933         9335         9567         *0030         9386         9798         1121         1667         2134         2633           9938         9344         9573         *0032         0441         0805         1228         1675         2142         2539         2639           9938         9344         9564         *0039         0448         0816         1236         1662         2158         2655         30         20         30         30         977         3158         2655         30         25         26         30         32         32         30         32         32         30         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32	78			9656	#0008					2118		60	4.0
100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 <th>9</th> <th>4028</th> <th>9333</th> <th>9661</th> <th></th> <th>0392</th> <th>0791</th> <th>1214</th> <th>1659</th> <th>2126</th> <th>2614</th> <th></th> <th></th>	9	4028	9333	9661		0392	0791	1214	1659	2126	2614		
0043         00478         0078         0032         0411         0812         1233         16632         1150         2647           0013         0350         0500         00015         0447         0836         1230         1607         2165         2567           0013         0350         9500         00015         0447         0830         1235         1707         2165         2563         3053         3053         3050         2500         2500         2165         2505         2165         3053         3050         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500         500	10	9033	9338	9667	⁸ 0030	0398	0798	1221	1667	2134	2622		5
South         Size         Size         South         Nonz         Size         South         Sou	11	9038 0041											
9933         9936         9936         9936         9937         9901         ************************************	13	9048		9684		0418	0819	1243			2647		
9235 9057 9057 9077         9375 9077         9707 9057         9037 9007         9036 9007         9774 9008         9007 9007         9036 9007         9774 9008         9007 9007         9036 9007         9774 9007         9008 9007         9007 9007         9007 9007         9007 9007         9007 9007         9007 9007         9008 9007         9007 9007         9008 9007         9007 9007         9008 9007         9007 9007	14												
9977         9375         9777         9386         9718         90070         9386         9718         90070         9386         9718         90070         9386         9718         90070         9386         9718         90070         9386         9718         90070         9386         9718         90070         9386         9718         90070         9386         9718         90071         9386         9718         90071         9386         9730         90082         9402         9730         90088         04070         04874         13001         1751         22382         27730         2773         2774         400         30         3.0           9002         9407         9741         *0107         0483         0805         1323         1774         2246         2739         30         3.0           9102         9413         9747         *0107         0483         0805         1330         1756         22364         27747         40         4.0           9113         9423         9775         *0133         0510         0536         0937         1357         1250         2204         2780         77           9132         9445         9	15 10							1265				40 80	3.3
\$\$\physpace{077}         9386         9718         *0076         0.450         0860         1287         1735         2306         2607           9088         9391         9774         *0088         0463         0867         1204         1743         2314         2705           9088         9391         9730         *0088         0470         0881         1300         1751         2322         2732           9002         9403         9741         *0107         0.483         0888         1310         1774         2246         2739         30         3.0           9113         9443         9759         *0113         0460         0593         1332         1774         2246         2739         30         3.0           9127         9443         9759         *013         0516         0532         0937         1367         1823         2376         2771           9132         94450         9758         *0150         0536         0536         0537         1367         1832         2836         2376         2777           9132         94450         9758         *0159         0535         0536         1339         18332         23	17 18		9375	9707				1272					5.0
9         9         9         9         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	18 19		9386	9713 9718			0860						·
987 9907         9402 9402         9736 9736         *0088 *0004         0476 0476         0874 0881         1301 1300         1751 1756         2220 2330         2713 2723           9007         9447         *0107         0483         0851         1300         1758         2330         2723         10         1.0           9102         9413         9747         *0107         0483         0855         1330         1774         2246         2739         30         3.0           9112         9443         9755         *0135         0506         0903         1336         1781         2276         2764         50         60         5.0           9112         9443         9776         *0138         0516         0937         1360         1812         2264         2781         50         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0	20	9082	9391	9724	⁰ 0082	0463	0867	1294	1743	3314	3705		•
\$\overline{9007}         \$\overline{974}         \$\overline{974}         \$\overline{9107}         \$\overline{943}         \$\overline{983}         \$\overline{983}         \$\overline{983}         \$\overline{974}         \$\overline{9107}         \$\overline{233}         \$\overline{974}         \$\overline{9107}         \$\overline{233}         \$\overline{9775}         \$\overline{9117}         \$\overline{943}         \$\overline{9755}         \$\overline{9117}         \$\overline{943}         \$\overline{9775}         \$\overline{9775}         \$\overline{913}         \$\overline{923}         \$\overline{1336}         \$\overline{9776}         \$\overline{913}         \$\overline{923}         \$\overline{1336}         \$\overline{9776}         \$\overline{913}         \$\overline{923}         \$\overline{1336}         \$\overline{9776}         \$\overline{913}         \$\overline{923}         \$\overline{1336}         \$\overline{9776}         \$\overline{913}         \$\overline{923}         \$\overline{1336}         \$\overline{923}         \$\overline{2336}         \$\overline{923}         \$\overline{923}         \$\overline{2336}         \$\overline{9776}         \$\overline{9776}         \$\overline{933}	21					0470	0874						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22 23					0476 0483	0881 0888		1758			10	1.0
9407         9415         9753         *0113         0490         9000         1330         1751         2354         2747         40         40           9117         9423         9755         *0125         0500         0900         1335         1758         2354         2755         50         5.0           9127         9444         9770         *0132         0516         0923         1367         1800         2204         2754         50         5.0         6.0           9132         9445         9782         *0144         0539         0937         1367         1830         2304         2780         77           9132         9445         9788         *0150         0536         0044         1374         1838         2302         2797         2800           9153         4956         9704         *0150         0551         0521         1379         1843         2318         2814         20         2.3         30         3.5         50         57         1472         9817         *0181         0550         0072         1444         1858         2357         2857         20         5.8         50         5.8         50	24				*0107	0489	0895		3774	-		20	2.0
9117         9420         9765         *0125         0500         0916         1345         1707         2270         2764         50           9127         9443         9770         *0132         0930         1360         1805         2286         2771           9132         9445         9782         *0144         0539         0930         1367         1820         2204         2780         7           9132         9445         9783         *0144         0539         0937         1367         1820         2204         2780         7           9142         9456         9788         *0156         0542         0958         1389         1835         2310         2866         2333         30         3.5           9153         9467         9867         *0151         0552         0072         1474         1885         2334         2831         20         2.5         30         3.5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5 </th <th>25 26</th> <th>9107</th> <th>9418</th> <th>9753</th> <th></th> <th>0496</th> <th>0903</th> <th>1330</th> <th>1781</th> <th>2254</th> <th>3747</th> <th>40</th> <th>4.0</th>	25 26	9107	9418	9753		0496	0903	1330	1781	2254	3747	40	4.0
9122         9434         9770         •0132         0516         0523         1352         1865         2278         2773           9127         9440         9776         •0138         0523         0930         1360         1812         2266         2781           9132         9445         9782         •0144         0539         0937         1367         1820         2204         2780         7           9137         9450         9788         •0150         0536         0944         1374         1838         3302         2707           9142         9450         9784         •0153         0536         0957         1389         1843         2318         2814         70         1.2           9157         9467         9806         *0169         0535         0972         1404         1851         2336         2833         20         2.3         30         3.5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5 <th>27</th> <th></th> <th>50 60</th> <th></th>	27											50 60	
9132         9445         9782         •0144         0529         0937         1367         1820         2204         2780           9137         9450         9788         •0150         0536         0944         1374         1838         2302         2707           9142         9450         9788         •0150         0536         0944         1374         1838         2302         2707           9147         9450         9500         *0153         0549         0958         1389         1831         2316         2800           9153         9467         9806         *0169         0555         0502         0721         1404         1856         23341         2831         40         4.7           9167         9483         9823         *0187         0575         0966         1410         1874         2351         2885         60         7.0           9172         9484         9833         *0187         0575         0988         10007         1441         1897         2375         2857         2857         2857         2857         2857         2857         2857         2857         2857         2857         2857         2857	28	9122	9434	9770	P0132	0516	0923	1352	1805	2278	2772		
0137 9142         9450 9147         9450 9145         9788 9794         *0150 *0156         0536 0542         0944 9051         1382 1382         1838         3303 2310         2707 3850           9142         9456         9794         *0156         0542         0951         1382         1835         2310         2805           9147         9461         9500         *0153         0549         0955         1397         1851         2336         2814         23         30         2.3           9153         9467         9862         *0175         0552         0952         0972         1404         1858         2334         2811         40         4.7           9167         9483         9833         *0187         0575         0986         1419         1874         2351         2848         500         7.0           9172         9488         9839         *0187         0575         0986         1419         1897         2375         2865         2357         2857         2857         2857         2857         2857         2857         2857         2857         2857         2857         2857         2857         2857         2857         2857         2857	29 30												_
9142       9456       9794       •0156       0542       0958       1382       1835       2310       2804         9147       9467       9600       •0163       0559       0958       1389       1843       2310       2804       10       1.2         9153       9477       9612       •0175       0553       0953       1397       1812       2336       2814       20       2.3         9153       9477       9817       •0181       0559       0972       1404       1858       2334       2840       50       5.8         9162       9477       9817       •0181       0559       0973       1419       1874       2351       2867       50       5.8         9172       9488       9833       *0287       *0104       0582       0971       1441       1897       2375       2874       50       7.0         9182       9499       9841       *0205       0595       1007       1441       1897       2375       2874       50       7.0         9182       9499       9841       *0205       0505       1024       1445       1913       2331       2801       200       200	31								1828				7
915a       9467       9866       *0169       0555       0957       1397       1851       2326       2823       30       3.5         9157       9472       9817       9817       0553       0563       0972       1404       1856       2334       2811       30       3.5         9157       9472       9483       9823       *0181       0569       0979       1411       1867       2334       2840       50       5.8         9172       9483       9823       *014       0582       0993       1440       1874       2351       2849       50       7.0         9177       9494       9835       *0164       0582       0993       1440       1874       2351       2857       50       7.0         9177       9494       9835       *0200       0583       1000       1414       1897       2375       2874       805         9182       9409       9841       *0200       0595       1007       1441       1897       2375       2874       805         9182       9409       9851       *0212       0602       1014       1448       1905       2400       2809       20	32	9142	9456	9794	Po156	0542	0051	1382	1835	2310	2806	10	
9:57       9472       9612       90175       9524       9072       14024       1858       2334       2831       2831       50         9162       9477       9617       90181       0559       0972       1411       1856       2334       2840       50       47         9162       9483       9533       9023       9072       0488       1819       1874       2351       2840       50       7.0         9177       9494       9835       90200       0588       1000       1414       1897       2375       2874       50       7.0         9177       9494       9835       90200       0593       1007       1441       1897       2375       2874       50       7.0         9177       9494       9835       90200       0593       1007       1441       1897       2375       2874       60       7.0         9182       9499       9841       90205       953       9623       1004       1445       1905       2333       2883       2889       200       2809       2.7       2.7       2.7       2.7       2.7       2.7       2.7       2.7       2.7       2.7       2.7<	33 34				-					-		20	2.3
9102         9477         9617         9101         0503         0777         9617         9617         0517         0503         0777         1411         1800         3333         20.87         5.8           9172         9488         9839         *0104         0582         0903         1445         1882         2350         2857         2857           9177         9494         9835         *0200         0588         1000         1441         1889         2357         2857           9177         9494         9835         *0200         0588         1000         1441         1897         2375         2874         2857           9177         9494         9835         *0205         0595         1007         1441         1897         2375         2874         2803           9182         9505         0847         *0212         0603         1021         1445         1913         2391         2801         10         1.3         277           9107         9516         0855         *0231         0632         1035         1471         1928         2408         2003         30         4.0           9107         951	35	9157	9472	9812	*0175	0562	0972	1404	1858	<b>2</b> 334	2831	40	
9172 9488 9839 *0104 0982 0993 1426 1883 2350 2857 9177 9494 9835 *0200 0588 1000 1414 1889 2357 2857 9187 9505 9847 *0212 0602 1014 1448 1905 2353 2857 9187 9505 9847 *0212 0602 1014 1448 1905 2353 2883 9197 9516 9859 *0212 0668 1021 1446 1930 2400 2899 2 9207 9516 0855 *0231 0622 1035 1471 1938 2408 2908 30 9213 9533 9876 *0244 0635 1034 1470 1936 2408 2908 30 9213 9533 9876 *0244 0635 1034 1470 1938 2408 2908 30 9223 9534 9888 *0250 0642 1037 1494 1952 2433 2933 60 9233 9555 9900 *0269 0662 1071 1500 1507 2441 2935 2 9249 9854 9888 *0250 0642 1037 1494 1952 2433 2933 60 9233 9555 9900 *0269 0662 1078 1516 1975 2457 2959 9 9233 9555 9900 *0269 0662 1078 1516 1975 2457 2959 9 9233 9555 9900 *0269 0662 1078 1516 1975 2457 2959 9 9233 9555 9900 *0269 0662 1078 1516 1975 2457 2959 9 9238 9561 9006 *0275 0660 1085 1524 1083 2465 2968 200 30 9254 9577 9918 *0288 0658 1099 1531 1991 2473 2955 50 5.7 9259 9573 9918 *0288 0658 1099 1531 1999 2488 295 30 9254 9577 9924 *0280 0669 1113 1554 2014 2408 3003 30 4.5 0258 0569 1113 1554 2014 2408 3003 30 4.5 0259 9573 9936 *0375 0669 1113 1554 2014 2408 3003 30 4.5 0259 9573 9936 *0375 0669 1113 1554 2014 2498 3003 30 4.5 0259 9573 9936 *0375 0669 1113 1554 2014 2498 3003 30 4.5 0259 9573 9936 *0370 0703 1113 1554 2014 2498 3003 30 4.5 0259 9574 9934 *0307 0703 1113 1554 2014 2498 3003 40 6.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	36 37											50	5.8 7.0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	38	9172	9488	9829	*0194	0582	0993	3436	1883	2359	2857		,
1/10         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1         1/1 <th>39 40</th> <th></th>	39 40												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													8
9232         9521         9805         *0231         0623         1035         1471         1928         2408         2008         200         2.7           9207         9527         9871         *0238         0629         1042         1470         1936         2416         2908         3916         40         5.3           9213         9538         9822         *0236         0535         1057         1404         1952         2433         2935         50         6.7         6.7         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0	41 43	9192	9510	9853	⁴ 0219	0608	1021	1456	1913	2391	2891		
gazo         g527         g671         *0238         o629         tota         tota <thtota< th="">         tota         tota         <th< th=""><th>43</th><th>9197</th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th>20</th><th>2.7</th></th<></thtota<>	43	9197				-						20	2.7
9213       9533       9576       *0244       0035       1050       1486       1944       2424       2925       50       6.7         9213       9538       9582       *0250       0642       1057       1494       1952       2433       2933       60       8.0         9213       9544       9584       *0250       0642       1057       1501       1952       2433       2943       2943         9233       9555       9900       *0263       0655       1071       1501       1957       2441       2935       50       8.0         9233       9555       9900       *0263       0652       1071       1500       1957       2457       2959       9         9233       9555       9900       *0269       0662       1078       1516       1775       2457       2959       9         9233       9556       9918       *0282       0656       1085       1534       1983       2465       2956       2936       300       4.5         9249       9572       9918       *0288       0682       1056       1546       2007       2490       2993       30       4.5       30	44 45	9207	9527	9871	*0238	0629	1042	1479	1936	2416	2916		
9323         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9324         9325         944         9332         944         9332         944         9332         944         9332         945         944         9432         9434         9434         9434         9434         9434         9434         9434         9434         9434         9434         9434         9434         9434         9434         9434         9434         9434         9434         9434         9434         9434         9434         9434         9434         9434         9434         9434         9434         9434         9434         9434         9434         9434         9434         9434<	46	9213	- 1				-		• • •			ŝo	6.7
\$             2228             9549             9549	47 48	9223		9888	*0256	0649	1064	1501	1959				
q38         9561         9006         *0275         0660         1085         1524         1083         2465         2058           9243         9566         9012         *0282         0676         1085         1531         1991         2473         2976           9249         9572         9018         *0282         0676         1092         1531         1991         2473         2976           9254         9577         9024         *0285         0683         1009         1546         2007         2493         300         4.5           9254         9573         9030         *0307         6695         1106         1546         2007         2493         300         4.5           9254         9573         9930         *0307         6595         1133         1554         2014         2498         3003         4.5           9259         9589         9936         *0307         0703         1131         1554         2032         2506         3011         50         7.5           9269         9594         9942         *0314         0710         1128         1569         2030         2514         3019         506	49	9228		9894		o655	1071	1 509	1967	2449	<b>2</b> 950		
9243         9566         9013         *0282         0576         1092         1531         1991         2473         2975         2976         10         1.5           9249         9572         9918         *0282         0682         1099         1339         1999         2482         2985         20         3.0           9354         9577         9903         *0301         0690         1106         1546         2007         2490         2993         30         4.5           9354         9573         9030         *0301         0590         1113         1554         2014         2498         2093         30         4.5           9354         9583         9936         *0301         0590         1113         1554         2014         2498         3002         40         6.0           9364         9589         9936         *0307         0703         1113         1556         2033         2014         3019         50         7.5           9265         9594         9942         *0314         0710         1138         1576         2038         2423         3036         9.0         9.0         9.0         9.0         9.0	50	9233											9
9240         9572         9918         *0288         0682         1099         1539         1999         2482         2985         10         1.5           9254         9577         9924         *0295         0689         1106         1546         2007         2490         2993         30         4.5           9254         9577         9924         *0295         0689         1106         1546         2007         2490         2993         30         4.5           9259         9583         9936         *0307         0695         1113         1554         2014         2498         3002         40         6.0         50         7.5         50         3011         50         7.5         50         50         7.5         50         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0 <td< th=""><th>51 52</th><th>9238 9243</th><th></th><th>9906 9913</th><th>*0282</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	51 52	9238 9243		9906 9913	*0282								
9354         9577         9924         ©0395         0689         1105         1546         2007         2490         2993         30         4.5           9259         9573         9930         *0301         0595         1113         1554         2014         2498         3002         40         6.0           9264         9589         9936         *0307         0703         1131         1554         2014         2498         3002         40         6.0           9264         9589         9936         *0307         0703         1131         1554         2024         2606         3011         50         7.5           9264         9954         9942         *0314         0710         1128         1560         2030         2514         3019         50         7.5           9265         9954         *0320         0716         1135         1576         2038         2423         3028         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0 <td< th=""><th>53</th><th>9249</th><th></th><th>9918</th><th>^ao288</th><th>0682</th><th>1099</th><th></th><th>1999</th><th>2482</th><th>2985</th><th></th><th></th></td<>	53	9249		9918	^a o288	0682	1099		1999	2482	2985		
9364 9589 9936 *0307 0703 1131 1361 2022 2306 3011 50 7.5 9369 9594 9942 *0314 0710 1128 1569 2030 2514 3019 9275 9500 9948 *0320 0716 1135 1576 2038 2423 3088 9380 9605 9954 *0327 0723 1142 1584 2046 2531 3036	54 55	9254 9259	9577 9582									30	4.5
3275         3500         9948         •0320         0716         1135         1576         2038         2433         3088           9280         9605         9954         •0327         0723         1142         1584         2046         2531         3036	56	9264	9589					1561					7.5
9280 9605 9954 *0327 0723 1142 1584 2046 2531 3036	57 58	9269 0275	9594									60	9.0
9285 9611 9960 °0333 0730 1149 1591 2054 2539 3045	59	9275 9280						3584					
	60	9285	9611	9960	*0333	0730	1149	1 591	2054	2539	3045	<u>_</u>	-
NIAN TABLES.		ONIAN T	ABLER.								Digitized	<del>by (</del>	-008

## LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE $\rho_{\rm m}$ in English FEET.

[Derivation of table explained on p. xlv.]

	1						1	1		1	1	
Lat.	210	22 ⁰	23°	24 ⁰	25°	26°	27°	28°	29°	30°		P. P.
	7.318	7.318	7.313	7.318	7.818	7.313	7.318	7.318	7.318	7.313		
O,	3045	3570	4115	4678	5259	5858	6474	7105	7751	8412		
1 2	3053 3062	3579 3588	4124 4133	4688 4697	5269 5279	5868 5 ⁸ 78	6484 6494	7116 7126	7762 7773	8423 8434		
3	3070 3079	3597 3606	4142 4153	4707 4716	5289 5209	5889 5899	6505 6515	7137 7148	77 ⁸ 4 7795	8445 8457		
50	3088 3096	3614 3623	4161 4170	4726 4735	5309 5319	5909 5919	6526 6536	7158 7169	7806 7817	8468 8479		8
78	3105 3113	363.2 364.1	4179 4189	4745 4754	5328 5338	59 <b>3</b> 9 5939	6 <b>546</b> 6557	7180 7190	7828 7839	8490 8501		
9	3122	3650	4198	4764	5348	5949	6567	7201	7850	8512	10 20	1.3 2.6
10	3131	3659	4207	4774	5358	5960	6578	7313	7860	8523	30 40	4.0 5-3
11 12 13	3139 3148 3157	3668 3677 3686	4216 4226 4235	4783 4793 4802	5368 5378 5388	5970 5980 5990	6588 6599 6609	7222 7233 7244	7871 7882 7893	8535 8546 8557	50 60	6.7 8.0
14 15	3165	3695 3704	4244 4254	4812 4822	5398 5408	6000 6011	6620 6630	7254 7265	7904 7915	8568 8579		
16	3174 3183	3713	4263	4831	5417	6021	6640	7270	7926	8591		9
17	3191 3200	3722 3731 3740	4272 4282 4291	4841 4851 4860	5427 5437	6031 6041 6051	6651 6661 6673	7287 7297 7308	7937 7948 7050	8602 8613 8624		
19 20	3209	3740	4300	4870	<u>5447</u> 5457	6062	6682	7300	7959 7970	8635	10 20 30	1.5 3.0
21	3217	3758	4310		5457	6072	6693	7329	79/0 7981	8647	30 40 50	4-5 6.0 7-5
22 23	3235 3244	3767 3776	4319 4328	4879 4889 4899	5477 5487	6082 6092	6703 6714	7340 7351	799 <b>2</b> 8003	8658 8669	60	9.0
24	3252	3785	4358	4908	5497	6102	6724	7362	8014 8025	8680 8601		
25 20	3261 3270	3794 3804	4347 4356	4918 4928	5507 5517	6113 6123	6735 6745	7372 7383	8036	8691 8703		10
27 28	3278 3287	3813 3822	4366 4375	4937 4947	5527 5537	6133 6143	6750 6766	7394 7405	8047 8058	8714 8725		
29	3296	3831	4384	4957	5547	6154	6777	7416	8069	8736	10 20	1.7 3-3
30	3305	3840	4394	4966	5557	6164	6787	7426	8080	8747	30 40	5.0 6.7
31 32	3313 3322	3849 3858	4403 4413	4976 4986	55 ⁶ 7 5577 55 ⁸ 7	6174 6185	6798 6808	7437 7448	8091 8102	8759 8770 8781	50 60	8.3 10.0
33 34	3331 3340	3876 3876	4422 443 I	4996	5507	6195 6205	6819 6829	7459 7469	8113 8124	879 <b>3</b>	_	
35 36	3349	3885 3894	4441 4450	5015 5025	5607 5617	6215 6226	6840 6851	7480 7491	8135 8146	8804 8815		11
37	3357 3366	3904	4460	5034	5627	6236	6861	7502	8157	8826		
38 39	3375 3384	3913 3922	4469 4479	5044 5054	5637 5647	6246 6256	6872 6882	7513	8168 8179	8838 8849	10	1.8
40	3393	3931	4488	5064	5657	6267	6893	7534	8190	8860	20 30	3.7 5-5
41	3401	3940	4498	5073 5083	5667 5677	6277 6287	6903 6914	7545	8201 8212	8871 8883	40 50	7·3 9.2 11.0
42 43	3410 3419	3949 3958	4507 4516	5003	5687	6298	6924	7556 7567	8223	8894		
44 45	3428 3437	3967 3977	4526 4535	5103 5112	5 ⁶ 97 5797	6308 6318	6935 6946	7578 7588	8234 8246	8905 8916		
46	3446	3986	4545	5122	5717	6329	6956	7599	8257	8928		12
47 48	3454 3463	3995 4004	4554 4564	5132 5142	5727 5737	6339 6349	6967 6977	7610 7621	8268 8279	8939 8950		
49	3472	4013	4573	5151	5747	6360	6977 6988	7632	8280	8962	10 20	2.0 4.0
50	34 ⁸ 1	4022	4583	5161	\$757	6370	6999	7643	8301	8973	30 40	6.0 8.0
51 52	3490 3499	4033 4041	4593 4603	5171 5181	5767 5777	6380 6391	7009 7020	7653 7664	8312 8323	8984 8996	50 60	10.0 12.0
53 54	3508 3516	4050	4611 4621	5191	5787 5798	6401 6411	7030 7041	7675 7686	8334 8345	9007 9018		
54 55 56	3525	4059 4068 4078	4630 4640	5210 5220	5790 5808 5818	6422 6432	7052	7697 7708	8356 8368	9030 9041		
57	3543	4086	4649	5230	5828	6443	7073 7084	7719	8379	9053		
58 59	3552 3561	4096 4105	4659 4668	5240 5250	5838 5848	6453 6463	7084 7094	7729 7740	8390 8401	9064 9075		
60	3570	4115	4678	5259	5858	6474	7105	7751	8412	9086		
					1				Diaitize		00	ala

SMITHSONIAN TABLES.

i

Digitized by GOOSIC

## LOCARITHMS OF MERIDIAN RADIUS OF CURVATURE $\rho_m$ in English FEET.

[Derivation of table explained on p. xlv.]

Lat.	31°	32 ⁰	33°	34°	35°	36°	37°	38°	39°	40°	1	P. P.
	7.313	7.318	7.319	7.319	7.319	7.319	7.319	7.319	7.319	7.319		
0	9086	9773	0472	1182	1902	2631	3369	4114	4866	5623		
1	9098	9785	0484	1194	1914	2643	3381	4126	4878	5636		
2	9109	9796	0495	1206	1926	2656	3394	4139	4891	5649		
3	9120	9807 9819	0507	1218	1938 1950	2668 2680	3406	4151 4164	4904	5661		11
4 5 6	9132 9143 9154	9831 9843	0531 0542	1230 1241 1253	1950	2692 2705	3418 343 I 3443	4176	4916 4929 4941	5674 5687 5699	10	1.8
	9166	9854	0554	1265	1986	2717	3455	4201	4954	5712	20 30	3.7 5.5
7 8 9	9177 9189	9866 9877	0566 0577	1277	1999 2011	2729 2741	3468 3480	4214 4226	4966 4979	5725 5737	40	7.3 9.2
10	9200	9889	0590	1301	2023	2753	3492	4239	4992	5750	50 60	11.0
11	0211	9900	0601	13/3	2035	2766	3505	4251	5004	5763		
12 13	9223 9234	9912	0613 0625	1325	2047 2059	2778 2790	3517	4264	5017 5029	5775 5788		
13	9*34 9245	9924 9935	0637	1337 1349	2071	2803	3530 3542	4280	5043	5700 5801		
15 16	9257 9268	0047	0648 0660	1361	2083 2095	2815 2827	3554 3567	4301	5°55 5067	5813 5826		
10	9200 9280	9958 9970	0000	1373 1385	2095	2839	3579	4314 4326	5007	5°20 5839		
81	9291	9982	0684 0696	1397	2120	2852 2864	3592 3604	4339	5092	5851 5864		
19 20	9302	9993 *0005		1409	2144	2876	3616	4351	5105			
	9314	*0016	0707			2888	3629	4364		5877		
21 22	9325 9337	*0028	0719 0731	1433 1445	2156 2168	2901	3641	4376 4389	5130 5143	5890 5902		
23	9348	⁰ 0040	0743	1457 1469	2180	2913	3654	4401	5156	5915		12
24 25	9360 9371 9382	[#] 0051 [#] 0063	0755 0766	1409	2192 2205	2925 2938	3666 3678	4414 4426	5168 5181	5928 5940		
26		*0075	0778	1493	2217	2950	3691	4439	5193	5953	10 20	2.0 4.0
27 28	9393 9405	*0086 *0098	0790 0802	1505	2229 2241	2962 2974	3703 3716	4451 4464	5206 5219	5966 5978	30	6.0
29	9417	0110 ⁸	0814	1529	2253	2987	3728	4477	5231	5991	40 50 60	8.0 10.0
30	9428	<b>9</b> 0131	0826	1541	2265	2999	3741	4489	5244	6004	δο	12.0
31	9440	⁰¹³³	0837	1553	2278	3011	3753	4502	5256	6017		
32 33	9451 9463	*0144 *0156	0849 0861	1565 1577	2290 2302	3024 3036	3765 3778	4514 4527	5269 5282	6029 6042		
34	9474	*o168	0873	1589	2314	3048	3790	4539	5294	6055		
35 36	9485 9497	[#] 0179 [#] 019I	0885 0897	1601 1613	2326 2338	3060 3073	3803 3815	4552 4564	5307 5320	6067 6080		
37	9508	<b>*</b> 0203	0908	1625	2351	3085	3828	4577	5332	6093		
38 39	9520 953 I	⁰ 0214 ⁰ 0226	0920 0932	1637 1649	2363 2375	3097 3110	3840 3852	4589 4602	5345 5358	6106 6118		
40	9543	*0238	0944	1661	2 387	3122	3865	4614	5370	6131		
41	9554	<b>*</b> 0249	0956	1673	2399	3134	3877	4627	5383	6144		
42 43	9566 9577	*0261 *0273	0968 0980	1685 1697	2411 2424	3147 3159	3890 3902	4640 4652	5395 5408	6150 6169		18
44	9589	0285	0992	1709	2436	3171	3915	4665	5421	6182		
45 46	9600 9613	[₽] 0296 [₽] 0308	1003 1015	1721 1733	2448 2460	3184 3196	3927 3939	4677 4690	5433 5446	6195 6207	10	2.2
47	9623	*0320	1027	1745	2472	3208	3952	4702	5459	6220	20 30	4-3 6.5
48 49	9635 9646	*0331 *0343	1039 1051	1757 1769	2485 2497	3221 3233	3964	4715 4727	5471 5484	6233 6245	40	8.7
50			1051	1781	2509		3977 3080			6258	50 60	10.8 13.0
51	9058 9669	*0355 *0366	1075	1793	2521	3245	3989 4002	4740	5497 5509	6271		L
52	g/81	*0378	1087	1805	2533	3270	4014	4765	5522	6284		
53	9692 9704	*0390	1098 1110	1817 1820	2546	3282 2201	4027	4778	5535	6296		
54 55 56	9715	*0402 *0413	1122	1841	2558 2570	3295 3307	4039 4052	4790 4803	5547 5560	6309 6322		
	9727	°0425	1134	1854	2582	3319	4064	4815	5573	6335		
57 58	9739 9750	*0437 *0449	1146 1158	1866 1878	2594 2607	3332 3344	4077 4089	4828 4841	5585 5598	6347 6360		
59	9762	*0460	1170	1890	2619	3356	4101	4853	5598 561 I	6373		
60	9773	°0473	1182	1902	2631	3369	4114	4866	5623	6385		
<u></u>	<u> </u>										-C	
вытня	NAINO	TABLES	•			51				Digitizea	Jy 🧲	

.

## LOCARITHMS OF MERIDIAN RADIUS OF CURVATURE Pm IN ENCLISH FEET.

[Derivation o	f table explai	ined on p. xlv.]
---------------	----------------	------------------

					ration of							
Lat.	41°	42 ⁰	43°	4 <b>4</b> °	45°	46°	47°	48°	<b>4</b> 9°	50°		P. <b>P</b> .
	7.319	7.319	7.319	7.319	7.319	7.320	7.320	7.820	7.320	7.320		•
ø	6385	7152	7921	8692	9464	0236	1007	1776	2543	3306		
1	6398 6411	7164 7177	7933 7946	8704 8717	9476 9489	0248 0261	1020 1033	1789 1802	2556 2569	3319 3331		
3	6424	7190	7959	8730	9502	0274	1045	1815	2581	3344		
4 5 6	6436 6449	7203	7972 7985	8743 8756	9515 9528	0287 0300	1058	1827 1840	2594 2607	3357 3369		
	6462 6475	7228 7241	7998 8010	8769 8782	9541 9554	0313 0326	1084 1097	1853 1866	2619 2632	3382 3395		
7 8 9	6487 6500	7254 7267	8023 8036	8794 8807	9554 9566 9579	0338 0351	1110	1879 1892	2645 2658	3407 3420		
10	6513	7280	8049	8820	9592	0364	1135	1904	2670	3433	1	12
11	6526	7292	8062	8833	9605	0377	1148	1917	2683	3445	10	2.0
12	6538 655 <i>1</i>	7305 7318	8075 8087	8846 8859	9618 9631	0390 0403	1161 1174	1930 1943	2696 2709	3458 3471	20	4.0 6.0
14 15	6564 6577	7331 7344	8100 8113	8872 8884	9644 9657	0416 0429	1187 1199	1955 1968	2721 2734	3483 3496	30 40 50	8.0 10.0
16	6589	7356	8126	8897	9669	044I	1212	1981	2747	3509	60	12.0
17 18 19	6602 6615 6628	7369 7382 7395	8139 8152 8165	8910 8923 8936	9682 9695 9708	0454 0467 0480	1225 1238 1251	1994 2007 2019	2760 2772 2785	3521 3534 3547		<b>.</b>
20	6640	7408	8177	8949	9721	0493	1264	2032	2798	3559		
21	6653 6666	7420	8190 8203	8962 8975	9734	0506 0519	1276 1289	2045 2058	2811 2823	3572 3585	ł	
23	6679	7433 7446	8216	8987	97 <b>47</b> 9760	0531	1302	2071	2836	3597		
24 25	6692 6704	7459 7472	8229 8242	9000 9013	9772 9785	0544 0557	1315 1328	2083 2096	2849 2861	3610 3623	1	
26 27	6717 6730	74 ⁸ 5 7497	8254 8267	9026 9039	9798 9811	0570 0583	1341 1353	2109	2874 2887	3635 3648		
28 29	6743 6755	7510 7523	8280 8293	9052 9065	9824 9837	0596	1366 1379	2134 2147	2900 2912	3661 3673		
30	6768	7536	8306	9077	9850	0621	1392	2160	2925	3686		
31	6781	7549	8319	9090	9862	0634	1405	2173	2938	3699		13
32 33	6794 6806	7561 7574	8332 8344	9103 9116	9875 9888	0647 0660	1418 1430	2186 2198	2950 2963	3711 3724		
34 35	6819 6832	7587 7600	8357 8370	9129 9142	9901 9914	0673 0686	1443 1456	2211 2224	2976 2989	3736 3749	10	2.2 4-3
36	6844 6858	7613	8383	9155 9168	9927	0699	1469	2237	3001	3762	30 40	6.5 8.7
37 38	6870 6883	7626 7638	8396 8409	9180	9940 9953	0711	1482 1494	2249 2262	3014 3027	3774 3787 3800	50 60	10.8 13.0
39 <b>40</b>	6896	7651	8422	9193	9965	0737	1507	2275 2288	3039	3812		
41	 6909	7664 7677	8434 8447	9206 9219	9978 9991	0750 0763	1520	2301	3052	3825		
42 43	6921 6934	7690 7702	8460 8473	9232 9245	*0004 *0017	0776 0788	1546 1559	2313 2326	3078 3090	3838 3850		
44	6947	7715	8486	9258	<b>*</b> 0030	1080	1571	2339	3103	3863		
. 45 40	6960 6973	7728 7741	8499 8512	9270 9283	*0043 *0055	0814 0827	1584 1597	2352 2364	3116 3128	3875 3888		
47 48	6985 6998	7754 7767	8524 8537	9296 9309	*0068 *0081	0840 0853	1610 1623	2377 2390	3141 3154	3901 3913		
49	7011	7779	8550	9322	<b>*</b> 0094	0866	1635	2403	3166	3926		
50	7024	7792	8563	9335	<b>•</b> 0107	<b>o</b> 878	1648	2415	3179	3938		
51 52	7036 7049	7805 7818	8576 8589	9348 9361	Фот20 Фот33	0891 0904	1661 1674	2428 2441	3192 3205	3951 3964		
53	7062	7831 7844	8692 8614	9373 9386	*0146 *0148	0917	1687 1699	2454 2466	3217	3976 3989	1	
54 55 56	7075 7088 7100	7856	8627 8640	9399	*0158 *0171 *0184	0930 0943	1712	2479	3230 3243	4003 4014		
57	7113	7869 7882	8653 8666	9412 9425	°0197	0955 0968	1725 1738	2492 2505	3255 3268	4027		
58 59	7126 7139	7895 7908	8666 8679	9438 9451	*0210 *0223	0981 0994	1751 1763	2517 2530	3281 3293	4039 4052		
60	7152	7921	8692	9464	*0236	1007	1776	2543	3306	4065		
						1	1		Digitiz		Ļ	ala

SMITHSONIAN TABLES.

.

Digitized by GOOSIC

1

## LOCARITHMS OF MERIDIAN RADIUS OF CURVATURE $\rho_{\rm m}$ in English FEET.

[Derivation of table explained on p. xlv.]

Lat.	51°	52°	53°	54°	55°	56°	57°	58°	59°	60°		P. P.
	7.320	7.820	7.890	7.320	7.320	7.820	7.320	7.820	7.320	7.821		
ø	4065	4817	5564	6303	7°34	7756	8467	9168	9857	0534		
I	4077	4829	\$576	6315	7046	7768	8479	9180	9868	°545		
23	4090 4102	4842 4854	5589 560 t	6327 6340	7058 7070	7780 7792	8491 8502	9191 9203	9880 9891	0556 0567		
4	4115	4867	5613	6352	7082	7804	8514	9214	9903	0578		13
56	4127 4140	4879 4892	5625 5638	6364 6376	7094 7107	7815 7827	8526 8538	9226 9238	9914 9925	0589 0601	10	
7	4152	4904	5650	6388	7119	7839	8550	9249	9937	0612	20	2.2 4.3 6.5
9	4165 4177	4917 4929	5662 5675	6401 6413	7131 7143	7851 7863	8561 8573	9261 9272	9948 9960	0623 0634	30 40	0.5 8.7 10.8
10	4190	4942	5687	6425	7155	7875	8585	9284	997 I	0645	50 60	10.8 13.0
TT	4203	4954	5699	6437	7167	7887	8597	9295	9982	0656		
12 13	4215 4228	4967 4979	5712 5724	6449 6462	7179 7191	7899 7911	8608 8620	9307 9318	9994 #0005	0667 0678		
14	4240	4992	5737	6474	7203	7923	8632	9330	*0016	0689		
15 16	4253 4266	5004 5017	5749 5761	6486 6498	7215 7227	7934 7946	8643 8655	9341 9353	*0027 *0039	0701 0712		
17	4278	5029	5774	6510	7239	7958	8667	9364	*0050	0723		
18 19	4291 4303	5042 5054	5786 5799	6523 6535	7251 7263	7970 7982	8679 8690	9376 9387	*0001 *0073	0734 0745		
20	4316	5067	5811	6547	7275	7994	8702	9399	*0084	0756		
21	4328	5079	5823	6559	7287	8006	8714	9410	*0095	0767		
22 23	4341 4353	5092 5104	5836 5848	6571 6584	7299 7311	8018 8030	8725 8737	9422 9433	⁴ 0107 ⁴ 0118	0778 0789		
24	4366	5117	5860	6596	7323	8042	8749	9445	40129	0800		12
25 20	4378 4391	5129 5141	5872 5885	66o8 66ao	7335 7348	8053 8065	8760 8772	9456 9468	*0140 *0152	0812 0823		
27	4403	5154	5897	6632	7360	8077	8784	9479	40163	0834	10 20	2.0
28 29	4416 4428	5166 5179	5909 5922	6645 6657	7372 7384	8089 8101	8796 8807	9491 9502	0174 0186	0845 0856	30 40	4.0 6.0 8.0
30	4441	5191	5934	6669	7396	8113	8819	9514	*0197	0867	50 60	10.0 12.0
31	4454 4466	5203	5946	6681	7408	8125	8831	9525	⁰ 0208	0878		
32 33	4400 4479	5216 5228	5959 5971	6693 6706	7420 7432	8137 8148	8842 8854	9537 9548	⁰ 0219 ⁰ 0231	0889 0900		
34	4491	5241	5983	6718	7444	8160	8866 8877	9560	*0242 *0253	0911	•	
35 36	4504 4517	5253 5266	5995 6008	6730 6742	7456 7468	8172 8184	8889	957 I 9583	0253	0922 0933		
37 38	4529 4542	5278 5291	6020 6032	6754 6767	7480 7492	8196 8207	8901 8913	9594 9606	*0275 *0287	0944 0955		
39	4554	5303	6045	6779	7504	8219	8924	9617	<b>*</b> 0298	0966		
40	4567	5316	6057	6791	7516	8231	8936	9629	<b>*</b> 0309	<b>0</b> 977		
41 42	4579 4592	5328 5341	6069 6082	6803 6815	7528 7540	8243 8255	8948 8959	9640 9652	⁰ 0320 0332	0988 0999		
43	4604	5353	6094	6828	7552	8266	8971	9663	*0343	1010		11
44 45	4617 4629	5366 5378	6106 6118	6840 6852	7564 7576	8278 8290	8982 8994	9675 9686	*0354 *0365	1021 1032		
46	4642	5390	6131	6864	7588	8302	9006	9697	[*] 0377	1043	10	1.8
47 48	4654 4667	5403 5415	6143 6155	6876 6889	7600 7612	8314 8325	9017 9029	9709 9720	[#] 0388 [#] 0399	1054 1065	20 30	3.7 5.5
49	4679	5428	6168	6901	7624	8337	9040	9732	*0411	1076	40 50	7•3 9.2
50	4692	5440	6180	6913	7636	8349	9052	9743	⁰ 0422	1087	60	11.0
51 52	4704 4717	5452 5465	6192 6205	6925 6937	7648 7660	8361 8373	9064 9075	9754 9766	⁶ 0433 ⁶ 0444	1098 1109		
53	4729	5477	6217	6949	7672	8384	9075	9777	*0456	1120		
54 55	4742 4754	5490 5502	6229 6241	6961 6973	7684 7696	8396 8408	9098 9110	9789 9800	*0467 *0478	1131 1142		
<b>5</b> 6	4767	5514	6254	6986	7708	8420	9122	9811	⁴ 0489	1153		
57 58	4779 4792	5527 5539	6266 6278	6998 7010	7720 7732	8432 8443	9133 9145	9823 9834	#0500 #0512	1164 1175		
59	4804	5552	6291	7022	7744	8455	9156	9846	*0523	1175 1186		
60	4817	5564	6303	7034	7756	8467	9168	9857	*0534	1197		-
MITH	ONIAN "	TABLES.								Digitizet	iby	<del>.003</del>

#### TABLE 10. LOCARITHMS OF MERIDIAN RADIUS OF CURVATURE $\rho_{m}$ in English Feet.

o'				64°	65°	66°	67°	68°	69°	70 ⁰		P. <b>P</b> .
0/	7.321	7.821	7.821	7.321	7.821	7.321	7.321	7.321	7.321	7.321		
-	1 197	1845	2479	3097	3698	4282	4848	5396	5924	6432		
1	1208	1856	2489	3107	3708	4292	4857	5405	5933	6440		
2	1219 1230	1866 1877	2500 2510	3117 3127	3718 3728	4301 4311	4867 4876	5414 5423	594 I 5950	6448 6457		
4	1241	1888	2521	3137	3738	4320	4885	5432	5958	6465		
5	1251 1262	1898 1909	2531 2541	3147 3158	3747 3757	4330 4340	4894 4994	5440 5449	5967 5976	6473 6481		11
7 8	1273 1284	1920 1931	2552 2562	3168 3178	37 <b>67</b> 3777	4349 4359	4913 4922	5458 5467	5984 5993	6489 6498	10	1.8
9	1295	1941	2573	3188	3787	4368	4932	5476	6001	6506	20 30	3.7 5.5
10	1306	1952	2583	3198	3797	4378	4941	5485	6010	6514	40 50	7-3 9-2
11	1317 1328	1963 1973	2593 2604	3208 3218	3807 3817	4387 4397	4950 4959	5494 5503	6018 6027	6522 6530	60	11.0
13	1338	1984	2614	3228	3826	4406	4969	5513	6035	6539		
14 15	1349 1360	1994 2005	2625 2635	3238 3248	3836 3846	4416	4978 4987	5521 5529	6044 6052	6547 6555		
- 16	1371	3010	2645	3259	3856	4435	4996	\$538	6061	6563		
17 18	1382 1392	2026 2037	2656 2666	3269 3279	3866 3 ⁸ 75	4444 4454	5005 5015	5547 5556	6060 6078	6571 6580		
19	1403	2047	2677	3289	3885	4463	5024	5565	6086	6588		10
20	1414	2058	2687	3299	3895	4473	5033	5574	6095	6596	10	1.7
21 23	1425 1436	2069 2079	2697 2708	3309 3319	3905 3915	4482 4493	5042 5051	5583 5592	6103	6604 6612	20 30	3-3 5-0
23	1447	2090	2718	3329	3924	4501	5060	5600	6120	6621	40 50	6.7 8.3
24 25	1458 1468	2100	2728 2738	3339 3349	3934 3944	4511 4520	5069 5078	5609 5618	6129	6629 6637	60	10.0
26	1479	2122	2749	3360	3954	4530	5088	5627	6146	6645	i'	
27 28	1490 1501	2132 2143	2759 2769	3370 3380	3964 3973	4539 4549	5097 5106	5636 5644	6154 6163	6653 6662		
29 30	1512	2153	2780	3390 3400	39 ⁸ 3 3993	4558 4568	5115	5653 5662	6171 6180	6670 6678		
31	1534	2175	2800	3410	4003	4577	5133	5671	6188	6686		
32	1545	2185	2811 2821	3420	4012	4587	5142	5680 5688	6197	6694 6703		9
33 34	1555 1566	2196 2206	2831	3430 3440	4032	4596 4606	5151 5160	5697	6214	6710	10	1.5
35 36	1577 1588	2217 2228	2841 2852	3450 3460	404 I 405 I	4615 4624	5169 5179	5706 5715	6222 6230	6718 6727	20 30	3.0
37 38	1599	2238	2862	3470	4061	4634	5188	5724	6239	6735	40	4-5 6.0 7-5
38 39	1609 1620	2249 2259	2872 2883	3480 3490	4071 4080	4643 4653	5197 5206	5732 5741	6247 6256	6743 6751	50 60	9.0
40	1631	2270	2893	3500	4090	4662	5215	5750	6264	6759		
41 42	1642 1652	2280 2291	8903 2913	3510 3520	4100 4109	4671 4681	5224 5233	5759 5767	6272 6281	6767 6775		
43	1663	2301	2924	3530	4119	4690	5242	5776	6289	6783		
44 45	1674 1684	2312 2322	2934 2944	3540 3549	4128 4138	4699 4708	5251 5260	5785 5793	6298 6306	6791 6799 6807		8
46	1695 1706	2333 2343	2954 2964	3559 3569	4148 4157	4718 4727	5270 5279	5802 5811	6314 6323	6815		
47 48 49	1717 1727	2354 2364	2975 2985	3579 3589	4167 4176	4736 4746	5288 5297	5820 5828	6331 6340	6823 6831	10 20	1.3 2.6
50	1738	2375	2995	3599	4186	4755	5306	5837	6348	6839	30 40	4.0 5-3
51	1749	2385	3005	3609	4196	4764	5315	5846	6356	6847	50 60	6.7 8.0
52 53	1759	2396 2406	3015 3026	3619 3629	4205 4215	4774 4783	5324 5333	5854 5863	6365 6373	6855 6863		
54	1781	2417	3036	3639	4224	4792	5342	5872	6382	6871		
55 50	1791 1802	2427 2437	3046 3056	3648 3658	4234 4244	4801 4811	5351 5360	5880 5889	6390 639 <b>8</b>	6879 6887		
57 58	1813	2448	3066	3668	4253	4820	5369	5898	6407	6895		
58 59	1824 1834	2458 2469	3077 3087	3678 3688	4263 4272	4829 4839	5378 5387	5907 5915	6415 6434	6903 6911		
60	1845	2479	3097	3698	4282	4848	5396	5924	6432	6919		
	1	ABLES.							Digitiz	ed by C	• • <del>•</del> ••	<del>gle </del>

[Derivation of table explained on p. ziv.]

.

## LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE $\rho_m$ in English Feet.

[Derivation of table explained on p. zlv.]

						- (0	0	~ 90	0	0-0		
Lat.	71°	72 ⁰	73°	74°	75°	76°	77°	78°	79°	80°		P. P.
	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.322	7.322		
Ø	6919	7385	7829	8251	8650	9025	9377	9704	0007	0284		
1 2	6927 6935	7392 7400	7836 7843	8258 8265	8656 8663	9031 9037	9383 9388	9709 9714	0012	0288 0293		
3	6943	7407	7851	8271	8669	9043	9394	9720	0021	0297		
4	6951 6958	7415 7422	7858 7865	8278 8285	8676 8682	9049 9055	9399 9405	9725 9730	0026	0302 0306	10	
5	6966	7430	7872	8292	8688	9061	9411	9735	0036	0310	20	1.3 2.6
Z	6974 6982	7437 7445	7879 7887	8299 8305	8695 8701	9067 9073	9416 9422	9740 9746	0041 0045	0315 0319	30 40	4.0 5.3
9	6990	7452	7894	8312	8708	9079	9427	9751	0050	0324	50 60	6.7 8.0
10	6998	7460	7901	8319	8714	9085	9433	9756	0055	0328		
11	7006	7467 7475	7908	8326 8332	8720 8727	9091 9097	-9438 9444	9761 9766	0060	0332 0337		
13	7021	7482	7922	8339	8733	9103	9449	977 I	0069	0341		7
14	7039 7037	7490 7497	7929 7936	8346 8353	8739 8745	9109 9115	9455 9460	9776 9781	0074 0078	0345 0349		-
16	7045	7505	7944	8359	8752	9121	9400	9787	0083	°354	10	1.2
17	7053	7512	7951 7958	8366 8373	8758 8764	9127	9471 9477	9792	0088	0358 0362	20 30	2.3 3.5
19	7068	7527	7965	8379	8771	9139	9482	9802	0097	0367	40 50	4.7 5.8
20	7076	7535	7972	8386	8777	9145	9488	9807	0102	0371	60	7.0
2I 23	7084	7542 7550	7979 7986	8393 8399	8783 8790	9151 9157	9493 9499	9812 9817	0107	0375 0379		
23	7099	7557	7993	8399 8406	8796	9163	9504	9822	0110	0379 0384		
24	7107	7565 7572	8000 8007	8413 8419	8802 8808	9169	9510 9515	9827 9832	0120	0388 0392		
26	7123	7572 7580	8014	8426	8815	9174 9180	9521	9838	0130	0396		·
27 28	7131 7138	7587 7595	802 I 8028	8433 8440	8821 8827	9186 9192	9526 9532	9843 9848	0134 0139	0400	10	1.0 2.0
29	7146	7602	8035	8446	8834	9198	9537	9853	0143	0409	30	3.0
30	7154	7610	8042	8453	8840	9204	9543	9858	0148	0413	40 50 60	4.0 5.0 6.0
31 32	7163	7617	8049 8056	8460 8466	8846 8852	9210	9548 9554	9863 9868	0153	0417 0421		
33	7177	7632	8063	8473	8859	9221	9559	9873	0162	0426		
34	7185	7639 7646	8070 8077	8479 8486	8865 8871	9227 9233	9565 9570	9878 9883	0166 0171	0430 0434		
36	7201	7654	8084	8493	8877 8883	9239	9575	9888 9893	0176	0438	1	5
37	7209	7661 7668	8091 8098	8499 8506	8890	9245 9250	9581 9586	9898	0180 0185	0442		
39	7224	7676	8105	8512	8896	9256	9592	9903	0189	0451	- 20	.8 1.7
40	7232	7683	8112	8519	8902	9262	9597	9908	0194	0455	30 40	2.5 3.3
41	7240	7690 7798	8119 8126	8526 8532	8908 8914	9268 9274	9602 9608	9913 9918	0199 0203	0459 0463	50 60	4.3 5.0
43	7255	7705	8133	8539	8921	9279	9613	9923	0208	0467		
44	7263 7270	7712 7719	8140 8147	8545 8552	8927 8933	9285 9291	9619 9624	9928 9933	0212 0217	0471		
46	7278	7727	8154 8161	8559	8939	9297	9629	9938	0222	0480 0484		
47	7294	7734 7741	8018	8565 8572	8945 8952	9303 9308	9635 9640	9943 9948	0220	0488		3
49	7301	7749	8175	8578	8958	9314	9646	9953	0235	0492	10	.7
60	7309	7756	8182	8585	8964	9320	9651	9958	0240	0496	20 30	1.3 2.0
51 52	7317 7324	7763	8189 8196	8591 8598	8970 8976	9326 9331	9656 9662	9963 9968	0244 0249	0500 0504	40	2.7
53	7332	7778	8203	8604	8982	9337	9667	9973	0253	0508	50 60	3.3 4.0
54 55	7339 7347	7785	8210 8216	8611 8617	8988 8994	9343 9348	9672 9677	9978 9982	0258 0262	0512 0516		<u> </u>
55 50	7355	7792 7800	8223	8624	9001	9354	9683	99 ⁸ 7	0266	0520		
57 58	7362	7807 7814	8230 8237	8630 8637	9007 9013	9360 9366	9688 9693	9992 9997	0271 0275	0524 0528	1	
59	7377	7822	8244	8643	9019	9371	9699	*0002	0275 0280	0532		
60	7385	7829	8251	8650	<u>9025</u>	9377	9704	°0007	0284	0536	C	oogl
	1	<u> </u>	·	I	·	·	·	1	1	) igitized l	<u>1 / k</u>	OOQL

SMITHSONIAN TABLES.

.

# TABLE 10. LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE $\rho_{\rm m}$ in English FEET.

Lat.	81°	82°	83°	84°	85°	86°	87°	88°	89°	P.	P.
	7.322	7.322	7.322	7.322	7.322	7.322	7.322	7.322	7.322		
o	0536	0763	0963	1138	1285	1407	1501	1569	1609		
1 2	0540 0544 0548	0766 0770	0966 0969	1141 1143	1287 1289	1409 1410	1502 1504	1570 1571	1609 1610	4	k
3		9773 97 <u>7</u> 7	0972 0975	1146 1148	1292 1294	1412 1414	1505 1506	1571 1572	1610 1611	10	.7
56	0552 0556 0560	0780 0784	0978 098a	1151 1154	1296 1298	1415 1417	1507 1509	1573 1574	1611 1611	20 30 40	1.3 2.0 2.7
7 8 9	0564 0568 0572	0787 0791 0794	0985 0988 0991	1150 1159 1161	1300 1303 1305	1419 1421 1422	1510 1511 1513	1575 1575 1576	1612 1612 1613	50 60	3-3 4.0
10	0576	0798	0994	1164	1307	1424	1514	1577	1613		
11 12 13	o580 o584 o588	0801 0805 0808	0997 1000 1003	1167 1169 117 <b>2</b>	1309 1311 1314	1426 1427 1429	1515 1517 1518	1578 1579 1579	1613 1614 1614		
14 15 16	0592 0595 0599	0812 0815 0819	1006 1009 1012	1174 1177 1180	1316 1318 1320	1431 1432 1434	1519 1520 1522	1580 1581 1582	1615 1615 1615		
17 18	0603 0607	0822 0826	1015 1018	1182 1185	1322 1325	1436 1438	1523 1524	1583 1583	1616 1616		
19 <b>20</b>	0611	0829	1021	1187	1327	1439	1526	1584	1617		
	0615	0833	1024	1190	1329	1441	1527	1585	1617	10 20	.5 1.0
21 22 23	0619 0623 0626	0836 0840 0843	1027 1030 1033	1192 1195 1197	1331 1333 1335	1443 1444 1446	1528 1529 1530	1586 1586 1587	1617 1617 1618	30 40	1.5 2.0 2.5
24 25 20	0630 0634 0638	0846 0849 0853	1036 1039 1043	1200 1202 1205	1337 1339 1341	1447 1449 1451	1531 1532 1534	1588 1588 1589	8191 8191 8191	50 60	3.0
27	0642	08<6	1045	1207	1343	1452	1535	1590	1618		
28 29	0645 0649	0859 0863	1048 1051	1210 1212	1345 1347	1454 1455	1536 1537	1591 1591	1619 1619		
30	0653	0866	1054	1215	1349	1457	1538	1 592	1619		
31 32 33	0657 0660 0664	0869 0873 0876	1057 1060 1062	1217 1220 1222	1351 1353 1355	1459 1460 1462	1539 1540 1541	1593 1593 1594	1619 1619 1620		
34	o668	0879	1065	1225	1357	1463	1542	1595	1620		
35 36	0671 0675	0882 0886	1068 1071	1227 1229	1359 1361	1465 1467	1543 1545	1595 1596	1620 1620	10	-3
37 38	0679 0683	0889 0892	1074 1076	1232 1234	1363 1365	1468 1470	1546 1547	1597 1598	1620 1621	20 30	.7 1.0
39	0686	0896	1079	1237	1367	1471	1548	1598	1621	40 50	1.3 1.7
40	0690	0899	1083	1239	1369	1473	I 549	1599	1621	00	2.0
41 43 43	0694 0697 0701	0903 0906 0909	1085 1088 1090	1241 1244 1246	1371 1373 1375	1474 1476 1477	1550 1551 1552	1599 1600 1600	1621 1621 1621		
44	0705	0912	1003	1249	1377	1479	1553	1601	1621		
45 40	0708 0712	0915 0919	1096 1099	1251 1253	1378 1380	1480 1481	1554 1555	1601 1602	1621 1622		
47 48	0716 0720	0922 0925	1102 1104	1256 1258	1382 1384	1483 1484	1556 1557	1602 1603	1622 1622	.	
49	0723	0929	1107	1261	1386	1486	1558	1603	1622	1	
<b>50</b>	0727 0731	0932	1110	1263 1265	1388 1390	1487 1488	1559 1560	1604 1604	1622 1622	10 20	.2 -3
52 53	0734 0738	0935 0938 0941	1116	1205	1392 1394	1490 1491	1561 1562	1605	1622	30 40	-5
54	0741	0944	1121	1272	1394	1491	1563	1606	1622	50 50	.7 .8 1.0
55 56	0745 0749	0947 0951	1124 1127	1274 1276	1397 1399	1494 1495	1564 1565	1606 1607	1622 1623		
57 58	0752	0954	1130	1278 1281	1401 1403	3497	1566	1607 1608	1623 1623		
50 59	0756 0759	0957 0960	1132 1135	1283	1403	1498 1500	1567 1568	1608	1623	]	
60	0763	0963	1138	1285	1407	1501	1569	1609	1623	Cor	- To

[Derivation of table explained on p. xlv.]

SMITHSONIAN TABLES.

TABLE 11.

# LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION $\rho_n$ IN ENGLISH FEET. [Derivation of table explained on p. xlv.]

.

									<u> </u>	_		
Lat.	0°	Io	2 ⁰	3°	4°	5°	6°	7°	8°	9 ⁰	100	P. P.
	7.390	7.320	7.820	7.820	7.320	7.320	7.320	7.320	7.320	7.820	7.320	
ø	6875	688o	6893	6916	6947	6987	7036	7094	7160	7235	7319	
1 2 3	6875 6875 6875	6880 6880 6880	6893 6894 6894	6916 6917 6917	6948 6949 6949	6988 6989 6989	7037 7038 7039	7095 7096 7097	7161 7162 7164	7236 7238 7239	7320 7322 7323	
4 5 6	6875 6875 6875	6880 688 <i>1</i> 6881	6894 6894 6895	6918 6918 6918	6950 6950 6951	6990 6991 6992	7040 7041 7041	7098 7099 7100	7165 7166 7167	7240 7241 7243	7325 7326 7327	
7 8 9	6875 6875 6875	688 1 688 1 688 1	6895 6895 6896	6919 6919 6920	6951 6952 6953	6993 6993 6994	7043 7043 7044	7101 7102 7103	7168 7170 7171	7244 7245 7247	7329 7330 7332	
10	6875	6881	6896	6920	6953	6995	7045	7104	7173	7248	7333	
11 12 13	6875 6875 6875	688 z 688 z 688 z	6896 6897 6897	6920 6921 6921	6954 6955 6955	6996 6996 6997	7046 7047 7048	7105 7106 7107	7173 7174 7176	7249 7251 7252	7334 7336 7338	1
14 15 16	6875 6876 6876	6882 6882 6882	6898 6898 6898	6922 6922 6923	6956 6956 6957	6998 6999 6999	7049 7050 7050	7108 7109 7111	7177 7178 7179	7254 7255 7256	7339 7341 7342	10 .2 20 .3 30 .5
17 18 19	6876 6876 6876	6882 6883 6883	6899 6899 6900	6923 6924 6924	6957 6958 6959	7000 7001 7001	7051 7052 7053	7112 7113 7114	7180 7182 7183	7258 7259 7261	7343 7345 7346	40 .7 50 .8 60 I.0
20	6876	6883	6900	6925	6959	7002	7054	7115	7184	7262	7348	
21 22 23	6876 6876 6876	6883 6883 6884	6900 6901 6901	6925 6926 6926	6960 6960 6961	7003 7004 7004	7055 7056 7057	7116 7117 7118	7185 7186 7188	7263 7265 7266	7350 7351 7353	
24 25 20	6876 6876 6876	6884 6884 6884	6901 6902 6902	6927 6927 6928	696a 696a 6963	7005 7006 7007	7058 7059 7060	7119 7120 7122	7189 7190 7191	7268 7269 7270	7354 7356 7358	
27 28 29	6876 6876 6876	6884 6885 6885	6902 6902 6903	6928 6929 6929	6964 6965 6965	7008 7008 7009	7061 7062 7063	7123 7124 7125	7192 7194 7195	7272 7273 7275	7359 7361 7362	
30	6876	6885	6903	6930	6966	7010	7064	7126	7196	7276	7364	
31 32 33	6877 6877 6877	6885 6886 6886	6903 6904 6904	6930 6931 6931	6967 6967 6968	7011 7012 7013	7065 7066 7067	7127 7128 7129	7197 7199 7300	7277 7279 7280	7366 7367 7368	
34 35 36	6877 6877 6877	6886 6887 6887	6905 6905 6905	6932 6932 6933	6969 6969 6970	7014 7015 7015	7068 7069 7070	7130 7131 7133	7201 7202 7204	7282 7283 7284	7370 7371 7373	
37 38 39	6877 6877 6877	6887 6887 6888	6906 6906 6907	6933 6934 6935	6971 6972 6972	7016 7017 7018	7070 7071 7073	7134 7135 7136	7205 7206 7208	7286 7287 7289	7374 7376 7377	
40	6877	6888	6907	6935	6973	7019	7073	7137	7209	7290	7379	
41 42 43	6877 6877 6877	6888 6888 6889	6907 6908 6909	6936 6936 6937	6974 6974	7020 7021 7021	7074 7075	7138 7139 7140	7210 7212 7213	7291 7293	7381 7382 7384	10 .3 20 .7 30 1.0
44 45 40	6877 6878 6878	6889 6889 6889	6909 6910 6910	6937 6938 6938	6975 6976 6976 6977	7022 7023 7024	7076 7077 7078 7079	7142 7142 7142 7144	7214 7216 7217	7294 7296 7297 7298	7385 7387 7389	40 1.3 50 1.7 60 2.0
47 48 49	6878 6878 6878	6889 6890 6890	6910 6911 6911	6939 6939 6939	6978 6979 6979	7025 7025 7025	7080 7081 7081	7145 7146 7147	7218 7219 7221	7300 7301 7303	7390 7392 7393	
50	6878	6890	6911	6941	6980	7020	7083	7147	7223	7304	7395	
51 52	6878 6878	6890 6891	6912 6912	6942 6943	6981 6981	7028 7029	7084 7085 7086	7149 7150	7223 7225	7305 7307	7397 7398	
53 54	6879 6879	6891 6891	6913 6913	6943 6943	6982 6983	7030 703 I	7087	7152 7153	7226 7227	7308 7310	7400 7401	
55 56	6879 6879	6892 6892	6914 6914	6944 6944	6983 6984	7032 7032	7088 7090	7154 7155	7228 7230	7311 7313	7403 7405	
57 58 59	6879 6880 6880	6892 6892 6893	6915 6915 6916	6945 6945 6946	6985 6986 6986	7033 7034 7035	7091 7092 7093	7156 7158 7159	7231 7232 7234	7314 7316 7317	7406 7408 7409	
<b>60</b>	6880	6893	6916	6947	6987	7036	7094	7160	7235	7319	7411	مملع
L								·		Jugitized,	بالتكين	L L L L L L L L L L L L L L L L L L L

CHITHSONIAN TABLES.

# TABLE 11. LOCARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION $\rho_n$ in English Feet.

Lat.	110	120	13°	140	15°	16°	17°	18°	19°	20 ⁰		P. P.
	7.320	7.320	7.820	7.320	7.320	7.320	7.320	7.320	7.820	7.320		
0	7411	7511	7619	7736	7860	7992	8132	8279	8434	8595		
I	7413	7513	7621	7738	7862	7994	8134	8282	8437	8598		
23	7414 7416	7514 7516	7623 7625	7740 774 <b>2</b>	7864 7867	7997 7999	8137 8139	8284 8287	8439 8442	8601 8603		
4	7417 7419	7518 7519	7627 7628	7744 7746	7869 7871	8001 8003	8142 8144	8289 8292	8444 8447	8606 8609		
6	74 <b>3</b> 1	7521	7630	7748	7873	8006	8146	8295	8450	8612		1
8	7422 7424	7523 7525	7632 7634	7750 7752	7875 7878	8008 8010	8149 8151	8297 8300	8452 8455	8615 8617	10	e.
9	7425	7526	7636	7754	7880	8013	8154	8302	8457	8620	20 30	.3 .5
10	7427	7528	7638	7756	7882	8015	8156	8305	8460	8623	<b>4</b> 0 <b>5</b> ,60	:7
11	7429 7430	7530 7532	7640 7643	775 ⁸ 7760	7884 7886	8017 8020	8158 8161	8307 8310	8463 8465 8468	8626 8629	60	1.0
13 14	7432 7433	7533 7535	7644 7646	776a 7764	7888 7890	8022 8024	8163 8166	8312 8315	8408 8471	863 I 8634		
15	7435 7437	7537 7539	7647 7649	7766 7768	7892 7895	8026 8029	8168 8170	8317 8320	8473 8476	8637 8640		
17	7438	754I	7651	7770	7897	8031	8173	8322	8479	8643		
18 19	7440 7441	7542 7544	7653 7655	7772 7774	7899 7901	8033 8036	8175 8178	8325 8327	8482 8484	8645 8648		
20	7443	7546	7657	7776	7903	8038	8180	8330	8487	8651		
21	7445	7548	7659	7778	7905	8040	8182	8333	8490	8654		
22 23	7446 7448	7550 7 <b>55</b> 1	766 t 766 3	7780 778 <b>3</b>	7907 7910	8043 8045	8185 8187	8335 8338	8493 8495	8657 8659		
24 25	74 <b>50</b> 7451	7553 7555	7665 7666	7784 7786	7912 7914	8047 8049	8190 8193	8340 8343	8498 8500	8662 8665		
26	7453	7557	7668	7789	7916	8052	8195	8346	8503	8668		•
27 28	7455 7457	7559 7560	7670 7673	7791 7793	7918 7921	8054 8056	8197 8200	8348 8351	8506 8509	8671 8673	10	
29	7458	7562	7674	7795	7923	8059	826.2	8353	8511	8676	30 30	-3 -7 1.0
30	7460	7564	7676	7797	7935	8061	8205	8356	8514	8679	40 50	1.3 1.7
31 32	7462 7463	7566 7568	7678 7680	7799 7801	7927 7929	8063 8066	8207 8210	8358 8361	8517 8519	8682 8685	60	2.0
33	7465	7569	7682 7684	7803 7805	7932	8068 807 I	8212	8363 8366	8522	8687 8697		<u> </u>
34 35	7466 7468	7571 7573	7686	7807	7934 7936	8073	8215 8217	8368	8525 8527	8690 8693		
36 37	7470 7471	7575 7577	7688 7690	7810 7812	793 ⁸ 7940	8075 8078	8219 8222	8371 8373	8530 8533	8696 8699		
38	7473 7474	7578 7580	7693 7694	7814 7816	7943 7945	8080 8083	8224 8227	8376 8378	8536 8538	8701 8704		
40	7476	7582	7696	7818	7947	8085	8229	8381	8541	8707		
41	7478	7584	7698	7820	7949	8087	8231	8384	8544	8710		
41 43	7479 7481	7586 7588	7700 7703	7822 7824	7952 7954	8090 8092	8234 8236	8386 8389	8546 8549	8713 8715		
44	7483	7590	7704	7826	7956	8094	8239	8391	8552	8718		
45 40	7484 7486	7591 7593	7700 7708	7828 783 I	7958 7961	8096 8099	8241 8244	8394 8397	8554 8557	8721 8724		3
47 48	7488 7490	7595	7710 7712	7833 7835	7963 7965	8101 8103	8246 8249	8399 8402	8560 8563	8727 8729		
49	7491	7597 7599	7714	7837	7968	8100	8251	8404	8565	8732	10 20	.5 1.0
50	7493	7601	7716	7839	7970	8108	8254	8407	8568	8735	30 40	1.5 2.0
51 52	7495	7603 7605	7718	784 I 7843	7972	8110 8113	8256 8259	8410 8412	8571 8573	8738 8741	50 60	2.5 3.0
52 53	7497 7498	7606	7720 7723	7845	7974 7977	8115	8261	8415	8576	8743		
54 55	7500 7502	7608 7610	7724 7720	7847 7849	7979 7981	8118 8120	8264 8266	8418 8420	8579 8581	8746 8749		
55 56	7504	7613	7728	7852	7983	8122	8269	8423	8584	8752		
57 58	7506 7507	7614 7615	7730 7732	7854 7856	7985 7988	8125 8127	8271 8274	8426 8429	8587 8590	8755 8757 8760		
59	7509	7617	7734	7858	7490	8130	8276	8431	8592			
60	7511	7619	7736	7860	7992	8132	8279	8434	8595	8763		ala

[Derivation of table explained on p. xlv.]

SMITHSONIAN TABLES.

.

#### TABLE 11.

## LOCARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION $\rho_{\rm R}$ in English FEET.

[Derivation of table explained on p. xlv.]

Lat.	2I ⁰	22 ⁰	23°	24 ⁰	25°	26°	27°	28°	29°	30°	P. P.	
	7.820	7.320	7.820	7.820	7.820	7.320	7.320	7.321	7.321	7.321		
ø	8763	8939	9120	9308	9502	9701	9907	0117	0332	0553		
1 2 3	8766 8769 8772	8942 8945 8948	9123 9126 9120	9311 9314 9318	9505 9508 9512	9705 9708 9712	9910 9913 9917	0121 0124 0128	0336 0340 0343	0556 0560 0564		
4	8775 8778	895 I 8953	9132 9136	9321 9324	9515 9518	9715 9718	9920 9924	0131 0135	0347 0351	0567 057 t		
6 7 8	8780 8784 8786	8956 8959 8962	9139 9142 9145	9327 9330 9333	9521 9525 9528	9722 9725 9728	9927 9931 9934	0138 0142 0145	0354 0358 0361	0575 0579 0588		2
9	8789	8965	9148	9337	9531	9732	9938	0149	0365	0586		
10	8792	8968 897 1	9151	9340	9535	9735	9941	0153	0369	0590	10	.3 .7
11 12 13	8795 8798 8800	8974 8977	9154 9157 9160	9343 9346 9349	9538 9541 9545	9739 9742 9745	9945 9948 9952	0156 0159 0163	0372 0376 0380	0594 0597 0601	30 40 50	1.0 1.3 1.7
14 15 16	8804 8807 8810	8980 8983 8986	9163 9167 9170	9353 9356 9359	9548 9551 9554	9749 9752 9756	9955 9959 9962	0167 0170 0174	0383 0387 0391	0605 0608 0612	60	3.0
17 18 19	8812 8815 8818	8989 8992 8995	9173 9176 9179	9362 9365 9368	9558 9561 9564	9759 9762 9766	9966 9469 9973	0177 0181 0185	0394 0398 0402	0616 0620 0623		
20	8821	8998	9182	9372	9568	9769	9975	0105	0405	0627	ł	
21	8824	9001	9185	9375	9571	9773	9980	0192	0409	0631	ĺ	
23 23 24	8827 8830 8833	9004 9007 9010	9188 9191 9195	9378 9381 9384	9574 9578 9581	9776 9779 9783	9983 9987 9990	0195 0199 0203	0413 0416 0420	0635 0638 0642		
25 26	8836 8839	9013 9016	9195 9195	9388 9391	9584 9588	9786 9790	9994 9997	0200	0420 0424 0427	0646 0649		8
27 28 29	8841 8844 8847	9020 9023 9026	9204 9207 9210	9394 9398 9401	9591 9594 9598	9793 9796 9800	*0001 *0004 *0008	0213 0217 0220	0431 0435 0438	0653 0657 0661	10 20	.5 1.0
30	<b>885</b> 0	9029	9213	9404	9601	9803	1100 [®]	0224	0442	0664	30 40	1.5 2.0
31 32	8853 8856	9032 9035	9216 9220	9407 9411	9604 9608 9611	9807 9810	#0015 #0018 #0022	0228 0231	0446 0449	0668 0672	\$0 60	2.5 3.0
33 34	8859 8862	9038 9041	9223 9226	9414 9417	9614	9814 9817	*0025	0235	0453 0457	0676 0679		
35 36	8865 8868	9044 9047	9239 9232	9420 9424	9618 9611	9820 9824	*0029 *0032	0243 0246	0460 0464	0683 0687		
37 38 39	8871 8874 8877	9050 9053 9056	9235 9238 9242	9427 9430 9433	9624 9628 9631	9827 9831 9834	*0036 *0039 *0043	0249 0253 0256	0468 0471 0475	0691 0694 0698		
40	8879	9059	9245	9437	9634	9838	*0046	0260	0479	0702		
41 42	8882 8885	9062 9065	9248 9251	9440 9443	9638 9641	9841 9844 9848	*0050 *0053	0264 0267	0482 0486	0706 0710		4
43 44	8888 889 I	9068 907 I	9254 9257	9446 9450	9644 9648	9848 9851	*0057 *0060	0271 0274	0490	0713		
45	8894 8897	9074 9077	9260 · 9264	9453 9456	9651 9654	9855 9858	*0064 *0067	0278	0497 0501	0721	10 20	.7 1.3
47 48 49	8900 8903 8906	9080 9083 9086	9267 9270 9273	9459 9463 9466	9658 9661 9664	9862 9865 9869	0071 0074 0078	0285 0289 0293	0505 0508 0512	0728 0732 0736	30 40 50	2.0 2.7 3.3
50	8909	9089	9276	9469	9668	9872	*008z	0 296	0516	0740	60	4.0
51	8912 8915	9093 9096	9279 9283	9472 9476	967 I 9674	9 ⁸ 75 9879	*0085 *0089	0300	0519	0743	1	
52 53	8,18	9099	9286	9479	9678	9882	*0092	0303 0307	0523 0527	0747 0751		
54 55	8921 8924	9102 9105	9289 9292	9482 9485	968 r 968 s	9886 9889	*0096 *0099	0311	0530 0534 0538	0755 0759		
56 57	8927 8930	9108 9111	4295 9298	9489 9492	9688 9691	9893 9896	*0103 *0106	0318 0323	0538 0542	0762		
57 58 59	8933 8936	9114 9117	9302 9305	9495 9498 9498	9695 9698	9900 9900 9903	*0110 *0113	0325 0329	0545 0549	0770 0774		
60	8939	9120	9308	9502	9701	9907	<b>*</b> 0117	0332	0553	9777	C	اممما

SMITHSONIAN TABLES.

#### TABLE 11. LOCARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION P. IN ENCLISH FEET.

Lat.	310	32°	33°	34°	35°	36°	37°	38°	39°	40°	P. P.	
	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.321	7.331	7.821		
o,	0777	1006	1239	1476	1716	1959	2205	2453	2704	2956	l	
12	0781 0785	1010 1014	1243 1247	2480 1484	1720 1724	1963 1967	2209 2213	2457 2462	2708 2712	2961 2965		
3	0789 0793	1018	1251 1255	1488 1403	1728 1732	1971 1975	2317 2321	2466 2470	2716 2721	2969 2973		3
5	0796 0800	1026 1029	1259 1263	1496 1500	1736 1740	1979 1983	2226 2230	2474 2478	2725 2729	2978 2982	10	.5
78	0804 0808	1033 1037	1267 1271	1 504 1 508	1744 1748	1988 1992	2234 2238	2482 2487	2733 2737	2986 2990	20 30	1.0 1.5
9	0811	1041	1275	1512	1752	1996	2242	2491	2742	2994	40 50 60	2.0 2.5
10	0815	1045	1379	1516	1756	2000	2246	2495	2746	2999		3.0
11 12	0819 0823	1049 1053	1382 1386	1520 1524	1760 1764	2004 2008	2250 2254	2499 2503	2750 2754	3003 3007		
13 14	0827 0830	1057 1060	1290 1294	1528 1532	1768 1772	2012 2016	2259 2263	2507 2512	2758 2763	3011 3016		
15 10	0834 0838	1064 1068	1298 1302	1536 1540	1776 1780	2020 2024	2267 2271	2516 2520	2767 2771	3020 3024		
17 18	0842 0846	1072	1306 1310	1544	1784 1789	2028 2033	2275 2279	2524 2528	2775 2779	3028 3032		
10	0849	1076 1080	1310	1548 1552	1793	2033	2283	2532	2784	3032		
20	0853	1084	1318	1556	1797	3041	2287	2537	3788	3041		
21 22	0857 0861	1087 1091	1322 1326	1560 1564	1801 1805	2045 2049	2392 3296	254I 2545	2792 2796 2800	3045 3049		
23 24	0865 0869	1095	1330	1568 1572	1809 1813	2053 2057	2300 2304	2549 2553	2800 2805	3054 3058		4
25 20	0872 0876	1103	1334 1337 1341	1576 1580	1817	2061 2065	2308 2312	2557 2562	2809 2813	3052 3062 3066	10	.7
27	o88o	1111	1345	1584	1825	2069	2316	2566	2817	3071	20 30	1.3
28 39	0884 0888	1115 1118	1349 1353	1588 1592	1829 1833	2073 2077	2321 2325	2570 2574	2822 2826	3075 3079	40 50	2.7 3-3
30	<b>0891</b>	1122	1357	1596	1837	2082	2329	2578	2830	3083	60	4.0
31 32	0895 0899	1126 1130	1361 1365	1600 1604	1841 1845	2086 2090	2333 2337	2583 2587	2834 2838	3087 3092		
33	0903	1134	1369	1608	1849	2094	234I	3591	2843	3096		
34 35 36	0907 0910 0914	1138 1142 1146	1373 1377 1381	1612 1616 1620	1853 1857 1861	2098 2102 2106	2345	2595 2599 2603	2847 2851 2855	3100 3104		
37	0914	1150	1385	1624	1865	2110	2354 2358	2608	2859	3109 3113		
38 39	0922 0926	1153 1157	1389 139 <b>3</b>	1628 1632	1870 1874	2114 2119	2362 2366	2612 2616	2864 2868	3117 3121		
40	0930	1161	1397	1 <b>63</b> 6	1878	2123	2370	2620	2872	3126		
41 42	0933 0937	1165	1401 1405	1640 1644	1882 1882	2127 2131	2374 2379	2624 2629	2876 2880	3130		
43	0941	1173	1409	1648	1890	2135	2383	2633	2885	3134 3138		5
44 45 40	0945 0949	1177 1181 1185	1412 1416	1652 1656 1660	1894 1898 1903	2139 2143	2387 2391	2637 2641 2645	2889 2893 2897	3143 3147	10	.8
47	0953 0956	1189	1420 1424	1664	1906	2147 2151	2395 2399	2649	2902	3151 3155	20 30	1.7
48 49	0960 0964	1192 1196	1428 1432	1668 1672	1910 1914	2156 2160	2403 2408	2654 2658	2906 2910	3160 3164	40 50	3.3 4.2
50	0968	1200	1436	1676	1918	2164	2412	2662	2914	3168	60	5.0
51	0972	1204 1208	1440	1680 1684	1922 1926	2168	2416 2420	2666 2670	2918	3172		
52 53	0976 0979	1212	1444 1448	1688	1931	2172 2176	2434	2675	2923 2927	3177 3181		
54 55 56	0983 0987	1216 1220	1452 1456	1692 1696	1935 1939	2180 2184	2428 2433	2679 2683	2931 2935	3185 3189		
56 57	0991 0995	1224 1228	1460 1464	1700 1704	19 <b>43</b> 1947	2188 2193	2437 2441	2687 2691	2940 2944	3193 3198		
58 59	0999 1003	1231	1468 1473	1708	1951 1955	2197 2201	2445 2449	2696 2700	2948 2952	3202 3206		
60	1005	1239	1476	1716	1959	2205	2453	2704	2956	3210		
Conde												
SMITHSONIAN TABLES.												

[Derivation of table explained on p. xlv.]

i .

i.

#### TABLE 11.

## LOCARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION $\rho_{\rm A}$ in English FEET.

[Derivation of table explained on p. zlv.]

SMITHSONIAN TABLES.

## LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION $\rho_{\rm A}$ in Enclish feet.

Lat.	51°	52°	53°	54°	55°	56°	57°	58°	59°	60°		
1.48%	51	3²										P. P.
	7.331	7.321	7.321	7.321	7.391	7.321	7.321	7.321	7.321	7.321		
0	\$770	6021	6270	6517	6760	7001	7238	7472	7701	<b>792</b> 7		
1 2	5774 5778	6025 6029	6274 6278	6521 6525	6764 6768	7005 7009	7242 7246	7476 7480	7705 7709	7931 7934		
3	57 ⁸ 3	6034	6282	6529	6772	7013	7250	7483	7712	7938		5
456	5787 5791 5795	6038 6042 6046	6286 6290 6295	6533 6537 6541	6776 6780 6785	7017 7021 7025	7254 7257 7261	7487 7491 7495	7716 7720 7724	7942 7945 7949		-
78	5799 5804	6050	6299	6545	6789	7029	7265 7269	7499	7728	7953	10 20	.8 1.7
9	5808	6055 6059	6303 6307	6549 6553	6793 6797	7033 7037	7273	7502	773 I 773 5	7957 7960	30 40 50	2.5 3.3 4.2
10	5812	6063	6311	6557	6801	7041	7277	7510	7739	7964	60	5.0
11 12 13	5816 5820 5825	6067 6071 6075	6315 6319 6324	6561 6565 6569	6805 6809 6813	7°45 7°49 7°53	7281 7285 7289	7514 7518 7522	7743 7747	7968 7971		
-3 14	5829	6079	6328	6573	6817	7057	7293	7526	7750 7754	7975 7979		
15 16	5833 5837	6083 6088	6332 6336	6577 6582	682 r 6825	7060 7064	7296 7300	75 <b>2</b> 9 7533	7754 7758 7762	7979 7982 7986		
17 18	5841 5846	6092 6096	6340 6345	6586 6590	6829 6833	7068 7072	7304 7308	7537 7541	7766 7769	7990 7994		
19	5850	6100	6349	6594	6837	7076	7312	7545	7773	7997		
20	5854	6104	6353	6598	6841	7080	7316	7549	7777	8001		
21 22	5858 5862	6108 6112	6357 6361	6602 6606	6845 6849	7084 7088	7320 7324	7552 7557	7781 7785	8005 8008		
23	5867 5807	6117	6365	6610 6614	6853 6857	7092	7328	7500	7788	8012 8016		4
24 25 20	5871 5875	6121 6125	6369 6373	6614 6618 6623	6861 6865	7096 7100	7332 7335	7564 7568	7792 7796 7800	8016 8019 8019		
27	5879 5883	6129 6133	6378 6382	6627	686g	7104 7108	7339 7343	7572 7576	7800 7804	8023 8027	10	.7
28 29	5888 5892	6138 6142	6386 6390	6631 6635	6873 6877	7112 7116	7347 7351	7579 75 ⁸ 3	7807 7811	803 I 8034	20 30	I.3 2.0
80	5896	6146	6394	6639	6881	7120	7355	7587	7815	8038	40 50 60	2.7 3-3 4.0
37	5900	6150	6398	6643	6885	7124	7359	7591	7819	8042		
32 33	5904 5909	6154 6158	6402 6406	6647 665 I	6889 6893	7128 7132	7363 7367	7595 7598	7822 7826	8045 8049		
34 35	5913 5917	6162 6166	6410 6414	6655 6659	6897 6901	7136 7139	7371 7374	7602 7606	7830 7833	8053 8056		
36	5921	6171	6419	6663	6905	7143	7378	7610	7837	8060		
37 38	5925 5930	6175 6179	6423 6427	6667 6671	6909 6913	7147 7151	7382 7386	7614 7617	7841 7845	8064 8068		- 1
39	5934	6183	6431	6675	6917	7155	7390	7621	7848	8071		
40	5938	6187	6435	6679	6921	7159	7394	7625	7852	8075		
41 42	5942 5946	6191 6195	6439 6443	6683 6687	6925 6929	7163 7167	7398 7402	7629 7633	7856 7860	8079 8083		
43	595 I	6200	6447	6691	6933	7171	7406	7636	7863	8086		8
44 45	5955 5959	6204 6208	6451 6455	6695 6699	6937 6941	7175 7179	7410 7413	7640 7644	7867 7871	8089 8093		
46	5963 5967	6212 6216	6460	6704 6708	6945 6949	7183	7417	7648	7875	8097	10 20	.5
47 48	5972	6221	6464 6468	6712	6953	7187 7191	7421 7425	7652 7655	7879 7882	8100 8104	30	1.0 1.5
49 50	5976 5080	6225 6220	6473 6476	6716 6720	6957 6961	7195	7429	7659	7886	8107	40	2.0 2.5 3.0
51	5980 5984	6233	6480	6724	6965	7199	7433	7003	7890 7894	8115		3.0
52	5988	6237	6484 6488	6728	6969	7207 7211	7441	7671	7897	8118		
53 54	5992 5996	6241 6245	6492	6732 6736	6973 6977	7215	7445 7449	7674 7678	7901 7905	8122 8126		
55 56	6000 6005	6249 6254	6496 6501	6740 6744	6981 6985	7218	7452 7456	7682 7686	7908	8129 8133		
	6000	6258	6505	6748	6989	7226	7450	7690	7912	8137		
57 58 59	6013 6017	6262 6266	6509 6513	6752 6756	6993 6997	7230 7234	7464 7468	7693 7697	7920 7923	8141 8144		
60	6021	6270	6517	6760	7001	7238	7472	7701	7927	8148		
<u> </u>					1						6	

[Derivation of table explained on p. xiv.]

SMITHSONIAN TABLES.

Digitized by GOOGIC

e

# LOCARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION $\rho_n$ IN ENCLISH FEET. [Derivation of table explained on p. xlv.]

Lat.         61°         62°         63°         66°         67°         68°         69°         70°         P.P.           V         8:48         8:55         8:78         8:96         8:95         9:70         9:66         9:72         9:53         9:72         9:66           1         8:55         8:56         8:78         8:78         8:78         8:78         8:77         9:66         9:72         9:55         9:72         9:66           3         8:55         8:78         8:78         8:78         8:78         8:79         8:77         9:66         9:75         9:95         9:75         9:95         9:75         9:95         9:75         9:95         9:75         9:95         9:75         9:95         9:75         9:95         9:75         9:95         9:75         9:95         9:75         9:95         9:75         9:95         9:75         9:95         9:75         9:95         9:75         9:95         9:75         9:95         9:75         9:95         9:75         9:75         9:75         9:75         9:75         9:75         9:75         9:75         9:75         9:75         9:75         9:75         9:75         9:75         9:7	Lat	61°	6-9	6-9	64°	6-0	66°	6-9	68°	6-9			
0*         8:45         8:54         8:55         8:54         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         9:75         9:75         9:77         9:75         9:77         9:75         9:77         9:75         9:77         9:75         9:77         9:77         9:77         9:77         9:77         9:75         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9			62°	63°		65°		67°		69°	70 ⁰		r. r.
1         8:5         8:6         8:7         8:6         8:7         8:5         974         9:5         977         9:5           4         8:55         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:75         8:77         9:50         773         9:50         773         9:50         9:73         9:50         9:73         9:50         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:73         9:75 <t< th=""><th></th><th>7.321</th><th>7.321</th><th>7.821</th><th>7.321</th><th>7.321</th><th>7.321</th><th>7.321</th><th>7.321</th><th>7.321</th><th>7.321</th><th></th><th></th></t<>		7.321	7.321	7.821	7.321	7.321	7.321	7.321	7.321	7.321	7.321		
a       8:55       8:55       8:71       8:56       8:70       8:60       8:75       8:75       8:75       8:75       8:75       8:75       8:75       8:75       8:75       8:75       8:75       8:75       8:75       8:75       8:75       8:75       8:75       8:75       8:75       8:75       8:75       9:75       9:73       9:70       9:75       9:73       9:70       9:75       9:73       9:70       9:75       9:73       9:75       9:73       9:75       9:73       9:75       9:73       9:75       9:73       9:75       9:73       9:75       9:73       9:75       9:73       9:75       9:73       9:75       9:73       9:75       9:73       9:75       9:73       9:75       9:73       9:75       9:73       9:75       9:73       9:75       9:73       9:75       9:73       9:75       9:73       9:75       9:73       9:75       9:75       9:73       9:75       9:73       9:75       9:73       9:75       9:73       9:75       9:73       9:75       9:75       9:75       9:75       9:75       9:75       9:75       9:75       9:75       9:75       9:75       9:75       9:75       9:75       9:75 <t< th=""><th>ø</th><th>8148</th><th>8364</th><th>8575</th><th>8781</th><th>8982</th><th>9176</th><th>9365</th><th>9548</th><th>9724</th><th>9893</th><th></th><th></th></t<>	ø	8148	8364	8575	8781	8982	9176	9365	9548	9724	9893		
strác         Strác <th< th=""><th>2</th><th>8155</th><th>8371</th><th>8582</th><th>8784 8788</th><th>8989</th><th>9182</th><th>9371</th><th>9554</th><th>9730</th><th>9898</th><th></th><th></th></th<>	2	8155	8371	8582	8784 8788	8989	9182	9371	9554	9730	9898		
5       8:160       8368       8508       8908       9108       9108       9108       9108       9000       9738       9000         7       8:173       8305       8500       8805       9002       9108       9384       9574       9744       9913         9       8:173       8305       8605       8813       9013       9205       9390       9574       9740       9913       9000         10       8:184       8400       8603       8813       9013       9206       9350       9575       9738       9900       10       1.3       1.3         12       8:185       8400       8603       8813       9018       9214       9426       9555       9755       9933       3.0       2       3.0       2       3.0       2       3.0       2       3.0       2       3.0       2       3.0       2       3.0       2       3.0       2       3.0       2       3.0       2       3.0       2       3.0       2       3.0       2       3.0       2       3.0       2       3.0       2       3.0       2       3.0       3       3.0							-						
8       8:77       8:390       86:03       88:06       80:03       90:01       90:01       90:71       97:4       97:40       97:15       4         10       8:84       84:00       86:10       88:15       90:15       90:00       95:17       77:73       90:00       77:       77:53       90:00       77:       77:53       90:00       77:       77:53       90:00       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:       77:	S		8382 8386	8592	8798 8801	8998		9380	9562 9565	9738	9906		
10         8184         8400         8610         8815         9015         9288         9396         9777         9753         9900         10         7           11         8188         8403         8613         8818         9016         9111         9399         9585         9775         9793         9900         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10<		8177	8393	8603	8808	9008	9202	9390	9571	9746	9915		4
11       8188       8403       8818       0001       9211       9300       9280       9755       9933       755       9935       755       9935       755       9935       755       9935       755       9935       755       9935       755       9935       755       9935       755       9935       756       9935       756       9935       756       9935       756       9935       756       9935       756       9935       756       9935       756       9935       756       9935       7576       9935       7576       9936       7575       9936       7575       9936       7575       9936       7575       9936       7575       9942       9944       9947       9944       9947       9944       9947       9944       9947       9944       9947       9944       9947       9944       9947       9944       9947       9944       9945       9945       9945       9945       9945       9945       9945       9945       9945       9945       9945       9945       9945       9945       9945       9945       9945       9945       9945       9945       9945       9945       9945       9945       9945		8184		8610	8815								
13       8 rögs       8 rögs       8 rögs       9 rök       9 rök <th< th=""><th>11</th><th></th><th></th><th>8613</th><th>8818</th><th></th><th></th><th>9399</th><th>9580</th><th></th><th></th><th>20</th><th>1.3</th></th<>	11			8613	8818			9399	9580			20	1.3
14       8108       8108       8004       8809       9028       9281       9408       9509       9704       9031       60       4.0         16       8205       8417       8851       9021       9210       9415       9502       9705       9031       60       4.0         18       8213       8418       8618       8849       9041       9310       9411       9502       9775       9942         20       8220       8435       8618       8849       9041       9314       9411       9405       9775       9948         20       8220       8435       8645       8849       9040       9427       9407       9784       9918         21       8227       8435       8645       8849       9050       9436       9410       9789       9918         23       8237       8445       8655       8855       9057       9230       9445       9561       9778       9948         24       8235       8465       8865       9050       9233       9435       9789       9935       9769       9356       9759       9355       9451       9362       9761       9361       975<	13	8195	8410	8620	8825	9025	9318	9405	9586	9761	9928	40 50	2.7
17       8x00       8x44       8544       8540       9017       9310       9418       9568       9775       9944         19       8x10       8431       8641       8846       9044       9317       9444       9604       9775       9945         20       8x20       8435       8641       8846       9047       9240       9427       9607       9781       9948         11       8x24       8435       8642       8856       9950       9443       9430       9610       9787       9953         23       8x31       8445       8659       8856       9950       9435       9610       9787       9953       9956         24       8435       8659       8855       9957       9250       9445       9611       9795       9966       9976       300       9797       9050       9976       30       1.0       .5       30       3245       8465       8659       8877       9977       9250       9445       9613       9976       30       1.0       .5       3.0       1.0       .5       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0 <t< th=""><th>15</th><th>8202</th><th>8417</th><th>8627</th><th>8812</th><th>903 I</th><th>9324</th><th>9411</th><th>9592</th><th>9766</th><th>9934</th><th>60 </th><th>4.0</th></t<>	15	8202	8417	8627	8812	903 I	9324	9411	9592	9766	9934	60 	4.0
15         816         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84,1         84			8424	8634	8820	9037	9230	9418	9598	9773	9940		
8         8         8         8         8         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         1         1         1         1         1				8641	8840					9778			
23       837       8443       8655       8856       9054       9446       9433       9613       9787       9053         24       8235       8449       8659       8856       9050       9233       9436       9613       9787       9055         25       8238       8443       8655       8855       9050       9235       9443       9621       9775       9956       9056         26       8238       8455       8857       9070       9253       9443       9621       9775       9956         26       8255       8656       8875       9070       9256       9443       9651       9967       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30	20	8220	8435	8645		9047	9240	9427	9607	9781	9948	1	
24 35 8338         8340 8435         8440 8435         8659 8455         9855 9053         9430 9443         9619 9443         9792 9705         9950 9954         9           77         8246         8455         8655         8875         9070         9250         9443         9621         9793         9950         9051           20         8233         8460         8675         8875         9070         9250         9443         9621         9793         9950         9071         10         .5           20         8253         8460         8676         8875         9077         9260         9454         9630         9970         30         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0 <t< th=""><th>22</th><th>8227</th><th>8443</th><th>8652</th><th>8856</th><th>9054</th><th>9246</th><th>9433</th><th>9613</th><th>9787</th><th>9953</th><th></th><th></th></t<>	22	8227	8443	8652	8856	9054	9246	9433	9613	9787	9953		
25       8238       8452       8665       8865       9063       9445       9644       9795       9964         27       8246       8459       8665       8872       9070       9265       9445       9644       9795       9964         28       8250       8463       8677       8875       9073       9265       9445       9633       9607       9077       20       1.0       .5         28       8257       8470       8679       8875       9073       9265       9454       9633       9967       30       1.5       30       1.5       30       30       1.5       30       30       1.5       30       30       1.5       30       30       1.5       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30<		-			8862			• • •	1 .				
28       8450       8465       8671       8875       9073       9266       9454       9603       9805       9972       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       <	25	8238	8452	8662		9063	9256	9442	9621	9795	9961		3
29         3253         8466         8676         8879         9077         9269         9454         9633         9806         9072         30         30           30         3257         8470         8679         8882         9080         9272         9457         9636         9809         9975         40         30         30         30         32.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0				8669	8872								
30         8257         8470         8679         8882         9050         9272         9457         9636         9809         9975         40         2.0           31         8361         8473         8684         8885         9086         9272         9457         9636         9639         9812         9976         50         2.5         50         2.5         3.0           32         8364         8477         8686         8885         9083         9278         9465         9633         9612         9978         9517         5983           34         8371         8484         8603         8890         9009         9284         9465         9648         9820         9986         9971         5953         9988         9931         9937         9475         9654         9826         9991         37         8886         8498         8905         8900         9009         9237         9481         9657         9839         9904         9939         9481         9657         9839         9907         338         8389         8903         8910         9311         9930         9471         9303         9613         99399         9461         96057<				8676					9633			20	1.0
31       8451       8473       868a       8885       9683       9475       9460       9630       9812       9978       60       3.0         33       8364       8477       8686       8889       9900       9281       9463       9613       9812       9978       60       3.0         34       8371       8487       8693       8890       9000       9281       9465       9613       9812       9986         35       8375       8487       8603       8890       9000       9287       9472       9614       9833       9986         36       8379       8491       8609       8902       9000       9287       9472       9654       9833       9986         37       8382       8494       8703       8906       9102       9294       9475       9654       9839       9904         38       8286       8494       8703       8906       9102       9204       9478       9657       9889       9904         40       8303       8513       8705       8713       8910       9115       9303       9465       9657       9848       *0007       80013       *0007       8	30	8257	8470	8679	8882	9080	9272	9457	9636	9809	9975	40	2.0
33       8368       8480       8689       8892       9090       9281       9466       9643       9817       5983         34       8271       8484       8603       8890       9005       9287       9465       9648       9830       9986         35       8275       8491       8609       8902       9009       9287       9472       951       9830       9986       9991         36       8280       8494       8703       8906       9102       9271       9475       9544       9839       9994         37       8285       8494       8703       8906       9102       9207       9487       9657       9839       9994         38       8280       8505       8713       8916       9112       9303       9487       9666       9837       9007         41       8306       8515       8733       8930       9112       9303       9487       9666       9837       *0002       *0003         41       8306       8513       8713       8930       9112       9303       9473       9484       *00017       *0003       *0003       *0003       *0003       *00013       *00013 <th></th> <th></th> <th></th> <th></th> <th></th> <th>9083 0086</th> <th>9275</th> <th></th> <th>9639</th> <th></th> <th>9978</th> <th>60</th> <th></th>						9083 0086	9275		9639		9978	60	
35       8375       8487       8467       8467       8467       8467       8467       8467       8467       8467       8467       9472       9651       9833       9991         36       8386       8494       8703       8002       9090       9291       9475       9654       9835       9991         37       8382       8494       8703       8002       9000       9204       9478       9657       9830       9901         38       8385       8493       8705       8713       8916       9112       9300       9484       9663       9831       9907         40       8303       8505       8713       8916       9112       9300       9484       9663       9837       9007         41       8306       8505       8713       8926       9115       9300       9495       9657       9845       *0007       843         43       8303       8515       8723       8932       9113       9309       9493       9672       9845       *0007       8         44       8307       8510       8727       8332       9133       9313       9314       9353       9650			8480	8689	8892		9281	9466	9645		ç983		
30       8479       8491       8099       8902       9099       9475       9544       9850       9991         37       8282       8494       8703       8005       8000       9102       9294       9475       9654       9830       9991         38       8286       8494       8703       8005       8000       9102       9294       9478       9657       9839       9997         39       8289       8501       8710       8913       9109       9300       9481       9666       9837       %0002         41       8305       8508       8716       8919       9115       9303       9487       9666       9837       %0002         41       8306       8518       8730       8923       9115       9303       9487       9666       9837       %0007       8         43       8303       8513       8727       8939       9125       9312       9495       9678       9848       %0013       %0013       %0013       %0013       %0013       %0013       %0013       %0013       %0013       %0013       %0013       %0013       %0013       %0013       %0013       %0013       %0013 <t< th=""><th></th><th></th><th></th><th>8693 8696</th><th>8896 8800</th><th></th><th></th><th></th><th>9648</th><th></th><th>9986 0088</th><th></th><th></th></t<>				8693 8696	8896 8800				9648		9986 0088		
38       8385       8495       8705       8000       9105       9105       9481       9650       9831       9007         40       8393       8505       8713       8916       9112       9300       9481       9660       9831       9007         41       8306       8505       8713       8916       9112       9303       9487       9666       9837       %0003         41       8306       8505       8713       8916       9115       9309       9493       9666       9837       %0007       8         43       8300       8515       8723       8923       9118       9309       9493       96653       9840       %0007       8         44       8307       8515       8723       8932       9113       9312       9490       9673       9843       *0007       8         44       8307       8515       8723       8932       9133       9315       9490       9678       9848       *0003       *0007       8         45       8314       8526       8737       8330       9134       9335       9502       9686       9857       *0003      30       1.0       .3 <th>36</th> <th>8279</th> <th>8491</th> <th>8699</th> <th>8902</th> <th>9099</th> <th></th> <th>9475</th> <th>9654</th> <th>9826</th> <th>9991</th> <th></th> <th></th>	36	8279	8491	8699	8902	9099		9475	9654	9826	9991		
39       8859       8501       8710       8913       9109       9300       9484       9663       9534       9999         40       8933       8505       8713       8916       9112       9303       9487       9666       9837       **0002         41       8306       8508       8716       8919       9115       9303       9487       9666       9837       **0002         41       8306       8512       8720       8923       9115       9303       9487       9666       9837       **0003         43       8300       8512       8720       8923       9115       9312       9490       9678       9845       **0013       **0005       **0007       #*         44       8307       8519       8727       8939       9125       9312       9499       9678       9848       ***0013       **<013	37		8494 8498	8703 8706	8906 8000	9102 0706	9294	9478 0481	9657	9829			
41       8006       808       8716       8010       9115       9306       9400       9660       9840       *0005         43       8300       8515       8720       8023       9118       9309       9403       9672       9843       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007       *0007					8913			9484		9834			
43       8300       8513       8720       8023       9118       9300       9493       9672       9843       *0007       2         43       8303       8515       8723       8926       9123       9312       9493       9673       9843       *0007       2       4         44       8307       8510       8727       8929       9125       9315       9490       9675       9843       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013       *0013 <th>40</th> <th>8293</th> <th>8505</th> <th>8713</th> <th>8916</th> <th>9112</th> <th>9303</th> <th>9487</th> <th>9666</th> <th>9837</th> <th>*0002</th> <th></th> <th></th>	40	8293	8505	8713	8916	9112	9303	9487	9666	9837	*0002		
43       8303       8515       8723       8926       9122       9312       9495       9675       9845       ®0010						9115							
45       8510       8522       8730       8032       9138       9502       9680       9851       %0015       10       .3         46       8314       8556       8733       8035       9138       9325       9506       9683       9851       %0015       10       .3         47       8317       8529       8737       8939       9134       9325       9509       9686       9857       %0021       30       1.0       .3         47       8317       8539       8747       8949       9134       9325       9509       9686       9857       %0024       40       1.3         49       8324       8535       8744       8949       9141       9331       9515       9692       9865       %0024       50       1.7         50       8328       8540       8747       8949       9144       9334       9518       9605       9865       %0024       50       1.7         51       8338       8540       8747       8949       9144       9337       9521       9698       9865       %0024       50       1.7         51       8338       8543       8750       8959								9496		9845			*
46       8314       8526       8733       8036       9131       9322       9506       9683       9854       %0018       20       .7         47       8317       8529       8737       8039       9134       9325       9506       9686       9854       %0018       20       .7         48       8317       8536       8747       8939       9134       9335       9509       9686       9857       %0024       40       1.3         49       8324       8536       8747       8949       9144       9335       9515       9692       9859       %0024       50       1.7       2.0         80       8328       8540       8747       8949       9144       9334       9515       9695       9865       %0024       50       1.7       2.0         80       8328       8547       8747       8949       9144       9337       9521       9698       9868       %0024       50       1.7       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0 <th></th> <th></th> <th></th> <th></th> <th>8929</th> <th></th> <th>9315</th> <th></th> <th>9678</th> <th>9848</th> <th></th> <th></th> <th></th>					8929		9315		9678	9848			
47       0377       0399       0737       0399       0734       0933       0933       0934       0933       0934       0933       0934       0933       0934       0933       0934       0933       0934       0933       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       0934       <	46		8526		8936		9322	9506	9683	9854		20	.7
49       8324       8536       8744       8946       9741       9331       9515       9692       9862       *0026       50       1.7         80       8328       8540       8747       8949       9144       9331       9515       9692       9862       *0026       50       1.7         51       8328       8540       8747       8949       9144       9334       9518       9605       9865       *0029         51       8332       8543       8750       8952       9147       9337       9521       9698       9868       *0038         52       8335       8547       8754       8950       9154       9343       9524       9701       9871       *0034         53       8349       8550       8757       8959       9154       9343       9530       9704       9873       *0037         54       8342       8554       8761       8652       9157       9346       9530       9707       9873       *0037         55       8366       8357       8764       8962       9163       9333       9530       9774       9873       *0037         56       8350 <th< th=""><th></th><th></th><th></th><th></th><th>8939</th><th></th><th></th><th></th><th></th><th>9857</th><th></th><th></th><th></th></th<>					8939					9857			
80         83z8         8540         8747         8949         9144         9334         9518         9695         9865         ®0029           51         833a         8543         8750         8952         9147         9337         9521         9608         9868         ®003a           53         8335         8547         8754         8956         9150         9340         9524         9701         9871         ®034           53         8339         8550         8757         8959         9154         9343         9530         9704         9871         ®0034           54         8342         8554         8761         8962         9157         9346         9530         9707         9876         ®0039           55         8346         8557         8764         8965         9150         9349         9533         9707         9876         ®0039           56         8357         8564         8771         8972         9166         93359         9712         9885         ®0047           58         8357         8568         8774         8975         9170         9363         9715         9885         ®0047					8946					9862			
53     8335     8547     8754     8956     9150     9340     9524     9701     9871     *0034       53     8339     8550     8757     8959     9154     9343     9527     9704     9871     *0037       54     8342     8554     8761     8965     9150     9343     9530     9707     9876     *0037       55     8346     8557     8764     8965     9160     9349     9533     9709     9870     *0042       56     8350     8364     8771     8972     9166     9335     9712     9882     *0047       58     8357     8568     8774     8972     9166     9350     9712     9882     *0047       58     8357     8568     8774     8972     9166     9350     9512     9715     9882     *0047       58     8357     8568     8774     8979     9173     9362     9542     9715     9885     *0047       59     8360     8571     8778     8979     9173     9362     9545     9721     9890     *0052	50	8328	8540	8747		9144	9334	9518	9695	9865		<u>                                     </u>	
53         8339         8550         8757         8959         9154         9343         9527         9704         9873         *0037           54         8342         8554         8761         8062         9157         9346         9530         9707         9876         *0039           55         8346         8557         8764         8965         9150         9349         9533         9709         9876         *0039           56         8350         8561         8767         8969         9163         9353         9536         9712         9832         *0047           57         8353         8564         8771         8972         9166         9350         9539         9715         9885         *0047           58         8357         8568         8774         8975         9170         9359         9539         9718         9887         *0047           58         8357         8568         8774         8975         9170         9359         9542         9718         9887         *0050           59         8360         8571         8778         8979         9173         9362         9545         9721         9890 <th></th> <th></th> <th></th> <th></th> <th>8952</th> <th></th> <th></th> <th></th> <th>9698</th> <th></th> <th>*0032</th> <th></th> <th></th>					8952				9698		*0032		
54         8342         8554         8761         8962         9157         9346         9530         9707         9876         *0039           55         8346         8557         8764         8965         9160         9349         9533         9709         9870         *0042           56         8350         8564         8767         8969         9163         9351         9516         9712         9882         *0045           57         8353         8564         8771         8972         9166         9359         9712         9882         *0045           58         8357         8568         8774         8972         9170         9354         9718         9887         *0047           59         8360         8571         8778         8979         9173         9362         9542         9718         9887         *0050           59         8360         8571         8778         8979         9173         9362         9545         9721         9890         *0052		8339	8550		8959					9873	*0037	1	
56         8350         8561         8767         8969         9163         9353         9536         9712         9882         *0045           57         8353         8564         8771         8972         9166         9356         9539         9715         9882         *0045           58         8357         8568         8774         8975         9170         9359         9542         9718         9887         *0047           59         8360         8571         8778         8979         9173         9362         9545         9721         9890         *0052	54				8962						0039	1	
57         8353         8564         8771         8972         9166         9356         9539         9715         9885         *0047           58         8357         8568         8774         8975         9170         9359         9542         9718         9887         *0050           59         8360         8571         8778         8979         9173         9362         9545         9721         9890         *0050	55 56		8557 8561							9879 9882	+0042 +0045		
<b>59</b> 8360 8571 8778 8979 9173 9362 9545 9721 9890 $\bullet$ 0052	-	8353	8564	8771	8972	9166	93 56	9539	9715		*0047		
<b>60</b> 8364 8575 8781 8982 9176 9365 9548 9724 9893 *0055		8357 8360		8774 8778						9887 9890	*0050 *0052		
	60	8364	8575	8781	8982	9176	9365	9548	9724	9893	*0055	6	~ ~ ~ ~

## LOCARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION $\rho_{\rm s}$ in Enclish Feet.

Lat.	71°	72°	73°	74°	75°	76°	7 <b>7°</b>	78°	79°	80°	1	P. P.
	7.822	7.822	7.822	7.822	7.822	7.323	7.323	7.822	7.822	7.322		
0	0055	0210	0359	0499	0632	0757	0875	0984	1085	1177		
I	0058 0060	0213	0361 0364	0501	0634 0636	0759 0761	0877	0986 0987	1087 1088	1178 1180		
23	0000	0215 0218	0366	0504 0506	0639	0763	0879 0880	0989	1090	1181		
4 50	0066 0068 0071	0220 0223 0226	0369 0371 9373	0508 0510 0513	0641 0643 0645	0765 0767 0769	088a 0884 0886	0991 0993 0994	1091 1093 1095	1183 1184 1186		8
78	0074	0228	0376	0515	0647	0771	0888	0996	1096	1187		
89	0077 9079	0231 0233	0378 0381	0517 0520	0650 0652	0773 0775	0889 0891	0998 0999	1098 1099	1189 1190	10 20 30	-5 1.0 1.5
10	0082	0236	0383	0522	o654	077 <b>7</b>	0893	1001	1011	1192	40 50	2.0 2.5
11	0085 0087	0238 0241	0385 0388	0524 0520	0656 0658	0779 0781	0895 0897	1003 1004	1 102 1 104	1193 1195	60	3.0
13	0087	0243	0390	0520	0050	0783	0899	1004	1104	1195		
14	0092	0246	0392	0531	0663 0664	0785	1000	8001	1107	1198		
15 16	0095 0098	0248 0251	0394 0397	0533 0535	0004 0067	0787 0789	0902 0904	1009	8011 1108	1199 1200		
17	0100	<b>C4</b> 53	0399	0537	0669	0791	0906	1013	1111	1202		
18 19	010 <b>3</b> 0105	0256 0258	0401 0404	0540 0543	0671 0673	0793 0795	0908 0100	1015 1016	1113 1114	1203 1205		
30	8010	0261	0406	0544	0675	0797	0913	1018	1116	1206	1	
21	0111	0263	0408	0546	0677	0799 0801	0914	1020	1118	1207	1	
23 23	0113 0116	0266 0268	0411 0413	0549 0551	0679 0681	0801 0803	0916 0917	1031 1033	1119 1121	1209 1210		
24	8110	0371	0416	9553	0683	0805	0919	1025	1122	1313		
25	0131 0134	0273 0276	0418 0430	0555 0558	o685 o688	0807	0921 0923	1026 1028	1124 1126	1213 1214		2
27	0126	0278	0423	0560	0690	0811	0925	1030	1127	1216		
28	0139 0131	0281 0283	0425 0438	0563 0565	0693 0694	0813 0815	0926 0928	1032 1033	1129	1217	10 30	·3 ·7
30	0134	0286	0430	0567	0696	0817	0930	1035	1132	1220	30 40	1.0 1.3
31	0137	0288	0432	0569	0698	0819	0932	1037	1133	1221	50 60	1.7
32 33	0139 0142	0291 0293	0435 0437	0571 0574	0700 0702	0821	0934 0935	1038 1040	1135 1136	1223		
34	0144	0396	0439	0576	0704	0825	0937	1043	1138	1226		
35	0147 0150	0398 0300	0441 0444	0578 0580	0700 0708	0826 0828	0939 0941	1043 1045	1139 1141	1227 1228		
37	0153	0303	0446	0582	0710	0830	0943	1047	1143	1230		
38	0155 0157	0305 0308	0448	0585	0713	0832 0834	0944	1049	1144	1231		
39			0451	0587	0714		0946	1050	1145	1233	ł	
40	0160	0310	<u>0453</u>	0589	0716	0836 0838	0948	1052	1147	1234		
41 43	0165	0312 0315	0455 0458	0591 0593	0718 0720	പ്ര	0950 0952	1054 1055	1148 £150	1235 1237	ļ	
43	0167	0317	0460	0596	0722	0842	0953	1057	1151	1238		
44 45	0170 017 <b>3</b>	0320 0322	0463 0464	0598 0000	0724 0720	0844 0846	0955 0957	1058 1060	1153 1154	1240 1241		1
46	0175	0324	0467	0602	0729	0848	0959	1062	1156	1242		-
47 48	0177 0180	0327 0329	0469 0471	0604 0607	0731 0733	0850 0852	096z 096z	1063 1065	1157	1244	10	.2
49	0182	0332	0474	0600	0735	0854	0964	1066	1160	1247	30	.3
50	0185	<b>03</b> 34	0476	0611	0737	0856	0966	1068	1162	1248	40	·3 -7 -8
51 52	0187 0190	0336 0339	0478 0481	0613 0615	0739 0741	0858 0860	0968 0970	1070 1071	1 163 1 165	1249 1251	50 60	1.0
53	0192	0341	0483	0617	0743	0862	0971	1073	1166	1252		
54	0195	0344	0485	0619 0621	0745	0864 0865	0973	1075	1168	1253		
55 56	0197 0200	0346 0349	0487 0490	0021	0747 0749	0867	0975 0977	1076 1078	1169 1171	1254 1256		
57	0202	0351	0492	0626	0751	0869	0979	1080	1172	1257		
58 59	0205 0207	0354 0356	0494 0497	0628 0630	0753 0755	0871 0873	0980 0982	1083 1083	1174 1175	1258 1260		
60	0210	0359	0499	0632	0757	0875	0984	1085	1177	1261		
									Lighting -	C	500	

[Derivation of table explained on p. xiv.]

÷

•

SMITHSONIAN TABLES.

0

## LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION

[Derivation of table explained on p. xlv.]

## TABLE 12. LOCARITHMS OF RADIUS OF CURVATURE $\rho_{\alpha}$ (in Metres) of Section of Earth's surface inclined to Meridian at Azimuth a.

Azimuth.					LATI	TUD <b>E</b> .					
	22 ⁰	230	24 ⁰	25°	20°	27°	28°	29°	30°	31°	
0 ⁰	6.80237	6.80242	6.80248	6.80254	6.80260	6.80266	6.80272	6.80279		6.80292	
5	239	244	250	256	262	268	274	280	287	294	
10	244	250	255	261	267	273	279	285	292	298	
15	254	259	264	270	276	282	288	294	300	306	
20	266	27 I	277	282	288	293	299	305	31 I	317	
25	282	287	292	297	302	308	313	319	32 5	331	
30	300	305	309	314	319	324	330	335	340	346	
35	320	324	329	333	338	343	348	353	358	363	
40	341	345	350	354	358	362	367	372	377	382	
45	364	367	371	375	379	383	387	391	396	400	
50	386	389	392	396	399	403	407	41 1	41 5	419	
55	407	410	413	416	420	423	426	4 30	434	437	
60	427	430	432	435	438	442	445	448	451	455	
65	445	448	450	453	455	458	461	464	467	470	
70	461	- 463	465	468	470	473	475	478	481	484	
75	473	476	478	480	482	484	487	489	492	494	
80	483	485	487	489	491	493	495	498	500	502	
85	489	490	492	494	496	498	501	503	505	507	
90	490	492	494	496	498	500	502	504	507	509	
		LATITUDE.									
Azimuth.	32°	33°	34°	35°	36°	37°	38°	39°	40°	41°	
00	6.80299	6.80306	6.80313	6.80320	6.80327	6.80335	6.80342	6.80350	6.80357	6.80365	
5	300	307	314	322	329	336	344	351	359	366	
10	305	312	319	326	333	340	. 348	355	363	370	
15	313	320	326	333	340	348	355	362	369	376	
20	324	330	337	343	350	357	364	37 I	378	385	
25	337	343	349	355	362	368	375	382	388	395	
30	352	358	364	370	376	382	388	394	401	407	
35	369	374	380	385	391	397	402	408	414	420	
40	386	392	397	402	407	41 2	418	423	429	434	
45	405	410	414	419	424	429	434	439	444	449	
50 55 60	423 441 458	445	449	<b>436</b> 453 469	441 457 472	445 461 476	<b>450</b> 465 480	454 469 484	459 474 487	464 478 491	
65 70 75	473 486 497	476 489 500	492	483 495 505	486 498 508	489 501 510	493 504 513	496 507 516	510	514	
80 85 90	505 510 511	512		517	51 5 51 9 52 1	517 522 523	520 524 526	523 527 528	520	532	

[Formula for  $\rho_{e}$  given on p. xiv.]

SMITHSONIAN TABLES.

ī

#### TABLE 12.

e

#### LOCARITHMS OF RADIUS OF CURVATURE P. (IN METRES) OF SECTION OF EARTH'S SURFACE INCLINED TO MERIDIAN AT AZIMUTH a.

Azimuth.					LAT	ITUD	E.			
	42 ⁰	43°	44°	45°	<b>4</b> 6°	47°	48°	49°	50°	51°
o°	6.80373	6.80380	6.80388	6.80396	6.80404	6.804	11 6.8041	9 6.80426	6.80434	6.80442
5 10 15	374 378 384	382 385 391	389 393 399	397 400 <b>40</b> 6	404 408 413	4	12 42 15 42 20 42		438	443 445 450
20 25 30	392 402 413	399 408 420	406 415 426	41 3 422 433		4	27 43 36 44 46 45	2 449		455 463 471
35 40 45	426 440 454	432 446 459	438 451 464	444 457 470	462		56 46 68 47 80 48		485	480 490 500
50 55 60	468 482 495	473 486 499	478 490 502	482 495 506	487 499 510	5	92 49 03 50 14 51	8 512	516	510 520 530
65 70 75	507 517 525	510 520 528	514 523 530	517 526 534	520	5	24 52 32 53 39 54	8 531 6 539	542	538 545 551
80 85 90	531 534 530	534 537 538	536 540 541	539 542 544	542 549 540	5	44 54 48 5 <u>5</u> 49 55	o 553	553 555	555 558 559
Azimuth.	536 538 541 544 546 549 551 554 556 LATITUDE.									
	52 ⁰	53°	54°	55	;°	56°	57°	58°	59°	60°
o°	6.80449	6.80457	6.8046	6.80	471 6.8	0479	6.80486	6.80493	6.80500	6.80506
5 10 15	450 453 457	458 460 464	40 40 47	57 .	472 474 478	479 481 485	486 488 492	493 495 498	500 502 505	507 509 511
20 25 30	462 469 477	469 476 484	4	32	483 489 496	489 495 502	496 501 508	502 508 514	509 514 519	515 520 525
35 40 45	486 496 505	492 501 510	50	6	503 512 520	509 517 525	51 5 522 530	<b>52</b> 0 527 534	525 532 539	531 537 543
50 55 60	51 5 524 533	520 528 537	5	33	528 537 544	533 541 548	537 545 552	542 548 555	546 552 558	550 556 562
65 70 75	541 548 554	54 5 55 1 557	5.	48 54 59	551 557 562	555 560 565	558 563 568	561 566 570	<b>5</b> 64 569 573	567 572 575
80 85 90	558 560 561	561 563 564	50	53 56 56	566 568 569	568 570 571	57 I 57 3 57 4	573 575 576	<b>576</b> 578 578 gitized by	578 580 G 580

[Formula for pe given on p. xlv.]

#### TABLE 13.

# LOCARITHMS OF FACTORS $\frac{\rho''}{2\rho_m\rho_m}$ for computing spheroidal excess of triangles.

#### UNIT = THE ENGLISH FOOT.

*	log. factor and change per minute.	¢	log. factor and change per minute.	•	log. factor and change per minute.	¢	log. factor and change per minute.
<b>0</b> °	0.37498	<b>20</b> °	0.37429	<b>40</b> °	0.37255 — 0.18	<b>60</b> °	0.37056 0.15
I	498 	21	422 0.12	41	244 	61	047 
2	497	22	415	42	234 	62	038 
3	496 0.02	23	408 	43	224 0.17	63	030 0.13
4	495 0.03	24	401 — 0.13	44	214 0.18	64	022 
5	493	25	393	45	203 0.17	65	014 0.13
6	0.03 491 0.03	26	0.13 3 ⁸⁵ 0.13	46	193 — 0.17	66	006 - 0.13
7	489 	27	$\frac{377}{-0.15}$	47	183 	67	0.36998
8	487 	28	$\frac{368}{-0.13}$	48	173 	68	991 -0.12
9	484 	29	360 0.15	49	162 	69	<u>984</u> 
10	480	30	351	50	152	70	977 
11	0.07 476	31	-0.15 342	51	-0.17 142	71	971
12	0.07 472	32	- 0.15 333	52	- 0.17 132	72	- 0.12 964 - 0.08
13	0.07 468 0.08	33	-0.17 $3^{2}3$ -0.15	53	0.17 122 0.17	73	959 
14	463 	34	$\frac{-314}{-0.17}$	54		74	953 0.08
15	459	35	304	55	103	75	948
16	0.10 453 0.08	36	- 0.15 295	56	0.17 093	76	- 0.08 943
17	448	37	0.17 285	57	0.17 083	77	0.08 938
18	0.10 442 0.10	38	0.17 275	58	-0.15 074	78	0.07 934
19	436 	39	- 0.17 265 - 0.17	59	0.15 065 0.15	79	0.07 930 0.07
20	<b>429</b> - 0.12	40	255 0.18	60	056 0.15	80	926

[Derivation and use of table explained on p. lviii.]

SMITHSONIAN TABLES.

'n

68

TABLE 14.

### LOGARITHMS OF FACTORS $\frac{p''}{2\rho_m \rho_n}$ FOR COMPUTING SPHEROIDAL EXCESS OF TRIANCLES.

UNIT=THE METRE.

•	log. factor and change per minute.	•	log. factor and change per minute.	•	log. factor and change per minute.	•	log. factor and change per minute.
0°	1.40695 0.00	<b>20</b> °	1.40626 	<b>40</b> °	1.40452 - 0.18	<b>60</b> °	1.40253 0.15
I	695 	21	619 	<b>4</b> I	44I 	61	244 
2	694 0.02	22	612 	<b>4</b> 2	431 	62	²³⁵ -0.13
3	693 0.02	23	605 	43	421 	63	227 - 0.13
4	692 0.03	24	597 	44	411 	64	219 
5	690 0.03	25	590 	45	400 0.17	65	210 — 0.12
6	688 	26	<u>582</u> 	46	390 	66	203 
7	686 0.05	27	573 -0.13	47	380 	67	195 
8	683 	28	<u>565</u> 	48	369 	68	188 
9	680 0.05	29	<u>556</u> -0.13	49	359 	69	181
10	677	30	_ 0.13 548	50	349	70	174
		31		51	$-\frac{349}{-0.17}$	71	0.10 168
12		32 32		52	-0.17 329	72	-0.12 161
		33		-	-0.17 319	73	- 0.10 155
13			-0.15	53	-0.17	_	0.08
14	0.08	34	511 	54	<u> </u>	74	150 
15	655 	35	501 	55	299 	75	144 0.08
16	650 - 0.10	36	491 	56	290 - 0.17	76	139 
17	644 	37	482	57	280	77	135 0.08
18	639	38	-0.17 472	58	271 	78	130 0.07
19	0.12 632 0.10	39	0.17 462 0.17	59	262 	79	126 
20	626 — 0.12	40	452 0.18	60	²⁵³ 	80	123

[Derivation and use of table explained on p. lviii.]

SMITHSONIAN TABLES.

69

# TABLE 15. LOGARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATI-TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. UNIT=THE ENGLISH FOOT.

		<b>h</b> — 4		1	•			1			
•	<i>a</i> 1	$b_1 = c_1$	<i>a</i> 1	63	22 	•	<i>a</i> ₁	$b_1 = c_1$	<i>a</i> ₂	<i>b</i> ₂	<i>6</i> 8
0°00′ I0	7.99669 669	7-99374 374	—∞ 7-839	<u>        ∞</u> 8.137	0.372 0.372	10°00′ 10	7.99655 655	7.99369 369	9.621 9.628	9.926 9.933	0.398 0.399
20	669	374	8.140	8.438	0.372	20	654	369	9.636	9.941	0.400
30	669	374	8.316	8.614	0.372	30	654	369	9.643	9.948	0.401
40 50	669 669	374 374	8.441 8.538	8.739 8.836	0.372 0.372	40 50	654 653	369 369	9.650 9.657	9.955 9.963	0.402 0.403
1 00	669	374	8.617	8.915	0.372	11 00	653	368	9.663	9.970	0.404
10	669	374	8.684	8.982	0.372	10	652	268	9.670	9.977	0.404
20	668 668	374 374	8.742 8.793	9.040 9.091	0.372 0.373	20 30	652 651	368 368	9.677 9.683	9.983 9.990	0.405 0.406
30 40	668	374	8.839	9.137	0.373	40	651	268	9.690	9.997	0.407
50	<b>6</b> 68	374	8.880	9.179	0.373	50	650	368	9.696	0.003	0.408
2 00 I0	668 668	374 373	8.918 8.953	9.216 9.251	0.373 0.373	12 00 I0	650 649	367 367	9.702 9.708	0.010 0.016	0.409 0.410
20	668	373	8.985	9.283	0.373	20	649	367	9.714	0.023	0.412
30	668 668	373	9.015	9.314	0.374	30	648	367	9.720	0.029	0.413
40 50	668	373 373	9.043	9.342 9.368	0.374 0.374	40 50	648 647	367 367	9.726 9.732	0.035 0.041	0.414
300	668	373	9.094	9-393	0.374	1300	646	366	9.738	0.048	0.416
10	667 667	373	9.118	9.417	0.375	10	646	366 366	9.744	0.054	0.417
20 30	667	373 373	9.140 9.161	9-439 9-460	0.375 0.375	20 30	645 645	366	9·749 9·755	0.060	0.418 0.419
40	667	373	9.182	9.481	0.376	40	644	366	9.761	0.071	0.420
50	667	373	9.201	9.500	0.376	50	644	365	9.766	0.077	0.422
4 00 IO	667 666	373 373	9.220 9.237	9.519 9.537	0.376 0.377	14 00 10	643 642	365 365	9.771 9.777	0.083 0.088	0.423
20	666	373	9.254	9-554	0.377	20	642	365	9.782	0.094	0.425
30	666 666	373	9.271	9.570	0.377	30	641	365	9.787	0.100	0.426
40 50	666	373 373	9.287 9.302	9.586 9.602	0.378 0.378	40 50	640 640	364 364	9-792 9-798	0.105	0.428 0.429
500	665	373	9.317	9.617	0.379	1500	639	• 364	9.803	0.116	0.430
10	665 665	373	9-331	9.631 9.645	0.379	10 20	639 638	364	9.808	0.121	0.431
20 30	66s	372 372	9-345 9-358	9.659	0.379 0.380	30	6 <u>3</u> 7	363 363	9.813 9.818	0.127 0.132	0.433 0.434
40	664	372	9.372	9.672	0.380	40	637	363	9.822	0.1 37	0.435
50	664 664	372	9.384	9.685 9.697	0.381	50 16 00	636	363	9.827	0.142	0.437
6 00 10	664	372 372	9-397 9-409	9.709	0.381 0.382	10 00	635 635	363 362	9.832 9.837	0.147	0.438 0.439
20	663	372	9.420	9.721	0.383	20	634	362	9.841	871.0	0.441
30	663 663	372	9.432	9.732	0.383 0.384	30	633	362 362	9.846	0.163	0.442
40 50	662	372 372	9-443 9-453	9.744	0.384	40 50	632 632	361	9.851 9.855	0.173	0.445
7∞	662	372	9.464	9.765	0.385	17 00	631	361	9.860	0.178	0.446
10 20	662 662	37 I 37 I	9-474 9-484	9.776 9.786	0.386 0.386	10 20	630 630	361 361	9.864 9.869	0.182	0.448 0.449
30	661	371	9.494	9.796	0.387	30	620	360		0.192	0.449
40	661	371	9.504	9.806	0.387	40	628	360	9.873 9.878	0.197	0.452
50 8 00	661 660	371	9.513 9.523	9.816 9.825	0.388 0.389	50 18 00	627 627	360 360	9.882 9.886	0.202	0.453
10	660	37 I 37 I	9.532 9.532	9.834	0.389	10 00	626	359	<u>9.890</u>	0.200	0.455 0.456
20	659	371	9.541	9.843	0.390	20	625	359	9.895	0.216	0.458
30 40	659 659	37 I 370	9-549 9-558	9.852 9.861	0.391 0.392	30 40	624 624	359	9.899 9.903	0.220 0.225	
50	659 658	370	9.566	9.870	0.392	50	623	359 358	9.907	0.229	
900	658	370	9-575	9.878	0.393	19 00	622	358	9.911	0.234	
10 20	657 657	370 370	9.583 9.591	9.880 9.895	0.394 0.395	10 20	621 620	358 358	9.915 9.919	0.239 0.243	
30	657	370	9.598	9.903	0.396	30	620	350	9.923	0.248	
40	656	370	9.606	9.910	0.396	40	619	357	9.927	0.252	
50 10 00	656 655	369 369	9.614 9.621	9.918 9.926	0.397 0.398	50 20.00	618 617	357 357	9.931 9-935	0.256 0.261	
	~33	3~9	<i></i>	<i>y</i> ²⁰	J. 390		017	33/	7733		

[Derivation and use of table explained on p. lz.]

SMITHSONIAN TABLES.

 $\delta$ 

# TABLE 15. LOCARITHMS' OF FACTORS FOR COMPUTING DIFFERENCES OF LATI-TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANCULATION. UNIT = THE ENGLISH FOOT. [Derivation and use of table explained on p. br.]

+	<i>a</i> 1	$b_1 = c_1$	az	<i>b</i> 3	63	+	<i>a</i> 1	$b_2 = c_2$	<i>a</i> 1	<i>b</i> 2	63
20°00′	7.99617	7.99357	9-935	0.261	0.474	30°00′	7.99558	7-99337	0.135 0.138	0.496	0.593
10 20	616 615	356 356	9-939 9-943	0.265 0.270	0.475 0.477	10 20	557 556	337 336	0.138 0.141	0.500	0.595
30	615	356	9.947	0.274	0.479	30	555	336	0.144	0.503	0.598 0.600
40	614	355	9.951	0.278	0.480	40	554	335	0.146	0.511	0.603
ŝo	613	355	9.955	0.282	0.482	50	553	335	0.149	0.514	0.605
21 00	612	355	9.958	0.287	0.484	31 00	552	335	0.152	0.518	0.607
10 20	611 610	355	9.962	0.291	0.486	10	550	334	0.155 0.158	0.522	0.610 0.612
30	609	354 354	9.966 9.970	0.295	0.487 0.489	20 30	549 548	334	0.150	0.525 0.529	0.612
40	608	354	9.973	0.304	0.491	40	547	333 333	0.164	0.532	0.617
śo	608	353	9.977	0.308	0.493	50	546	333	0.166	0.536	0.619
22 00	607	353	9.981	0.312	0.494	32 00	545	332	0.169	0.540	0.622
10 20	606 605	353	9.984 9.988	0.316	0.496 0.498	10 20	544	332	0.172	0.543	0.624 0.627
30	604	353 352	9.900	0.320 0.324	0.500	30	542 541	332 331	0.175 0.177	0.547 0.550	0.629
40	603	352	9.995	0.328	0.502	40	540	331	0.180	0.554	0.632
50	602	352	9.998	0.332	0.503	50	539	330	0.183	0.558	0.634
23 00	601	351	0.002	0.336	0.505	33 00	538	330	0.186	0.561	0.637
10	600	351	0.005	0.340	0.507	10	537	330	0.188	0.565	0.639
20	600	351	0.009	0.344	0.509	20	535	329	0.191	0.568	0.642
30 40	599 598	350 350	0.012 0.016	0.348 0.352	0.511 0.513	30	534 533	329 328	0.194 0.197	0.572	0.644 0.647
50	597	350	0.019	0.356	0.515	50	532	328	0.199	0.579	0.650
24 00	596	349	0.023	0.360	0.517	34 00	531	328	0.202	0.583	0.652
10	595	349	0.026	0.364	0.518	10	520	327	0.205	0.586	0.655
20	594	349	0.029	0.368	0.520	20	528	327	0.208	0.590	0.657
30	593	348 348	0.033	0.372	0.522	30	527 526	326	0.210	0.593	0.660 0.663
40 50	592 591	348	0.036 0.039	0.376 0.380	0.524 0.526	40 50	525	326 326	0.213 0.216	0.597	0.665
25 00		347	0.043	0.384	0.528	35 00	523	325	0.218	0.604	0.668
10	590 589	347	0.046	0.388	0.530	<b>10</b>	522	325	0.221	0.608	0.671
20	588	347	0.049	0.392	0.532	20	521	324	0.224	0.611	0.673
30	587 586	346	0.052	0.396	0.534	30	520	324	0.226	0.61 5 0.618	0.676 0.679
40 50	585	346 346	0.056 0.059	0.399 0.403	0.536 0.538	40 50	519 517	324 323	0.229 0.232	0.610	0.679
26 00	584	345	0.062	0.407	0.540	36 00	516	323	0.234	0.625	0.684
10	583	345	0.065	0.411	0.543	10	515	322	0.237	0.629	0.687
20	582	345	0.068	0.415	0.545	20	514	322	0.239	0.632	0.689
30	581	344	0.072	0.418	0.547	30	512	322	0.242	0.636	0.692
40 50	580 570	344	0.075 0.078	0.422	0.549	40	511 510	321	0.245 0.247	0.640 0.643	0.695 0.698
27 00	579 578	344	0.0/8	0.426	0.551	50 37 00	509	321 320	0.250	0.643	0.700
10	577	343 343	0.081	0.430 0.433	0.553 0.555	3/00	507	320	0.253	0.650	0.703
20	576	343	0.087	0.437	0.557	20	506	320	0.255	0.654	0.706
30	575	342	0.090	0.441	0.559	30	505	319	0.258	0.657	0.709
40	574	342	0.093	0.445	0.562	40	504	319 318	0.260	0.661 0.665	0.712
50 28 00	573	342	0.096	0.448	0.564 0.566	38 00	503 501	318	0.263 0.266	0.668	0.715 0.717
10	571 570	341 341	0.099 0.102	0.452 0.456	0.568	30 00	500	317	0.268	0.672	0.720
20	569	341	0.105	0.460	0.570	20	499	317	0.271		0.723
30	568	340	0.108	0.463	0.573	30	498	317	0.273		0.726
40	567	340	0.111	0.467	0.575	40	496	316	0.276	0.683	0.729
50	566	340	0.114	0.471	0.577	50	495	316	0.278 0.281	0.000	0.732
29 00 IO	565 564	339 339	0.117 0.120	0.474 0.478	0.579 0.582	39 00 10	494 492	315 315	0.281	0.693	0.735 0.738
20	563	338	0.123		0.584	20	491	315	0.286	0.697	0.741
30	562	338	0.126		0.586	30	490	314	0.289	0.701	
40	561	338	0.129	0.489	0.588	40	489	314	0.29Í	0.704	0.747
50	560	337	0.132	0.493	0.591	50	487	313	0.294	0.708	0.750
30 00	558	337	0.135	0.496	0.593	40 00	486	313	0.296	0.711	0.753
		1			1 [']	1		1		$\frown$	

SHITHSONIAN TABLES.

# TABLE 15. LOCARITHMS OF FACTORS FOR COMPUTINC DIFFERENCES OF LATI-TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. UNIT = THE ENGLISH FOOT. [Derivation and use of table explained on p. lr.]

•	<i>a</i> 1	$b_1 = c_1$	<i>a</i> ₁	b ₂	4	•	<i>a</i> 1	$b_1 = c_1$	<i>a</i> 1	<i>b</i> 3	69
40°00'	7.99486	7.99313	0.296	0.711	0.752	50°00′	7.99409	7.99287	0.448	0.939	0.955
10	485	312	0.299	0.715	0.755	01	408	287	0.450	0.944	0.958
20	484	312	0.301	0.719	0.759	20	407	287	0.453	0.948	0.962
30 40	482 481	312 311	0.304 0.307	0.722 0.726	0.762 0.765	30 40	406 404	286 286	0.455 0.458	0.952 0.956	0.966 0.970
50	480	311	0.309	0.730	0.768	50	403	285	0.460	0.960	0.974
41 00	479	310	0.312	0.733	0.771	51 00	402	285	0.463	0.964	0.978
10 20	477 476	310 309	0.314 0.317	0.737 0.740	0.774 0.777	10 20	401 399	284 284	0.466 0.468	0.968	0.982 0.985
30	475	309	0.319	0.744	0.780	30	398 398	284	0,471	0.976	0.989
40	473	200	0.322	0.748	0.783	40	397	283	0.473	0.981	0.993
50 42 00	472	308 308	0.324	0.751	0.786 0.789	50 52 00	396	283 282	0.476	0.985 0.989	0.997
42 00	471 470	307	0.327 0.329	0.755 0.759	0.792	52 00	394 393	282	0.478 0.481	0.993	1.001 1.005
20	468	307	0.332	0.762	0.796	20	392	281	0.484	0.998	1.009
30	467	306	0.334	0.766	0.799 0.802	30	391 389	281	0.486	1.002	1.013
40 50	466 464	306 306	0.337 0.339	0.770 0.774	0.802	40 50	300 388	28 I 280	0.489 0.491	1.006 1.010	I.017 I.021
43 00	463	305	0.342	0.777	0.808	53 00	387	280	0.494	1.015	1.025
10	462	305	0.344	0.781	0.812	10	386	279	0.497	1.019	1.030
20	461	304 204	0.347	0.785 0.788	0.815 0.818	20	384 383	279	0.499	1.023	1.034
30 40	459 458	304 303	0.349 0.352	0.792	0.821	30 40	303 382	279 278	0.502 0.505	1.028 1.032	1.038 1.042
50	457	303	0.354	0.796	0.824	50	381	278	0.507	1.036	1.046
44 00 IO	455	303	0.357	0.800 0.803	0.828 0.831	54 00 IO	379 378	277	0.510	1.041	1.050
20	454 453	302 302	0.359 0.362	0.807	0.834	20	3/0	277 277	0.512 0.515	1.045	1.055 1.059
30	452	301	0.364	0.811	0.838	30	376	276	0.518	1.054	1.063
40	450	301	<b>0</b> .367	0.815	0.841	40	375	276	0.520	1.058	1.067
50 45 00	449 448	300 300	0.370 0.372	0.818 0.822	0.844 0.848	50 55 00	373 372	275 275	0.523	1.063 1.067	1.072 1.076
10	446	300	0.375	<b>0.82</b> 6	0.851	10	371	275	0.526 0.528	1.0072	1.0/0
20	445	299	0.377	0.830	0.854	20	370	274	0.531	1.076	1.084
30 40	444 443	299 298	0.380 0.382	0.833 0.837	0.858 0.861	30 40	369 367	274	0.534	1.081 1.085	1.089
50	441	298	0.385	0.841	0.865	50	366	273 273	0.537 0.539	1.005	1.093 1.098
46 00	440	297	0.387	0.845	0.868	56 00	365	273	0.542	1.094	1.102
10 20	439 437	297 297	0.390	0.849 0.853	0.872 0.875	10 20	364 363	272	0.545	1.099	1.106
30	437	297 296	0.392 0.395	0.856	0.878	30	361	272 271	0.547 0.550	1.104 1.108	1.111 1.115
40	435	296	0.397	0.860	0.882	40	360	271	0.553	1.113	1.120
50	434	295	0.400	0.864	0.885	50	359	271	0.556	1.118	1.124
47 00 IO	432 431	295 294	0.402 0.405	0.868 0.872	0.889 0.892	57 00 10	358 357	270 270	0.558 0.561	1.122 1.127	1.129 1.134
20	430	294	0.407	0.876	0.896	20	356	269	0.564	1.132	1.138
30	428	294	0.410	0.880	0.900	30	354	269	0.567	1.137	1.143
40 50	427 426	293 293	0.412 0.415	0.884 0.888	0.903 0.907	40 50	353 352	269 268	0.569 0.572	1.141 1.146	I.147 I.152
48 00	425	292	0.417	0.891	0.910	58 00	351	268	0.575	1.151	1.152
10	423	292	0.420	0.895	0.914	10	350	267	0.578	1.156	1.162
20	422 421	291 291	0.422 0.425	0.899 0.903	0.918	20	349	267	0.581	1.161	1.166
30 40	420	291	0.425	0.903	0.921 0.925	30 40	347 346	267 266	0.583 0.586	1.166 1.170	
50	418	290	0.430	0.911	0.929	50	345	266	0.589	1.175	1.181
49 00 10	417 416	290 289	0.432 0.435	0.915 0.919	0.932	59 00	344	266	0.592	1.180	1.185
20	414	289 289	0.435	0.919	0.936 0.940	10 20	343 342	265 265	0.595 0.598	1.185 1.190	1.190 1.195
30	413	289	0.440	0.927	0.943	30	341	264	0.600		1.200
40	412	288	0.443	0.931	0.947	40	339	264	0.603	1.200	1.205
50 50	411 <b>40</b> 9	288 287	0.445 0.448	0.935 0.939	0.951 0.955	50 60 00	338	264 263	0.606 0.609	1.205 1.210	1.210 1.215
		/	0,440	2.272	~~~~~		337	203	5.009	1.210	
R MURENCE -								Digitized		909	le='
	MIAN TA	BLEŞ.				2		-		0	

# TABLE 15. LOCARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATI-TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. UNIT = THE ENGLISH FOOT. [Derivation and use of table explained on p. lz.]

•	<i>a</i> 1	b ₁ =c ₁	az	63	62	+	<i>a</i> 1	$b_1 = c_1$	<i>a</i> 3	<i>b</i> 3	<b>63</b>
60°00′	7-99337	7.99263	0.609	1.210	1.215	70°00′	7.99278	7.99244	0.800	1.575	1.576
10	336	263	0.612	1.216	1.220	10	277	243	0.813	1.583	1.584
20	335	263 262	0.615	1.221	1.225	20	277	243	0.817	1.590	1.591
30 40	334 333	202	0.618 0.621	1.226 1.231	1.230 1.235	30 40	276 275	243 242	0.821 0.825	1.598 1.605	1.599 1.606
50	332	261	0.624	1.236	1.240	50	274	242	0.829	1.613	1.614
61 00	331	261	0.627	1.241	1.245	71 00	273	242	0.833	1.621	1.621
10 20	329 328	261 260	0.630 0.633	1.247	1.251 1.256	10 20	273	242	0.837	1.629 1.636	1.629 1.637
30	320 327	260	0.636	1.252 1.257	1.250	30	272 271	241 241	0.845	1.630	1.645
40	326	260	0.639	1.263	1.266	40	270	241	0.840	1.652	1.653
50	325	² 59	0.642	1.268	1.272	50	269	241	0.854	1.660	1.661
62 00 IO	324	259	0.645 0.648	1.273	1.277 1.282	72 00	269 268	240	0.858 0.862	1.669 1.677	1.669 1.677
20	323 322	259 258	0.048	1.279 1.284	1.288	10 20	208	240 240	0.862	1.685	1.686
30	321	258	0.64	1.290	1.293	30	266	240	0.871	1.694	1.694
40	320	257	0.657	1.295	1.298	40	266	239	0.875	1.702	1.702
50	319	257	0.660	1.301	1.304	50	265	239	0.880	1.710	1.711
63 00 10	· 318	257 256	0.663 0.666	1.306 1.312	1.309	73 00	264 264	239 239	0.884	1.719 1.728	1.720 1.728
20	316	256	0.669	1.318	1.320	20	263	238	0.893	1.737	1.737
30	315	256	0.672	1.323	1.326	30	262	238	0.898	1.745	1.746
40	314	255	0.676	1.329	1.332	40	261	238	0.903	1.754	1.755
50	313	255	0.679	1.335	1.337	50	261 260	238	0.907	1.763	1.764
64.00 IO	312 311	255 254	0.085	1.341 1.346	1.343 1.349	74 00	200	238 237	0.912	1.772 1.782	1.773 1.782
20	310	254	0.688	1.352	1.355	20	259	237	0.922	1.791	1.791
30	200	254	0.692	1.358	1.360	30	258	237	0.927	1.800	1.801
40	308	253	0.695	1.363	1.366	40	257	237	0.931	1.810	1.810
50 65 00	307 306	253	0.698	1.370	1.372 1.378	50	257 256	236	0.936	1.820	1.820 1.830
10	305	253 252	0.705	1.376 1.382	1.3/6	75 00	255	236 236	0.941	1.839	1.830
20	304	252	0.708	1.388	1.390	20	255	236	0.952	1.849	1.849
30	303	252	0.711	1.394	1.396	30	254	236	0.957	1.859	1.859
40 50	302	251	0.715	1.400   1.406	1.402 1.408	40	254	235	0.962	1.869 1.879	1.869 1.880
66 00	301 300	251 251	0.721	1.413	1.414	50 76 00	253 252	235 235	0.973	1.890	1.890
10	200	250	0.725	1.419	1.421	10	252	235	0.978	1.900	1.901
20	298	250	0.728	1.425	1.427	20	251	235	0.984	1.911	1.911
30	297	250	0.732	1.432	1.433	30	250	234	0.989	1.922	1.922
40 50	296 295	249 249	0.735	1.438   1.444	1.440 1.446	40 50	250 249	234 234	0.995	I.933 I.944	1.933
67 00	293	249	0.742	1.451	1.452	77 00	249	234	1.006	1.955	1.955
10	293	2/0	0.746	1.457	1.459	10	248	234	1.012	1.966	1.900
20	292	248	0.749	1.464	1.465	20	248	233	1.018	1.978	1.978
30 40	291 290	248 248	0.753	1.470	1.472 1.478	30 40	247	233	1.024 1.030	1.989	1.989 2.001
50 50	289	240	0.756 0.760	1.477   1.484	1.485	50	247 246	233 233	1.036	2.013	2.013
68 00	289	247	0.763	1.491	1.492	78 00	245	233	1.042	2.025	2.025
10	288	247	0.767	1.497	1.499	10	245	233	1.048	2.037	2.037
20	287	246	0.771	1.504	1.505	20	244	232	1.054 1.061	2.050	2.050
30 40	286 285	240	0.774	1.511	1.512	30 40	244	232	1.001	2.075	2.075
50	284	246	0.782	1.525	1.526	50	243	232	1.074	2.088	2.088
69 00	283	245	0.786	1.532	1.533	79 00	242	232	1.081	2.101	2.IOI
10	282	245	0.789	1.539	1.540	10	242	232	1.087	2.114	
20	282	245	0.793			20	242	231	1.094	2.128	
30 40	281 280	244 244	0.797	1.553	1.554	30 40	241 241	231 231	1.101	2.142	
50	279	244	0.805		1.569	50	240	231	1.116	2.170	2.170
70 00	278	244	0.809			80 00	240	231	1.123	2.184	
		1					1	Dig	tized by	60	Dgle

# TABLE 16. LOCARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATI-TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. UNIT = THE METRE. [Derivation and use of table explained on p. lx.]

ſ	ø	<i>a</i> 1	$b_1 = c_1$	<i>a</i> ₂	<i>b</i> 2	63	•	<i>a</i> 1	$b_1 = c_1$	az	<i>b</i> 3	63
ŀ	0°00′	8.51268	8.50973	- 8		1.404	10000	8.51254	8.50968	0.653	0.958	1.430
H	10	268	973	8.871	9.169	1.404	10	254	968	0.660	0.965	1.431
Ш	20	268 268	973 973	9.172 9.348	9-470 9.646	1.404 1.404	20	253 253	968 968	0.668 0.675	0.973 0.980	1.432 1.433
Ш	30 40	268	973 973	9-473	9.771	1.404	30 40	² 53 253	900	0.682	0.987	1.433
H	<u>5</u> 0	268	973	9.570	<b>9.868</b>	1.404	50	2 5 2	967	0.689	0.995	1-435
	1 00	267	973	9.649	9-947	1.404	11 00	252	967	0.695	1.002	1.436
	10 20	267 267	973 973	9.716 9.774	0.014 0.072	1.404 1.404	10 20	251 251	967 967	0.702 0.709	1.009 1.015	1.436 1.437
	30	267	973	9.825	0.123	1.405	30	250	967	0.715	1.022	1.438
	40	267	973	<b>9</b> .871	0.169	1.405	40	250	967	0.722	1.029	1.439
	50	267 267	973	9.912	0.211	1.405	50	249	966	0.728	1.035	1.440
I	2 00 I0	207	972 972	9.950 9.985	0.248 0.283	1.405 1.405	12 00 IO	249 248	966 966	0.734 0.740	1.042 1.048	I.44I I.442
	20	267	972	0.017	0.315	1.405	20	248	966	0.746	1.055	1.444
	30	266	972	0.047	0.346	1.406	30	247	966	0.752	1.061	1.445
	40 50	266 266	972 972	0.075 0.101	0.374 0.400	1.406 1.406	40	246 246	966 965	0.758 0.764	1.067 1.073	1.446 1.447
	300	266	972	0.126	0.400	1.400	50 13 00	240	905	0.770	1.080	1.448
	<b>0</b> 1	266	972	0.150	0.449	1.407	10	245	965	0.776	1.086	1.449
	20	266	972	0.172	0.471	1.407	20	244	965	0.781	1.092	1.450
I	30 40	266 266	972 972	0.193 0.214	0.492 0.513	1.407 1.408	30	244	965 964	0.787	1.097 1.103	1.451 1.452
	50	266	972	0.233	0.532	1.408	40 50	243 242	964	0.798	1.109	1.454
I	4 00	265	972	0.252	0.551	1.408	14 00	242	964	0.803	1.115	1.455
I	10	265	972	0.269	0.569	1.409	10	241	964	0.809	1.120	1.456
	20 30	265 265	972 972	0.286 0.303	0.586 0.602	1.409 1.409	20	241 240	964 963	0.814 0.819	1.126 1.132	
	40	265	972	0.319	0.618	1.410	30 40	239	963	0.824	1.137	1.460
	ŚO	264	972	0.334	0.634	1.410	50	239	963	0.830	1.143	1.461
I	5 00 IO	264 264	972	0.349	0.649 0.663	1.411	1500	238	963	0.835 0.840	1.148	
1	20	204	971 971	0.363 0.377	0.003	1.411 1.411	10 20	237 237	963 962	0.845	1.153	1.463 1.465
	30	264	971	0.390	0.691	1.412	30	236	962	0.850	1.164	1.466
	40	263	971	0.404	0.704	1.412	40	235	962	0.854	1.169	1.467
ł	50 6 00	263 263	971	0.416 0.428	0.717 0.720	1.413 1.413	50 16 00	235	962 961	0.859 0.864	1.174 1.179	1.469
ł	10	263	971 971	0.440	0.741	1.414	10 00	234 233	961	0.869	1.185	I.470 I.47I
	20	262	971	0.452	0.753	1.415	20	233	961	0.873	1.190	1.473
	30	262	971	0.464	0.764	1.415	30	232	- 961	0.878 0.883	1.195	1.474
	40 50	262 261	971 971	0.475 0.485	0.776 0.787	1.416 1.416	40 50	231 231	961 960	0.887	1.200 1.205	1-475 1-477
	700	261	970	0.496	0.797 0.808	1.417	17 00	230	960	0.892	1.210	1.478
	10	261	970	0.506		1.417	10	229	960	0.896	1.214	1.480
	20	260 [.] 260	970	0.516	0.818 0.828	1.418	20	228 228	960	0.901	1.219 1.224	1.481 1.482
	30 40	200	970 970	0.526 0.536	0.838	1.419 1.419	30 40	220	959 959	0.905	1.224	1.402 1.484
	50	259	970	0.545	0.848	1.420	50	226	959	0.914	1.234	1.485
	8 00	259	970	0.555	0.857	1.421	18 00	225	959 958	0.918	1.238	1.487
	10 20	259 258	970 970	0.504 0.573	0.866 0.875	1.421 1.422	10 20	225 224	958 958	0.922	1.243 1.248	1.489 1.490
	30	258	969	0.581	0.884	1.423	30	223	958	0.931	1.252	
	40	258	969	0.590	0.893	1.424	40	223	958	0.935	1.257	1.493
	50	257	969	0.598	0.902	1.424	50	222	957	0.939	1.261 1.266	
	9∞ 10	257 256	969 969	0.607 0.61 5	0.910 0.918	1.425 1.426	19 <i>0</i> 0 10	22I 22O	957 957	0.943 0.947	1.200	
	20	256	969	0.623	0.927	1.427	20	219	957	0.951	1.275	
	30	256	969	0.630	0.935	1.428	30	218	956	0.955	1.279	
	40	255	969 968	0.638 0.646	0.942 0.950	1.428 1.420	40	218	956	0.959 0.963	1.284 1.288	1.502 1.504
	50 10 00	255 254	908 968	0.653	0.958	1.429 1.430	20 00	217 216	956 955	0.967	1.293	1.506
		+							,,,,			1
Ľ						•					-00	510-

•

ð

## TABLE 16. LOCARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATI-TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. UNIT = THE METRE. [Derivation and use of table explained on p. k.]

+	<i>a</i> 1	b1=1	az	<i>b</i> 3	<b>6</b> 3	•	<i>a</i> 1	$b_1 = c_1$	az	<i>b</i> 3	<i>c</i> ₂
20°00′	8.51216	8.50955	0.967	1.293	1.506	30°00′	8.51157	8.50936	1.167	1.528	1.625
10	215	955	0.971	1.297	1.507	01	156	936	1.170	1.532	1.627
20	214	955	0.975	1.301	1.509	20	155	935	1.173	1.535	1.630
30 40	214 213	955 954	0.979 0.983	1.306 1.310	1.511 1.512	30 40	154 153	935 934	1.176 1.178	1.539 1.543	1.632 1.635
50	212	954	0.987	1.314	1.514	50	1 52	934	1.181	1.546	1.637
21 00	211	954	0.990	1.319	1.516	31 00	151	934	1.184	1.550	1.639
10 20	210 209	953 953	0.994 0.998	1.323 1.327	1.518 1.519	10	149 148	933 933	1.187 1.190	1.554 1.557	1.642 1.644
30	208	953	1.002	1.331	1.521	30	147	933	1.103	1.561	1.646
40	207	953	1.005	1.336	1.523	40	146	932 032	1.195	1.564	1.649
50 22 00	207 206	952 952	1.009 1.013	1.340 1.344	1.524 1.526	50 32 00	145 144	932 931	1.198 1.201	1.568 1.572	1.651 1.654
10	205	952	1.015	1.348	1.528	10	143	931	1.204	1.575	1.656
20	204	951	1.020	1.352	1.530	20	141	931	1.207	1.579	1.659
30	203 202	951	1.023 1.027	1.356		30	I40 I20	930 930	1.209 1.212	1.582 1.586	1.661 1.664
40 50	202 201	951 951	1.02/	1.360 1.364	1.534 1.535	40 50	139 138	930	1.212	1.590	1.666
23 00	200	950	1.034	1.368	1.537	33 00	137	929	1.218	1.593	1.669
10	199	950	1.037	1.372	1.539	10	136	929 928	1.220	1.597	1.671
20	198 197	950 949	1.041 1.044	1.376 1.380	1.541 1.543	20 30	134 133	920 928	1.223 1.226	1.604	1.674 1.676
30 40	197	949	1.048	1.384	1.545	40	132	927	1.229	1.607	1.679
jo jo	196	949	1.051	1.388	1.547	50	131	927	1.231	1.611	1.682
24 00	195	948 948	1.055 1.058	1.392	1.549	34 00 IO	130 128	927 926	1.234	1.615 1.618	1.684 1.687
10 20	194 193	948 948	1.050	1.396 1.400	1.550 1.552	20	120	926	1.237 1.239	1.622	1.689
30	192	947	1.065	1.404	1.554	30	126	925	1.242	1.625	1.692
40	191	947	1.068	1.408	1.556	40	125	925	1.245	1.629	1.695
50 25 00	190 189	947 946	1.071 1.075	1.412 1.416	1.558 1.560	50 35 00	I 24 I 22	925 924	1.248 1.250	1.632 1.636	1.697 1.700
10	188	946	1.078	1.420	1.562	35 00	121	924	1.253	1.639	1.702
20	187	946	1.081	I.424	1.564	20	120	923	1.256	1.643	1.705
30 40	186 185	94 <u>5</u> 945	1.084 1.088	I.427 I.43I	1.566 1.568	30 40	119 118	923 923	1.258 1.261	1.647 1.650	1.708 1.711
50	184	945	1.091	1.435	1.570	50	116	922	1.264	1.654	1.713
26 00	183	944	1.094	1.439	1.572	36 00	115	922	1.266	1.657	1.716
10 20	182 181	944 944	1.097 1.100	1.443	1.575	10 20	114 113	921 921	1.269 1.271	1.661 1.664	1.719 1.721
30	180	943	1.104	I.447 I.450	1.577 1.579	30	111	921	1.274	1.668	1.724
40	170	943	1.107	1.454	1.581	40	110	920	1.277	1.672	1.727
50	178	943	1.110	1.458	1.583	50	109	920	1.279	1.675	1.730
27 00 10	177 176	942 942	1.113 1.116	1.462 1.465	1.585 1.587	37 00	108 106	919 919	1.282 1.285	1.679 1.682	1.732 1.735
20	175	942	1.119	1.469	1.589	20	105	919	1.287	1.686	1.735 1.738
30	174	941	1.122	1.473	1.591	30	104	918	1.290	1.689	1.741
40 50	172 171	941 941	1.125 1.128	I.477 I.480	1.594 1.596	40 50	103 102	918 917	1.292 1.295	1.693 1.697	1.744 1.7 <b>4</b> 7
28 00	170	940	1.131	1.484	1.598	38 00	100	917	1.298	1.700	1.749
10	160	940	1.134	1.488	1.600	10	099 098	916	1.300	1.704	1.752
20	168	940	1.137	1.492	1.602	20		916	1.303	1.707	1.755
30 40	167	939 939	1.140 1.143	1.495 1.499		30 40	097 095	916 915	1.305 1.308	1.711	1.750
50	165	939 938	1.146	1.503	1.609	50	094	915	1.310	1.718	1.764
29 00	164	938	1.149	1.506	1.611	39 00	093	914	1.313	1.722	1.767
10 20	163 162	938	1.152	1.510 1.514	1.614 1.616	10 20	092 090	914 914	1.316 1.318	1.725 1.729	
30	162	937 937	1.155 1.158	1.514	1.618	30	080	914 913	1.321	1.733	1.776
40	160	937	1.161	1.521	1.620	40	<b>0</b> 88	913	1.323	1.736	1.779
50	158	936	1.164	1.525		50	086 085	912	1.326	1.740	1.781 1.784
30 00	I 57	936	1.167	1.528	1.625	40 00	005	912	1.328	1.743	
		1			· ·	<u> </u>	l	.Dia	tized by	$\int \mathbf{J} \mathbf{O} \mathbf{I}$	JYIC

SMITHSONIAN TABLES.

# TABLE 16. LOGARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATI-TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANCULATION. UNIT=THE METRE. [Derivation and use of table explained on p. lr.]

٠	<i>a</i> 1	$b_1 = c_1$	a1	6 <u>2</u>	63	•	<i>a</i> 1	$b_1 = c_1$	<i>a</i> 1	62	9	
40°00′	8.51085	8.50912	1.328	1.743	1.784	50°00′	8.51008	8.50886	1.480	1.971	1.987	
10	084	911	1.331	1.747	1.787	10	007	886	1.482	1.975	1.990	
20	083	911	1.333	1.751	1.790	20	006	885 885	1.485	1.980	1.994	
30 40	081 080	911 910	1.336 1.338	1.754 1.758	1.793 1.797	30 40	005 003	885	1.487 1.490	1.984 1.988	1.998 2.002	
50	079	910	1.341	1.762	1.800	50	002	884	1.492	1.992	2.006	
41 00	078	909	1.344	1.765	1.803	51 00	100	884	1.495	1.996	2.010	
10	076	909 908	1.346	1.769	1.806	10	000	883 883	1.498	2.000	2.014	
20	075	908 908	1.349	1.772	1.809 1.812	20	8.50998	882	1.500 1.503	2.004 2.008	2.017 2.021	
30 40	074 072	908	1.351 1.354	1.776 1.780	1.815	30 40	997 996	882	1.505	2.013	2.025	
50	071	907	1.356	1.783	1.818	50	994	882	1.508	2.017	2.029	
42 00	070	907	1.359	1.787	1.821	52 00	993	881	1.510	2.021	2.033	
10 20	069 067	906 906	1.361 1.364	1.791	1.824 1.828	10	992 991	881 880	1.513 1.516	2.025 2.030	2.037 2.041	
30	066	905	1.366	1.794 1.798	1.831	30		880	1.518	2.034	2.045	
40	065	905	1.369	1.802	1.834	40	990 988	880	1.521	2.038	2.049	
50	<b>o</b> 63	905	1.371	1.805	1.837	50	987	879	1.523	2.042	2.053	
43 00	062 061	904	1.374	1.809 1.813	1.840	53 00	986 985	879 878	1.526	2.047	2.057 2.062	
10 20	001	904 903	1.376 1.379	1.813	1.843 1.847	10	905	878	1.529 1.531	2.051 2.055	2.002	
30	058	903	1.381	1.820	1.850	30	082	877	1.534	2.060	2.070	
40	057	902	1.284	1.824	1.853	40	981	877	1.537	2.064	2.074	
50	056	902	1.386	1.828	1.856	50	980	877	1.539	2.068	2.078	
44 00 10	054	902 901	1.389	1.832 1.835	1.860 1.863	54 00 10	978	876 876	1.542 1.544	2.073 2.077	2.082 2.086	
20	053 052	901	1.391 1.394	1.839	1.866	20	977 976	875	1.547	2.081	2.001	
30	051	900	1.396	1.843	1.870	30	975	875	1.550	2.086	2.095	
40	049	900	1.399	1.847	1.873	40	973	875	1.552	2.090	2.099	
50	048	899	1.401	1.850 1.854	1.876	50	972	874	1.555	2.095	2.104	
45 00 10	047 045	899 899	I.404 I.407	1.854	1.880 1.883	55 œ 10	971 970	874 873	1.558 1.560	2.099	2.108	
20	044	898	1.409	1.862	1.886	20	969	873	1.563	2.108	2.116	
30	043	898	1.412	1.865	1.890	30	967	873	1.566	2.113	2.121	
40	042	897	1.414	1.869	1.893 1.897	40	966 965	872 872	1.568	2.117	2.125	
50 46 00	040 039	897 896	1.417 1.419	1.877	1.900	50 56 00	905	871	1.571	2.122 2.126	2.130	
10	038	896	1.422	1.881	1.903	10	963	871	1.577	2.131	2.138	
20	036	896	1.424	1.885	1.907	20	961	871	1.579	2.136	2.143	
30	035	895	1.427	1.888	1.910	30	960	870	1.582	2.140		
40 50	034 033	895 894	1.429 1.432	1.892 1.896	1.914 1.917	40 50	959 958	870 869	1.585 1.588	2.145 2.150	2.152 2.156	
47 00	031	894	1.434	1.900	1.917	57 00	957	869	1.590	2.154	2.161	
. 10	030	893	1.437	1.904	1.924	<i>1</i> 0	956	869	1.593	2.1 59	2.166	
20	029	893	1.439	1.908	1.928	20	954	868	1.596	2.164	2.170	
30 - 30	027 026	893 892	I.442 I.444	1.912 1.916	1.932 1.935	30 40	953	868	1.599	2.169	2.175	
40 50	025	892	1.447	1.920	1.935	50	952 951	867	1.604	2.178	2.179	
48 00	024	891	1.449	1.923	1.942	58 00	950	867	1.607	2.183	2.189	
10	022	891	1.452	1.927	1.946	10	949	866	1.610	2.188	2.193	
20	021	890	1.454	1.931	1.950	20	947	866 866	1.613 1.615	2.193		
30 40	010	890 890	1.457 1.459	1.935 1.939	1.953 1.957	30 40	946 945	865	1.615	2.197		
50	017	889	1.462	1.943	1.961	50	944	865	1.621	2.207		
49 00	016	889	1.464	1.947	1.964	<u>59</u> ∞	943	864	1.624	2.212		
10 20	015	888 888	1.467	1.951	1.968	10 20	942	864 864	1.627	2.217	2.222	
30	013 012	888	1.469 1.472	1.955 1.959	1.972 1.975	30	941	863	1.630 1.632	2.222	2.227 2.232	
40	011	887	1.475	1.963	1.979	40	939 938	863	1.635	2.232	2.232	
jo jo	010	887	1.477	1.967	1.983	Ś	937	863	1.638	2.237	2.242	
50 00	008	886	1.480	1.971	1.987	60 00	936	862	1.641	2.242	2.247	
						1		1	C	500	0	

SMITHSONIAN TABLES.

## TABLE 16. LOCARITHMS OF FACTORS FOR COMPUTINC DIFFERENCES OF LATI-TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. UNIT = THE METRE. [Derivation and use of table explained on p. lx.]

			_		,						
•	<i>a</i> 1	$b_1 = c_1$	42	<i>b</i> 3	43	•	<i>a</i> 1	$b_1 = c_1$	<i>a</i> 1	<i>b</i> 3	63
60°00′	8.50936	8.50862	1.641	2.242	2.247	70°00'	8.50877	5.50842	1.841	2.607	2.608
10 20	935	862 861	1.644 1.647	2.247	2.252 2.257	10	876 875	842 842	1.845 1.849	2.61 5 2.622	2.616 2.623
30	934 933	861	1.650	2.253 2.258	2.262	30	875	842	1.853	2.630	2.631
40	932	861	1.653	2.263	2.267	40	874	841	1.857 1.861	2.637	2.638
50	· 931	860	1.656	2.268	2.272	50	873	841		2.645	2.646
61 00 10	929 928	860 860	1.659 1.662	2.273 2.279	2.277	71 00 10	872 871	841 841	1.865 1.869	2.653 2.661	2.653 2.661
20	927	859	1.665	2.284	2.288	20	871	840	1.873	2.668	2.669
30	926	859 858	1.668	2.289	2.293	30	870	840	1.877	2.676	2.677
40	925	858 858	1.671	2.295	2.298	40	869 868	840	1.881 1.886	2.684 2.692	2.685
50 62 00	924 923	858	1.674 1.677	2.300 2.305	2.303 2.309	50 72 00	868	840 839	1.890	2.092	2.693 2.701
10	922	857	1.680	2.311	2.314	10	867	839	1.894	2.709	2.709
20	921	857	1.683	2.316	2.320	20	866	839	1.898	2.717	2.718
30	920	857	1.686 1.689	2.322	2.325	30	865 865	839 838	1.903	2.725	2.726
40 50	919 918	856 856	1.692	2.327	2.330 2.336	40 50	864	838	1.907 1 912	2.734	2.734
63 00	917	856	1.605	2.338	2.341	73 00	863	838	1.916	2.751	2.751
10	916	855	1.698	2.344	2.347	10	862	838	1.921	2.760	2.760
20	915	855	1.701	2.350	2.352	20	862	837	1.925	2.769	2.769
30 40	913 912	855 854	1.704 1.708	2.355	2.358 2.364	30 40	861 860	837 837	1.930 1.935	2.777 2.786	2.778 2.787
50	911	854	1.711	2.367	2.369	50	860	837	1.939	2.795	2.796
64 00	910	854	1.714	2.373	2.375	74 00	859 858	836	1.944	2.804	2.805
10 20	909 908	853	1.717	2.378	2.381 2.387	10 20	858	836	1.949	2.814 2.823	2.814 2.823
30	907	853 853	1.720 1.724	2.384 2.390	2.392	30	857	836 836	1.954 1.958	2.832	2.833
40	906	852	1.727	2.396		40	856	836	1.963	2.842	2.842
50	905	852	1.730	2.402	2.404	50	856	835	1.968	2.851	2.852
65 00 10	904 903	852 851	1.733	2.408 2.414	2.410 2.416	75 00	855 854	835 835	1.973 1.978	2.861 2.871	2.861 2.871
20	903	851	1.737	2.414	2.422	20	854	835	1.984	2.881	2.881
30	901	851	1.743	2.426	2.428	30	853	834	1.989	2.891	2.891
40	900	850	1.747	2.432		40	852 852	834	1.994	2.901	2.901
50 66 00	900 . 899	850 850	1.750	2.438		50 76 00	• 85I	834 834	1.999	2.91 I 2.922	2.912 2.922
10	898	849	1.757	2.451	2.453	10	851	834	2.010	2.932	2.933
20	897	849	1.760	2.457	2.459	20	850	833	2.015	2.943	2.943
30 40	896 895	849 848	1.764	2.464		30	849 849	833 833	2.021	2.954	2.954 2.965
50	894	848	1.771	2.470 2.476	2 472 2.478	40 50	848	833	2.02/	2.965	2.976
67 00	893	848	1.774	2.483	2.484	77 ∞	848	833	2.038	2.987	2.987
10	892	847	1.778 1.781	2.489		10	847	832	2.044	2.998	2.998
20 30	891 890	847 847	1.701	2.496	2.497 2.504	20 30	847 846	832 832	2.050 2.056	3.010 3.021	3.010 3.021
40	1 850	847	1.788	2.502		40	845	832	2.062	3.033	3.033
50	888	846	1.792	2.516	2.517	50	845	832	2.068	3.045	3.045
68 co 10	887 887	846	1.795	2.522	2.524	78 00 10	844	832	2.074	3.057	3.057 3.069
20	886	846 845	1.799 1.803	2.529 2.536	2.531 2.537	20	844 843	831 831	2.080	3.082	3.009
30	885	845	1.806	2.543		30	843	831	2.093	3.094	3.094
40	884	845	1.810	2.550	2.551	40	842	831	2.099	3.107	3.107
50 60 00	883 882	844	1.814 1.818	2.557	2.558	50	842 841	831 831	2.106	-	
10	881	844 844	1.821	2.564 2.571	2.565 2.572	79 00 10	841	830	2.113		3.133 3.146
20	880	844	1.825	2.578		20	840	830	2.126	3.160	
30	880	843	1.829	2.585		30	840	830	2.133	3.174 3.188	3.174 3.188
40 50	879 878	843 843	1.833 1.837	2.593		40 50	839 839	830 830	2.140 2.148	3.100	3.100 3.202
70 00	877	842	1.841	2.607	2.608	80 00	839	830	2.155	3.216	3.216
				I '			"	lDiai	ized by	Goo	bgle

#### TABLE 17. LENGTHS OF TERRESTRIAL ARCS OF MERIDIAN.

Latitude Latitude. Latitude. Latitude. Latitude. Latitude. Interval o° TC 20 3° **₄**° Feet. Feet. Feel. Fed. Feet. 10// 1007.68 1007.66 1007.66 1007.67 1007.71 2015-32 3022.98 4030.64 2015.31 2015.34 2015-37 2015.41 3023.12 20 30 4030.63 5038.28 6045.94 4030.68 4030.74 5038.42 6046.11 40 4030.83 50 5038.30 5038.35 5038.54 60462.4 120924.8 181387.3 241849.7 60459.4 120918.8 10 60460-3 60461.1 60450.6 120919-2 181378-8 241838-4 302298-0 120922-3 181383-3 241844-4 120920.4 181380.6 241840-8 20 39458 181378.3 241837.7 302 207.1 302305.5 302312.1 102101.0 362756.5 362757.6 362761.2 362774-5 7° 9° 5° 6° 80 10// 1007.73 1007.77 1007.81 1007-86 1007.91 2015-82 2015.54 3023.31 4031.08 5038.84 6046.61 20 2015.47 2015.62 2015.71 3949.8 3033.20 3023.43 4031.24 3023.56 3023.72 4030.94 5038.67 6046.41 4031.42 5039.28 6047.13 5039.54 6047.45 5089.04 60471.3 120942.6 181413.9 241885.2 302356.5 362827.8 10 60464.1 130938.3 60466.1 60468.5 60474.5 120932.3 181398.4 241864.6 120949.0 181423.4 241897.9 30 120937-1 39498 181392.3 241856.4 181405.6 302342.7 302 320.5 302330.7 362796.8 302372.4 100 110 1 3° 120 140 10// 1008.03 1008.18 1008.36 1008.10 1007.97 2016.35 2016.51 20 2015.93 2016.20 30 3023.00 4031.86 3024.00 3024.30 4032.40 3024-53 3024.77 4033.02 4032.70 5040.88 6049.05 40 4032.12 ŝo 5039.83 6047.80 5040.15 5040.50 6048.60 5041.28 10 60478.0 60481.8 60486.0 60490.5 120981.0 60495.4 20 30 40 120963.6 181445.4 120972.0 120900.7 120955.9 181433.0 181471.5 241981.4 302476.8 362972.2 241027.2 241044.0 241002.0 50 302389.8 302409.0 302452.5 302430.0 362916.0 362943.0 150 160 170 180 100 10// 1008.34 1008.74 2017.48 3026.23 1008.44 1008.53 1008.63 20 2017.27 30 3025.03 3025.30 3025.60 3025.90 4033.74 5042.18 6050.61 4034.13 5042.66 6051.19 4034.97 5043.71 6052.45 40 4033.37 4034.54 5043.18 6051.81 50 60 5041.72 10 60500.6 60506.1 60511.0 121023.8 60518.1 60524.5 121001.2 20 121012.3 121036.2 121049.0 30 40 50 181501.7 181518.3 181535.8 181554.3 181573.6 242024.4 242002.3 242047.7 302559.6 242072.4 302502.9 302530.5 363036.6 302622.6 302590.5 363108.6 363003.5 363071.5 363147.1 21⁰ 20⁰ 22⁰ 24⁰ 23° 1008.97 10/1 1008.86 1009.10 1000.22 1009.35 2018.70 3028.06 1009.10 2018.19 3027.28 4036.38 5045.48 6054.57 2018.44 3027.66 4036.88 20 3017.71 2017.95 30 40 50 3026.02 4035.80 5044.86 6053.84 4035.42 4037.41 5046.76 6056.11 5044.28 6053.13 5046.10 6055.33 60531.3 121062.6 10 60538.4 121076.8 60545.7 60553.3 121106.5 181659.8 60561.1 20 121001.4 121122.2 181593.9 30 181615.1 181637.1 181683.4 242125.2 302656.5 363187.8 242213.0 302766.3 363319.6 242244.5 302805.6 363366.7 242153.5 242182.8 302691.9 50 60 302728.5 363230.3 363274.2

[Derivation of table explained on p. xlvi.]

BATHSONIAN TABLES.

Digitized by GOOGLC

#### TABLE 17. LENGTHS OF TERRESTRIAL ARCS OF MERIDIAN.

[Derivation of table explained on p. xlvi.]

Latitude Interval.	Latitude. 25°	Latitude. 26°	Latitude. 27 ⁰	Latitude. 28°	Latitude. 29 ⁰
	Feet.	Feet.	Feet.	Feet.	Feet.
10//	1009.49	1009.63	1009.77	1009.92	1010.07
20	2018.97	2019.25	2019.54	2019.83	2020.13
30	3028.46	3028.88	3029.31	3029.75	3030.20
40	4037.95	4038.51	4039.08	4039.67	4040.27
şo	5047.44 6056.92	5048.13	5048.85	5049.58	5050.33
60	0050.92	6057.76	6058.62	6059.50	6060.40
10/	60569.2	60577.6	60586.2	60595.0	60604.0
20	121138.5	121155.2	121172.3	121190.0	121208.0
30	181707.7	181732.7	181758.5	181785.0	181812.0
40	242276.9	242310.3	242344.7	242379.9	242416.0
50 60	302846.1 363415.4	302887.9	302930.9	302974.9	303019.9
	303415.4	363465.5	363517.1	363569.9	363623.9
	30°	31°	32 ⁰	33°	34°
10//	1010.23	1010.38	1010.54	1010.70	1010.86
20	2020.44	2020-75	2031.07	2021.40	2021.73
30	3030.66	3031.13	3031.61	3032.10	3032.59
40	4040.88	4041-51	4042.15	4042.80	4043.46
50 60	5051.10	5051.89	5052.68	5053.50	5054.32
8	6061.32	6062.26	6063.22	6064.20	6065.19
10/	60613.2	60622.6	60632.2	60642.0	60651.9
20	131226.4	121245.3	121264.4	121283.9	121303.8
30	181839.7	181867.9	181896.6	181925.9	181955.7
40	342453.9	242490.5	242528.8	242567.9	242607.6
50 60	303066.1 363679.3	303113.2 363735.8	303161.1	303209.9 363851.8	303259.4 363911.3
	35°	36°		38°	39°
10//	1011.03	1011.20	1011.37	1011.55	1011.72
20	2022.06	2022.40	2022.75	2023.00	2023.44
30	3033.10	3033.61	3034-12	3034.64	3035.17 4046.89
40 50	4044.13 5055.16	4044.81 5056.01	4045.50 5056.87	5057-74	5058.6I
60	6066.19	6067.21	6068-24	6069.29	6070.34
10/	60661.9	60672.1	60682.4 121364.9	60692.9 121385.7	60703.4
20 30	121323.9 181985.8	121344-3 182016.4	182047.3	182078.6	121406.7 182110.1
40	242647.8	242688.5	242729-7	242771.4	242813.4
<u>s</u> o i	303309.7	303360.6	303412.2	303464.3	303516.8
60	363971.7	364032.8	364094.6	364157.1	364220.2
	40°	41°	42 ⁰	43°	44°
10//	1011.00	1012.08	1012.25	1012.43	1012.61
20 30	2023.80	2024.15 3036.23	2024-51 3036.77	2024.87 3037.30	2025.23 3037.84
30 40	3035.70 4047.60	4048.31	4049.02	4049.74	4050.46
50	5059.50	5060.38	5061.28	5062.17	5063.07
čo	6071.39	6072.46	6073.53	6074.61	6075.69
10/	60713.9	60724.6	60735.3	60746.1	60756.9
20	121427.9	121449.2	121470.6	131492.3	121513.7
30	182141.8	182173.8	182206.0	182238.2	182270.6
40	242855.8	242898.4	242041.3	242984-3	243027.4
50	303569.7	303623.0	303676.6	303730.4	303784.3
· 60	364283.7	364347.6	364411.9	364476.5	364541.2
	45°	46°	47°	48°	49°
10//	1012.79	1012.97	1013.15	1013.33	1013.51
20	2025.59	2025.95	2026.31	2026.67	2027.02
30	3038.38	3038.92	3039.46	3040.00	3040.54
40	4051.18	4051.00	4052.62	4053.34	4054-05
50 60	5063.97 6076.77	5064.87 6077.85	5065.77 6078.93	5066.67 6080.00	5067.56 6081.08
	~~/~//				
10/	60767.7	60778.5	60789.3	60800.0	60810.8
20	121535-3	121556.9	121578.5	121600.1	121621.5
30	182303.0	182335.4	182367.8	182400.1 243200.1	182432.3 243243.0
40 50	243070.6 303838.3	243113.9 303892.4	243157.0 303946.3	304000.I	304053.8
60	364606.0	364670.8	364735-5	364800.2	364864.5
	<u> </u>	<u>ا</u>	<u> </u>	1	1
MITHSONI	AN TABLES.	,	**		Bigili2

#### TABLE 17. LENGTHS OF TERRESTRIAL ARCS OF MERIDIAN.

[Derivation of table explained on p. xlvi.]

Latitude	Latitude.	Latitude.	Latitude.	Latitude.	Latitude.	Latitude.
		51°	Lattruce.	Lauruode.	Latitude.	Latitude.
Interval.	soo	51-	52°	53°	54°	55°
					<b>.</b> .	
	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
10"	1013.69	1013.87	1014.04	1014.22	1014.30	1014.56
20	2027.38	2027.74	1014.04 2028.09	2028.44	1014.39 2028.78	· 2020.12
30	3041.07	3041.60	3042.13	3042.65	3043.17	· 2029.12 3043.68 4058.24
40	4054.76	4055-47	4056.17	4056.87	4057.56	4058.24
50 60	5068.46	5009.34	5070.22 6084.26	5071.09	5071.96 6086.35	5072.80
60	6082.15	6083.21	0084.20	6085.3I	0080.35	6087.37
	6-0	6-8-4-4	6.0	6.0	6-96	6-8
10/	60821.5	60832.1	60842.6 121685.2	60853.1	60863.5	60873.7
20	121642.9	121664.2	121005.2	131706.3	121726.9 182590.4	121747.3 182621.0
30	182464.4 243285.8	182496.2 243328.3	182527.7	182559.2	243453.8	
40 50	304107.3	304160.4	243370.3 304212.9	243412.3 304265.4	304317.3	243494.6 304368.3
\$0 60	364928.8	364992.5	365055.5	365118.5	365180.8	365242.0
	3-49-010	3-499-5	3-3-33-3			5-5-4
	-60	57°	-90	500	60°	610
	56°	5/*	58°	59°	00.	01
			-			
10//	1014.73	1014.90	1015.06	1015.22	1015.38	1015.53
20	2029.46	2029.79	2030.12	2030.44 3045.66	2030.76	2031.07
30	3044.19	3044.69	3045.18	3045.00	3046.14	3046.60
40	4058.92	4059.58	4060.24	4060.88	4061.53	4062.14
50 60	5073.65 6088.38	5074-48 6089-38	5075.30	5076.10	5076.90 6093.27	5077.67 6093.20
00	0000.30	0009.30	6090.36	6091.33	0033.27	0093.20
10/	60883.8	60893.8	60903.6	60013.3	60022.7	60932.0
30	121767.6	121787.5	121807.2	121826.5	121845.5	121864.1
30	182651.4	182681.3	182710.8	182739.8	182768.2	182796.1
40	243535.2	243575.0	243614.4	243653.0	243691.0	243728.2
50	304419.0	243575.0 304468.8	304518.0	304566.3	304613.7	304660.2
50 60	365302.8	365362.6	365421.6	365479.6	365536.4	365592.2
J						
	62°	63°	64°	65°	66°	67°
	02	ى		~3	~	•/
10//	1012 60	1017 84	10110	1016.12	1014 14	1016 4-
	1015.69	1015.83	1015.98		1016.26	1016.39
30	2031.37	2031.67	2031.96	2032.24 3048.36	2032.51	2032.78
30	3047.06 4062.74	3047.50 4063.34	3047.94 4063.92	3040.30 4064.48	3048.77 4065.02	3049.16 4065.55
40 50	5078.43	5079.17	5079.90	5080.60	5081.28	5081.94
60	6094.12	6095.00	6095.87	6096.71	6097.54	6098.33
			,,,		,,	
10/	60041.2	60950.0	60958.7	60967.1	60975.4	60983.3
30	60941.2 121882.3	121900.1	121917.5	121934.3	121950.7	121966.6
30	182823.5	121900.1 182850.1	182876.2	182001.4	182926.1	182949.8
40	243764.6	243800.2	243835.0	243868.6	243901.4 304876.8	243933. I
50	304705.8	304750.2	304793-7	3048 15.7	304876.8	304916.4 365899.7
60	365647.0	365700.2	365752.4	365802.8	365852.2	305899.7
		<u> </u>			-	
	68°	69°	70 ⁰	71 ⁰	72 ⁰	73°
10//	1016.52	1016.64	1016.76	1016.87	1016.98	1017.09
20	2033.03	2033.28	2033.52	2033.75	2033.96	2034-17
30	3049.55	3049.92 4066.56	3050.28	3050.62	3050.95	3051.26
40	4066.07	4066.56	4067 04	4067.49	4067.93	4068.34
50	5082.58	5083.20	5083.80	5084.36	5084.91 6101.89	5085.43
60	6099.10	6199.84	6100.55	6101.24	6101.89	6102.52
	6	61008 1	61000 0	6	6 A	6.000
10'	60001.0	61998.4	61005.5	61012.4	61018.9	61025.2
20	121982.0	121996.8	122011.1 183016.6	122024.8	122037.8 183056.8	122050.3
30	182973.1	182995.2 243993.6	244022.2	183037.1		183075.5 244100.6
40 50	243964.1 204055.1	304992.0	305027.7	244049.5 305001.9	244075.7 305094.6	305125.8
60	304955.1 365946.1	365990.4	366033.2	366074.3	366113.5	366151.0
l,	74 ⁰	75°	76°	77°	78°	79 ⁰
	/4	/3	/0		<i>,</i> 0	/9
	1019	10179	1012	10.5	1075 75	101-6-
10//	1017.18	1017.28	1017.37	1017.45	1017.53	1017.60
20 30	2034.37	2034.56 3051.84	2034.73	2034.90	2035.05	2035.19
30 40	3051.56 4068.74	4069.12	3052,10 4069.46	3052.35 4069.80	3052.58	3052.79
50	5085.92	5086.40	5086.83	5087.24	5087.63	4070.38 5087.98
<b>6</b> 0	6103.11	6103.67	6104.20	6104.69	6105.16	6105.58
II ~	J.J.11	0.03.07				
10/	61031.1	61036.7	61042.0	61046.9	61051.6	61055.8
20	122062.2	122073.5	122083.9	122093.9	122103.1	122111.5
30	183093.3	183110.2	183125.9	183140.8	183154.7	183167.3
40	244124.4	244147.0	244167.8	244187.8	244206.2	244223.0
50	305155.5 366186.6	305183.7	305209.8	305234.7	305257.8	305278.8
ŏo	366186.6	366220.4	366251.8	366281.6	366309.4	366334.6
			1		1	

SMITHSONIAN TABLES.

Digitized by GOOgle

#### TABLE 18. LENGTHS OF TERRESTRIAL ARCS OF PARALLEL.

[Derivation of table explained on p. xlix.]

Longitude	Latitude.	Latitude.	Latitude.	Latitude.	Latitude.
Interval.	00	Io	2 ⁰	3°	4°
	Feet.	Feet.	Feet.	Feet.	Feet.
10//	1014.52 2029.05	1014-37 2028.74	1013.91 2027.82	1013.14	1012.07
20 30	3043.57	3043.11	3041.73	2026.29 3039.43	2024.14 3036.21
40	4058.10	4067.48	4055.64	4052.57	4048.28
50 60	5072.62 6087-14	5071.86 6086.23	5069.55 6083.46	5065.72 6078.86	5060.35 6072.42
10'	60871.4	60862.3	60834.6	60788.6	60724.2
20 30	121742.9 182614.3	121724-5 182586.8	121669.2 182503.8	121577.2 182365.7	121448.4 182172.6
40	243485.8	243449-0	243338.4	243154-3	242896.8
50 60	304357.2 365228.6	304311.3 365173.6	304173.0 365007.6	303942.9 364731.5	303621.0 364345.2
	5°	6°	7°	8°	9°
10//	1010.69	1000.00	1007.01	1004.72	1002.12
30 30	2021.38 3032.07	2018.01 3027.01	2014-03 3021-04	2009.43 3014.15	2004-23 3006-35
40	4042.76	4036.02	4028.05	4018.87	4008.47
50 60	<b>5</b> 053.45 6064.14	5045.02 6054-02	5035.06 6042.08	5023.58 6028.30	5010.58 6012.70
10/ 20	60641.4 121282.8	60540.2 121080.5	60420.8 120841.6	60283.0 120566.0	60127.0 120254.0
30	181924.2	181620.7	181262.3	180849.1	120254.0 180381.1
40 50	242565.6 303207.0	242161.0 302701.2	241683.1 302103.9	241132.1 301415.1	240508.1 300635.1
50 60	363848.4	363241.4	362524.7	361698.1	360762.1
	100	110	120	1 3°	14°
10//	999.21	996.01	992.50	988 69	984.58
20 30	1998-43 2997.64	1992.01 2988.02	1985.00 2977.50	1977-38 2966.07	1969.17 2953.75
40	3996.85	3984.03	3970-00	3954.76	3938.34
50 60	4996.06 5995.28	4980.04 5976.04	4962.50 5955.00	4943.46 5932.15	4922.92 5907.50
10/	59952.8	59760.4	59550.0	59321.5	59075.0
20	119905.6	119520.8	119100.0	118642-9	118150.1
30 40	179858.3 239811.1	179281.3 239041.7	178650-0 238200-0	177964.4 237285.8	177225.1 236300.2
50	299763.9	239041.7 298802.1	297750.0	200007.3	295375.2
<u> </u>	359716.7	358562.5	357300.0	355928.8	354450.2
	15°	16°	17°	18°	19°
10//	980.18	975-47	970.48	965.18	959.60
20 30	1960.35 2940.53	1950.95 2926.42	1940.95 2911.42	1930.36 2895.55	1919.19 2878.79
40	3920.71 4900.88	3001.90	3881.00	3860.73	3838.38
50 60	4000.88 5881.06	4877.37	4852.38 5822.85	4825-91	4797.98
00 10/	58810.6	5852.84	5022.05 58228.5	5791.09	5757-5 ⁸
20	50010.0 117621.2	58528.4 117056-9	116457.0	57910-9 115821.8	57575-8 115151.5
30	176431.9	175585.3	174685.5	173732.8	172727.3
40 50	235242.5 294053.1	234113.8 292642.2	232914.0 291142.5	231643.7 289554.6	230303.0 287878.8
60	352863.7	351170.6	349371.0	347465.5	345454.6
	20 ⁰	210	22 ⁰	23°	24 ⁰
10 ^{//} 20	953.72 1907.44	947-55 1895.10	941-10 1882-19	934.36 1868.71	927.33 1854.67
30	2861.15	2842.66	2823.29	2803.07	2782.00
40	3814.87	3790-21	3764.38	3737-43 4671.78	3709-33 4636.66
50 60	4768.59 5722.31	4737.76 5685.31	4705.48 5646.58	4071.76 5606.14	4030.00 5564.00
10/ 20	57223.1	56853.1 113706.2	56465.8	56061.4 112122.8	55640.0 111280.0
30	114446.2 171669.2	170559.4	112931.5 169397.3	168184.3	166919.9
40	228892.3	227412.5	225863.0	224245.7	222559.9
50 60	286115.4 343338.5	284265.6 341118.7	282328.8 338794.6	280307.1 336368-5	278199.9 333839.9
1					Digitized
NITHSON IA	N TABLES.	8	81		Digitized

#### TABLE 18. LENGTHS OF TERRESTRIAL ARCS OF PARALLEL.

[Derivation of table explained on p. xlix.]

Longitude Interval.	Latitude. 25 ⁰	Latitude. 26 ⁰	Latitude. 27 ⁰	Latitude. 28°	Latitude. 29 ⁰
	Feet.	Feet.	Feet.	Feet.	Feet.
10//	920.03	912.44	904.58	806.44	888.03
20	1840.05	912.44 1824.88	1809.16	896.44 1792.88	1776.00
30	2760.08	2737-33	2713.74 3618.32	2089.32	2004.09
40	3680.11	3649.77	3018.32	3585.76	3552.12
50 60	4600.14	4562.21	4522.89 5427.47	4482.20 5378.64	4440.15 5328.18
	5520.17	5474.65	34*/-4/	5370.04	3340.10
10/	55201.7	54746.5	54274-7	53786.4	53281.8
20	110403.3	100401.0	54274-7 108549-5	107572.9	106563.5
30	165605.0	164239.5 218986.1	162824.2	161359.3	159845.3
40	220806.6	218986. I	217099.0	215145.7	213127.1 266408.8
50 60	276008.3	273732.6	271373.7 325648.4	268932.2 322718.6	200408.8
	331209.9	328479.1			319690.6
	300	31°	32 ⁰	33°	34°
10//	879.35 1758.70	870.40 1740.80	861.18	851.71	841.97 1683.94
20	1758.70	1740.80	1722.37	1703.41	1083.94
30 40	2638.04	2611.20	2583.55	2555.12 3406.83	2525.91 3367.88
6	3517.39 4396.74	3481.59 4351.99	3444-74 4305.92	4258.53	4209.85
50 60	\$276.09	5222.39	5167.10	5110.24	5051.82
10/	52760.9 105521.8	52223.9	51671.0	51102.4 102204.8	50518.2
20	105521.8	52223.9 104447.8 156671.8	103342.1	102204.8	101036.4
30	158383.0	150071.8	155013.1 206684.2	153307.3 204409.7	151554.6 202072.8
40 60	211043.5 263804.4	208895.7 261119.6		304409.7	252591.0
50 60	316565.3	313343-5	258355.2 310026.3	255512.1 306614.5	303109.2
	35°	36°	37°	38°	39°
10//	831.98	821.73	811.23	800.48	789-49
20	1663.95	<b>1643.46</b>	1622.46	1600.97	789-49 1578-98
30	2495.93	2465.19 3286.91	2433.69	2401.45	2368.48
40 50	3327.91 4159.88	3250.91 4108.64	3244.92 4056.15	3201.93 4002.42	3157.97
60	4991.86	4930-37	4867.38	4802.90	3947-46 4736.95
10/	49918.6	49303.7	48673.8	48029.0	47369.5
20	99837.2	98607.4	97347.6	96058.0	94739.1
30	149755.8	147911.2	146021.4	144087.0	142108.6
40 10	199674-3	197214.9 246518.6	194695.2	192116.0	189478.2 236847.7
-9-69 -69	249592.9 299511.5	295822.3	243369.0 292042.8	240145.0 288174.0	230047.7 284217.2
	40°	41 ⁰	42 ⁰	43°	44°
10//	778.26	766.79	755.08	742.15	730.98
20	1556.52	1533.58	1510.17	743.15 1486.29	1461.96
30	2334.78	2300.37	2265.25	2229.44	2192.95
40	3113.04	3067.16	3020.33	2072.50	2923.93
\$9. 68	3891.30 4669.56	3833.94 4600.73	3775.42 4530.50	3715.73 4458.88	3654.01 4385.89
10/	46695.6	46007.3	45305.0	44588.8	43858.0
20	93391.2	92014.7	90610.0	44588-8 89177.6	43858.9 87717.9
30	140086.7	138022.0	135915.0	133766.4	131576.8
40	186782.3	184029.3	181220.0	178355.2	175435.8
<b>50</b> 60	233477-9 280173-5	230036.7 276044.0	226525.0 271830.1	222944.0 267532.8	219294.7 263153.6
	45°	46°	47°	48°	49°
10//	718.59		693.16	680.12	666.87
20	1437.19	705.99 1411.97	1386.32	1360.24	1333.75
30	2155.78	2117.96	2079.48	2040.36	2000.62
40	2874-38	2823.94	2772.64	2720.49	2667.50
50 60	3592.97 4311.56	3529.93 4235.91	3465.80 4158.96	3400.61 4080.73	3334-37 4001.25
10/				40807.3	40012.5
20	43115.6 86231.3	42350.1 84718.2	41589.6 83179.2 124768.7	81614.6	80024.9
		127077.3	124768.7	122421.9	120037.4
30	129346.9				
30 40	172462.5	169436.5	100358.3	163220.2	160049.9
30 40 50	172462.5 215578.2	169436.5 211795.6	100358.3	204036.4	200062.3
30 40	172462.5	169436.5	100358.3		160049.9 200062.3 240074.8

SMITHSONIAN TABLES.

Digitized by Google

#### TABLE 18.

#### LENGTHS OF TERRESTRIAL ARCS OF PARALLEL.

[Derivation of table explained on p. xlix.]

Longitude Interval.	Latitude. 50°	Latitude. 51°	Latitude. 52 ⁰	Latitude. 53°	Latitude. 54 [°]	Latitude. 55°
	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
10//	653.42	639.77	625.92	611.88	597.65	583.23
30	653.42 1306.85	1279.54	1251.84	1223.76	1195.30	1166.47
30	1960.27	1919-31	1877-76	1835.63	1792.94	1749.70
40 50	2613.69 3267.12	2550.08 3198.85	2503.68 3129.60	2447.51 3059.39	2390.59 2988.28	2332.93 2916.16
50 60	3920.54	3838.62	3755.52	3671.27	3585.89	3499.40
10/		38386.2				
20	39205.4 784 10.8	76772.4	37555.2 75110.4	36712.7 71425.4	35858.9 71717.8	34994.0 69988.0
30	117616.1	115158.6	112665.6	73425.4 110138.0	107576.6	104981.9
40	156821.5	153544.8	150220.8	146850.7	143435-5	139975-9
50 60	196026.9 235232.3	191931-0 230317.2	187776.0 225331.2	183563.4 220276.1	179294.4 215153.3	174969.9 209963.9
	56°	57°	58°	59°	60°	<u>610</u>
10//	568.64	553.87	538.93	523.82	508.55	493.13
20	1137.28	1107.74	1077.86	1047.65	1017-11	986.26
30 40	1705.92 2274.56	1661.61 2215.48	1616.79 2155.72	1571-47 2095.29	1525.66 2034.22	1479.38 1972.52
\$ 9.8 8.6	2843.20	2769.35	2694.64	2619.12	2542.77	2465.64
60	3411.83	3323.22	3233.57	3142.94	3051.33	2958.77
10/	34118.3	33232.2	32335.7	31420.4	30513.3	29587.7
30	34118.3 68236.7	66464.4	64671.5	31420.4 62858.8	61026.6	59175.5 88763.2
30	102355.0	99696.6	97007.2	94288.1	91539-9	88763.2
40	136473.4 170591.7	132928.8	129343.0 161678.7	125717.5 157146.9	122053.2 152566.5	118351.0 147938.7
9. 60	204710.0	199393.2	194014.4	188576.3	183079.8	177526.4
	62°	63°	64°	65°	66°	67°
10 ^{//} 20	477-55 955.10	461.83 923.65	445.96 891.98	429.95 859.91	413.82 827.63	397-55 795-10
30	1432.66	1385.48	1337.88	1289.86	1241.44	1192.64
40	1910.21	1847.31	1783.84	1719.81	1655.26	1 590. 19
50 60	2387.76 2865.31	2309-14 2770.96	2229.80 2675.75	2149.76 2579.72	2069.08 2482.80	1987.74 2385.29
10/	<b>38653.1</b>	27709.6	26757.5	25797.2	24828.0	23852.9 47705.8
30	57306.2 85959.4	55419-2 83128.9	53515.1 80272.6	51594-4	49657.8 74486-7	71558.6
40	114612.5	110838.5	107030.2	77391.5 103188.7	99315.6	95411-5
50 60	143265.6	138548.1	133787.7	128985.9	124144.5	119264-4
	171918.7	166257.7	160545.3	154783.1	148973.4	143117.3
	68°	69°		71°	72°	73°
10"	381.16	364.65	348.03	331.30	314-47 628.94	297-54 595-08
20 30	762.33	729.30	696.06 1044.09	662.60 993.90	943-41	595.00 892.62
40	1143.47 1524.63	1093.95 1458.60	1 393.12	1325.20	1257.88	1190.16
90 00	1905.79 2386-95	1823.25	1740.14 2088.17	1656.50 1987.81	1572.34	1487 70 1785.23
		2187.90				
10/	22869.5	21870.0	20881.7	19878.1	18868.1	17852.3
30 30	45739.0 68608-4	43758.0 65637.0	41763.5 62645.2	39756.1 59634-2	37736.3 56604.4	35704.7 53557.0
40	91477.9	87516.0	83527.0	79512.2	75472.6	71409.4
50	114347.4	109395.0	104408.7	99390.3	94340.7 113208-8	89261.7
60	137216.9	131274.0	125290.4	119268.4	113208-8	107114.0
	74°	75°	76°	77°	78°	79°
10//	280.52	263.41	246.22	228.96	211.62	194.22
30	561.04	526.82	492.44 738.66	457-91 686.86	423.24	388.43
30	841.56 1122.08	790.23 1053.64	738-66 984.88	686.86 915.82	634-85 846-47	582.64 776.86
40 50	1402.60	1317.06	1231.10	1144.78	1058-09	971.08
50 60	1683.11	1580.47	1477-33	1373-73	1269.71	1165.29
10/	16831.1 33662.3	15804.7	14773-3	13737-3	12697-1	11652.9 23305.8
20 30	33002.3 50493.4	31609.3 47414.0	29546.5 44319.8	27474.6 41211.9	25394-2 38091-2	23305.8 34958.7
i i i i i i i i i i i i i i i i i i i	67324.6	63218.6	50003.0	54949-3	50788.3	40011.0
50 60	84155.7	79023.3	73866.3	68686.5	63485.4	58264.5
00	100986.8	94828.0	88639.6	82423.8	76182.5	69917.4

SMITHSONIAN TABLES.

Digitized by Google

#### TABLE 19.

### CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 350000

	e dis-		CO-ORD	INATES (	OF DEVE	LOPED	PARALLE	L FOR-	
Latitude ( parallel.	Meridional dis- tances from even degree parallels.	15' lon	gitude.	30' lon	gitude.	45' lon	gitude.	τ ^o lon	gitude.
Let L	Mege	x	<b>y</b>	<u>x</u>	<b>y</b>		У	x	. <b>y</b>
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
0°00′ 15	4-353	4.383 4.383	.000. .000	8.766 8.766	000. 000.	13.148 13.148	.000 .000	17.531 17.531	000. 100.
30	8.706	4.383	.000	8.765	.000	13.148	100.	17.530	100.
45	13.059	4.382	.000	8.765	.001	13.147	100.	17.530	.002
1 00	17.412	4.382	.000	8.764	100.	13.146	100.	17.528	.003
15	4.353	4.382	.000	8.764	100.	13.145	.002	17.527	.003
30 45	8.706 13.059	4.381 4.381	.000. .000	8.763 8.762	100. 100.	13.144 13.142	.002 .003	17.525	.004 .005
2 00	17.412	4.380	.000	8.760	.001	12 141	.003		
						13.141		17.521	.005
15 30	4-353 8.706	4-379 4-379	.000. 000.	8.759 8.757	100. 100.	13.138 13.136	.003 .004	17.518 17.514	.006 .007
45	13.059	4.378	.000	8.755	.002	13.133	.004	17.514	.007
300	17.413	4-377	.001	8.753	.002	13.130	.004	17.507	.008
15	4.353	4.376	.001	8.751	.002	13.127	.005	17.503	.008
30	4-353 8.706	4.375	100.	8.749	.002	13.124	.005	17.498	.009
45	13.060	4-373	.001	8.747	.002	13.120	.006	17.494	.009
400.	17.413	4·372	.001	8.744	.003	13.116	.006	17.488	.010
15	4.353	4.371	100. 100.	8.742	.003	13.112 13.108	.006	17.483	.011
30 45	8.707 13.060	4.369 4.368	.001	8.739 8.736	.003 .003	13.108	.007 .007	17.478 17.472	.012 .013
5 00	17.413	4.366	.001	8.732	.003	13.099	-007	17.465	.013
15	4-353	4.364	.001	8.729	.003	13.094	.008	17.458	.014
30	8.707	4.363	.001	8.725	.004	13.088	.008	17.451	.014
45	13.060	4.361	.001	8.722	.004	13.082	.008	17.443	.015
6 00	17.414	4-359	.001	8.718	.004	13.076	.009	17.435	.016
15	4.354	4.357	100.	8.714	.004	13.071	.009	17.428	.017
30 45	8.707 13.061	4-355 4-353	100. 100.	8.710 8.705	.004 .004	13.064 13.058	010. 010.	17.419	.017 .018
7 00	17.414	4.350	.001	8.701	.005	13.051	.010	17.401	.019
				8.696	-				
15 30	4-354 8.707	4.348 4.346	100. 100.	8.690	.005 .005	13.044 13.036	110. 110.	17.392	.019 .020
45	13.061	4.343	.001	8.686	.005	13.029	110	17.372	.020
8 00	17.415	4.340	.001	8.681	.∞5	13.021	.012	17.362	.021
15	4.354	4.338	.001	8.675	.005	13.013	.012	17.351	.022
30	8.708 13.062	4.335	.001 .002	8.670 8.664	.006 .006	13.005	.013 .013	17.340	.022
45		4.332				12.996	-	17.328	.023
900	17.416	4.329	.002	8.658	.006	12.987	.013	17.316	.024
15	4·354 8.708	4.326 4.323	.002	8.652 8.646	.006 .006	12.979	.014 .014	17.305	.024 .025
30 45	13.062	4-323 4-320	.002	8.640	.000	12.969	.014	17.280	.025
10 00	17-417	4.317	.002	8.633	.006	12.950	.015	17.266	.026
				<u> </u>	L	I		Ca	har I and

[Derivation of table explained on pp. hii-lvi.]

SMITHSONIAN TABLES.

0

### CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 350 000

[Derivation of table explained on pp. lili-lvi.]

ي م	il dis-		CO-ORD	INATES (	OF DEVE	LOPED I	PARALLE	L FOR-	
Latitude ( parallel.	Meridional dis- tances from even degree parallela.	15' lon	gitude.	30/ long	gitude.	45' long	gitude.	r ^o lon	gitude.
-5	Maga	x	у		y	x	У.	<b>x</b>	у
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
10°00′ 15	 4·354	4.317 4.313	.002 .002	8.633 8.626	.006 .007	12.950 12.940	.015 .015	17.266	.026 .027
30	8.709	4.310	.002	8.620	.007	12.930	.015	17.240	.027
45	13.063	4.306	.002	8.613	.007	12.919	.016	17.226	.028
11 00	17.418	4.303	.002	8.606	.007	12.908	.016	17.211	.029
15	4-355	4.299	.002	8.598	.007	12.897 12.886	.016	17.196	.029
30 45	8.709 13.064	4.295 4.292	.002 .002	8.591 8.583	.007 .008	12.800	.017 .017	17.162	.030 .031
12 00	17.419	4.288	.002	8.575	.008	12.863	.017	17.150	.031
15	4-355	4.284	.002	8.567	.008	12.851	.018	17.134	.032
30	8.710	4.280	.002	8.559	.008	12.839	.018	17.118	.032
45	13.065	4.275	.002	8.551	.008	12.826	.019	17.102	.033
13 00	17.420	4.27 I	.002	8.542	.008	12.813	.019	17.084	.034
15	4·355 8.711	4.267 4.262	.002 .002	8.534 8.525	.009	12.800 12.787	.019 .0 <b>2</b> 0	17.067 17.050	.034 035
30 45	13.066	4.258	.002	8.516	.009	12.774	.020	17.032	.035 .035
14 00	17.421	4.253	.002	8.507	.009	12.760	.020	17.013	.036
15	4.356	4.249	.002	8.498	.009	12.746	.021	16.995	.036
30 • 45	8.711 13.067	4.244 4.239	.002 .002	8.488 8.479	.009	12.732 12.718	.021 .021	16.976 16.957	.037 .038
1500	17.423	4-239 4-234	.002	8.469	.010	12.703	.022	16.938	.038
		4.229	.002		.010	12.688	.022	16.918	-
15 30	4.356 8.712	4.229	.002	8.459 8.449	.010	12.673	.022	16.808	.039 .039
45	13.068	4.219	.002	8.439	010.	12.658	.022	16.877	.040
16 00	17.424	4.214	.003	8.428	010.	12.642	.023	16.856	.041
15	4.356	4.209	-003	8.417	010.	12.626	.023	16.835	.041
30 45	8.713 13.069	4.204 4.198	.003 .003	8.407 8.396	010. 110.	12.610 12.594	.023 .024	16.814 16.792	.042 .042
17 00	17.426	4.192	.003	8.385	.011	12.577	.024	16.770	.043
15	4.357	4.187	.003	8.374	.011	12.561	.024	16.748	.043
30	8.714	4.181	.003	8.362	110.	12.544	.025	16.725	.044
45	13.071	4.175	, .003	8.351	.01 I	12.526	.025	16.702	.044
18 00	17.427	4.170	.003	8.339	110.	12.509	.025	16.679	.045
15 <b>30</b>	4-357 8.715	4.164 4.158	.003 .003	8.327 8.316	.011 .012	12.491 12.473	.026 .026	16.655 16.631	.045 .046
45	13.072	4.1 52	.003	8.303	.012	12.455	.026	16.606	.046
19 00	17.429	4.145	.003	8.291	.012	12.436	.026	16.582	.047
15	4.358	4.139	.003	8.278	.012	12.418	.027	16.557	.048
30	8.716 13.073	4.133 4.127	.003 .003	8.266 8.253	.012 .012	12.399 12.380	.027 .027	16.532 16.506	.048 .048
45 20 00	13.073	4.12/ 4.120	.003	8.240	.012	12.360	.027	16.480	.049
[L				1	l			l	

SMITHSONIAN TABLES.

Digitized by GOOSIC

#### CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TENT

[Derivation of table explained on pp. lili-lvi.]

8	dia dia		CO-ORD	NATES (	OF DEVE	LOPED	PARALLE	L FOR-	
Latitude o parallel.	Meridional dia tancea from even degree parallela.	15' lon	gitude.	30/ lon	gitude.	45' los	gitude.	1º lon	git <b>ude</b> .
. Har	Mert	x	y	x	y	x	y		<b>y</b>
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
20°00′		4.120	.003	8.240	.012	12.360	.028	16.480	.049
15	4.358	4.114	.003	8.227	.012	12.340	.028	16.454 16.428	.050
30	8.717	4.107	.003	8.214 8.200	.013 .013	12.321	.028 .029	16.401	.050 .051
45	13.075	4.100	.003	0.200	.013	12.301	~~~~	1	
21 00	17-433	4.094	.003	8.187	.013	12.280	.029	16.374	.051
15	4-359 8.718	4.087	.003	8.173	.013	12.260	.029	16.346	.052
30		4.080	.003	8.159	.013	12.239	.029	16.318 16.291	.052
45	13.076	4.073	.003	8.145	.013	12.218	.030	10.291	.053
22 00	17.435	4.066	.003	8.131	.013	12.197	.030	16.262	-053
15	4.359 8.719	4.058	.003	8.117	.013	12.175	.030	16.234	.054
30		4.051	-003	8.102	.014	12.154	.030	16.205	-054
45	13.078	4.044	.003	8.088	.014	12.132	-031	16.176	-055
23 00	17.437	4.036	.003	8.073	.014	12.109	.031	16.146	ورم
15	4.360	4.029	.003	8.058	.014	12.087	.031	16.116	.055 .056
30	8.720	4.021	.003	8.043	.014	12.064	.031	16.086	-056
45	13.080	4.014	.004	8.028	.014	12.041	.032	16.055	.056
24 00	17.439	4.006	.004	8.012	.014	12.018	.032	16.024	.057
15	4.360	3.998	.004	7.997	.014	11.995	.032	15.993	.057
30	8.721	2.000	.004	7.997 7.981	.014	11.971	.032	15.962	0,058
45	13.081	3.982	-004	7.965	.015	11.948	.033	15.930	8ۇ0.
25 00	17.442	3-974	.004	7.949	.015	11.923	.033	15.898	.0 <u>5</u> 9
15	4.361	3.966	.004	7.933	.015	11.899	.033	15.865	.059
<u>30</u>	8.722	3.958	.004	7.916	.015	11.874	.033	1 6822	.059 .000
45	13.083	3.950	.004	7.900	-015	11.850	.034	15.800	.060
26 00	17-444	3.942	.004	7.883	.015	11.825	-034	15.767	.060
15	4.362	3-933	.004	7.866	.015	11.800	.034	15.733	.061
30	8.723	3.925	.004	7.849	.015	11.774	.034	15.699	.061
45	13.085	3.916	.004	7.833	.015	11.749	.035	15.665	.06I
27 00	17.446	3.908	.004	7.816	.015	11.723	.035	1 5.631	.062
15	4.362	3.899	.004	7.798	.016	11.697	.035	15.596	.062
30	4.362 8.724	3.890	.004	7.780	.016	11.671	.035	15.561	.062
45	13.087	3.881	-004	7.763	.016	11.644	.036	15.526	.063
28 00	17.449	3.873	.004	7.745	.016	11.618	.036	15-490	.064
15	4.363	3.863	.004	7.727	.016	11.591	.036	15.454	.064
30	4.363 8.726	3.854	.004	7.709	.016	11.563	.036	15.454 15.418	.064
45	13.088	3.845	.004	7.691	.016	11.536	.036	1 5.382	.065
29 00	17.451	3.8 <b>3</b> 6	.004	7.673	.016	11.509	.036	1 5.345	.065
15	4.362	3.827	.004	7.654	.016	11.481	.037	1 5.308	.065
30	4.363 8.727	3.817	.004	7.635	.016	11.453	.037	15.270	.066
45	13.091	3.808	.004	7.616	.016	11.425	.037	15.233	.066
30 00	17.454	<b>3</b> ·799	-004	7.598	.017	11.396	.037	1 5.195	-066
						-	I		

#### CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TENT

[Derivation of table explained on pp. liii-lvi.]

्र ह									
1 2 3	n de f	15' lon	gitude.	30' lon	gitude.	45' lot	ngitude.	1º long	çitude.
Latitude	Meridional dia tances from even degree parallela.	x	у	x	у	x	. <b>y</b>	x	y
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches	Inches.	Inches.	Inches.
30°00′		3.799	.004	7.598	.017	11.396	.037	15.195	.066 .067
15	4.364 8.728	3.789	.004 .004	7.578 7.559	.017 .017	11.367 11.338	.037 .038	15.156 15.118	.007
30 45	13.092	3.779 3.770	.004	7.540	.017	11.309	.038	15.079	.067
31 00	17.457	3.760	.004	7.520	.017	11.280	.038	15.040	.068
15	4.365	3.750	.004	7.500	.017	11.250	.c38	15.001	.c68
30	8.730	3.740	.004	7 480	.017	11.221	.038	14.961	.063
45	13.095	3.730	.004	7.460	.017	11.191	.038	14.921	.068
32 00	17.460	3.720	.004	7.44 I	.017	11.161	.039	14.881	.069
15	4.366	3.710	.004	7.420	.017	11.130	.039	14.840	.069
30	8.731	3.700	.004	7.400	.017	11.100	.039	14.799	.069
45	13.097	3.690	-004	7.379	.017	11.069	.039	14.758	.070
33∞	17.462	3.679	.004	7.359	.017	11.038	.039	14.718	.070
15	4.366	3.669	.004	7.338	.018	11.007	.039	14.676	.070
30	8.733	3.658	.004	7.317	810.	10.975	.040	14.633	.070
45	1 3.099	3.648	.004	7.296	810.	10.943	.040	14.591	.07 I
34 00	17.465	3.637	.004	7.275	.018	10.912	040	14-549	.071
15	4.367	3.626	.004	7.253	.018	10.879	.040	14.506	.07 I
30	8.734	3.616	.004	7.231	810.	10 847	.040	14.463	.071
45	13.101	3.605	.004	7.210	810.		.040	14.420	.072
35∞	17.468	3-594	.004	7.188	810.	10 782	.040	14.376	.072
15	4.368	3.583	.004	7.166	810. 810.	10 749	.041 .041	14 332 14.288	.072 .072
30	8.735	3 572 3.561	.004 .005	7.144	.018	10.683	.041	14.244	.073
45	13.103	3.201		/					,5
36 00	17.471	3.550	.005	7.100	.018	10.650	.041	14.200	-073
15	4.368	3-539	.005	7.077	.018	10.616	.041	14.154	.073
30	8.736	3.527	.005	7.054	810.	10.582	.041	14.109	.073
45	13.105	3.516	.005	7.032	810.	10.547	.041	14.063	.073
37 00	17.473	3.504	.005	7.009	.018	10.513	.041	14.018	.074
15	4.369	3-493	.005	6.986	810.	10.479	.041	13.972	.074
30	8.738	3-493 3-481	.005	6.963	.018	10.444	.042	13.925	.074
45	13.108	3.470	.005	6.939	.018	10.409	.C42	13.879	.074
38 00	17.477	3.458	.005	6.916	.019	10.374	.042	13.832	-074
15	4.370	3.446	.005	6.892	.019	10.339	.042	13.785	.074
30	8.740	3.434	.005	6.869	.019	10.303	.042	13.737	.075
45	13.110	3.422	.005	6.845	.019	10.267	.042	13.690	.075
39 00	17.480	3.411	.005	6.821	.019	10.232	.042	13.642	.07 5
15	4.371	3.398	-005	6.797	.019	10.195	.042	13.594	.075
30	8.741	3.386	.005	6.773	.019	10.159	.042	13.545	.075
45	13.112	3-374	.005	6.773 6.748	è10.	10.123	.042	13.497	.075
40 00	17.483	3.362	.005	6.724	.019	10.086	.042	13.448	.075
	1		1	1	1	1			

#### TABLE 19. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE INTER-

of	ree dis		CO-ORDI	NATES (	OF DEVE	LOPED	PARALLE	L FOR-	
Latitude o parallel.	Meridional di tauces from even degree parallela.	15' lon	gitude.	30' lon	gitude.	45' lon	gitude.	1º lon	gitude.
I a	Na sa	<b>x</b>	y	x	У	x	y	x	У
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
40°00′		3.362	.005	6.724	.019	10.086	.042	13.448	-075
15	4.371	3.350	.005	6.699	.019	10.049	.042	13-399	-075
30	8.743	3-337	.005 .005	6.67 5 6.650	.019	10.012	.043	13.349	.076
45	13.114	3.325		0.050	-019	9-975	.043	13.300	.076
<b>4</b> I 00	17.486	3.312	.005	6.625	.019	9-937	.043	13.250	.076
15	4-372 8.744	3.300	.005	6.600	.019	9.900	.043	13.200	.076
30		3.287	.005	6.575	.019	9.862 9.824	.043	13.149	.076
45	13.117	3.275	-005	6.549	.019	9.024	.043	13.098	.076
42 00	17.489	3.262	<b>.</b> 005	6.524	.019	<del>9</del> .786	.043	13.048	.076
15	4-373 8.746	3.249	.005	6.498	.019	9-747	.043	12.996	.076
30		3.236	.005	6.472	.019	9.709	.043	12.945	.076
45	13.119	3.22 <b>3</b>	.005	6.447	.019	9.670	.043	12.893	-076
43∞	17.492	3.210	.005	6.421	.019	9.631	.043	12.842	.076
15	4.374	3.197	.005	6.394	.019	9.592	.043	12.789	.076
30	8.747	3.184	.005	6.368	.019	9.552	.043	12.730	.076
45	13.121	3.170	.005	6.342	.019	9.513	.043	12.684	-076
44∞	17.495	3.158	.005	6.316	.019	<del>9</del> -473	.043	12.631	.077
15	4.375	3.144	.005	6.289	.019	9.433	.043	12.578	.077
30	8.749	3.131	.005	6.262	.019	9-393	.043	12.524	.077
45	13.124	3.118	.005	6.235	.019	9-353	'.043	12.471	-077
45 00	17.498	3.104	.005	6.209	.019	9-313	.043	12.417	.077
15	4.375	3.091	.005	6.181	.019	9.272	.043	12.363	.077
30	8.751	3.077	.005	6.154	.019	9.231	.043	12.308	.077
45	13.126	3.063	.005	6.127	.019	9.190	.043	12.254	-077
46 00	17.501	3.050	.005	6.100	.019	9.150	.043	12.200	.077
15	4.376	3.036	.005	6.072	.019	9.108	.043	12.144	.077
30	8.752	3.022	.005	6.044	.019	9.067	.043	12.089	.077
45	13.128	3.008	.005	6.017	.019	9.025	.043	12.033	.077
47 00	17.504	2.994	.005	5.989	.019	8.983	-043	11.978	.076
15	4.377	2.980	.005	5.961	.019	8.941	.043	11.922	.076
30	8.754	2.966	.005	5.933	.019	8.899	.043	11.865	.076
45	13.131	2.952	.005	5.904	.019	8.857	.043	11.809	.076
48 00	17.508	2.938	.005	5.876	.019	8.814	.043	11.752	.076
1 10	4.378	2.024	.005	5.848	010	8.771	0.13	11.695	.076
15 30	4.3/0 8.755		.005	5.819	.019 .019	8.728	.043 .043	11.638	.076
45	13.133	2.909 2.895	.005	5.790	.019	8.686	.043	11.581	.076
30 45 49 00 15 30 45	17.511	2.881	.005	5.762	.019	8.643	.043	11.524	.076
15	4.378	2.866 2.852	.005 .005	5.733	.019	8.599	-043	11.465	.076
30 45	8.757 13.135	2.852 2.837	.005	5.704 5.675	.019 .019	8.555 8.512	.043 .042	11.407	.076 .076
1			,	513					
50 00	17.514	2.823	.005	5. <b>64</b> 6	.019	8.468	.042	11.291	.076

[Derivation of table explained on p. hii-lvi.]

SMITHSONIAN TABLES.

Digitized by GOOSIC

#### TABLE 19.

### CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 310000

[Derivation of table explained on p. liii-lvi.]

۳.,	ional dis- cs from a degree liels.		CO-ORDI	NATES (	OF DEVE	LOPED P	PARALLE	L FOR-	1
Latitude c parallel.	Meridional d tances fro even degr parallela.	15' lot	gitude.	30' lor	gitude.	45' lon	gitude.	1º lon	gitude.
Hart Hart	M	Χ.	у	X	y	x	y	x	у
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
50°∞0′ ⊺5	 4·379	2.823 2.808	.005 .005	5.646 5.616	010. 010.	8.468 8.424	.042 .042	11.291 11.232	.076 .075
30	8.758	2.793	.005	5-5 ⁸ 7	.019	8.380	.042	11.174	.075
45	13.137	2.779	.005	5.557	.019	8.336	-042	11.114	-075
51 00	17.517	2.764	.005	5.528	.019	8.291	.042	11.055	.075
15	4.380 8.760	2.749	.005 .005	5.498 5.468	.019	8.247 8.202	.042	10.996	-075
30 45	13.140	2.734 2.719	.005	5.400	.019 .019	8.1 57	.042 .042	10.936 10.876	.075 .075
52 00	17.520	2.704	.005	5.408	.019	8.112	.042	10.816	.074
15	4.381	2.689	.005	5.378	.019	8.067	.042	10.756	.074
30 45	8.761 13.142	2.674 2.659	.005 .005	5-347 5-317	.019 .018	8.021 7.976	.041 .041	10.695 10.634	.074 .074
<u>5</u> 3∞	17.523	2.643	.005	5.287	810.	7.930	.041	10.573	.074
15	4.381	2.628	.005	5.256	.018	7.884	-041	10.512	.074
30 45	8.763 13.144	2.613 2.597	.005 .005	5.225 5.195	810. 810.	7.838 7.792	.041 .041	10.451 10.389	.073 .073
54 00	17.526	2.582	.005	5.164	.018	7.745	.041	10.327	.073
15	4.382 8.764	2.566	.005 .005	5.133	810. 810.	7.699 7.652	.041	10.266 10.203	.073
30 45	13.147	2.551 2.535	.005	5.102 5.070	.018	7.606	.041 .041	10.141	.073 .072
<u>55</u> ∞	17.529	2.520	.cos	5.039	.018	7.559	.041	10.078	.072
15	4.383 8.766	2.504 2.488	.004 .004	5.008	810. 810.	7.512	-040	10.016	-072
30 45	13.149	2.400	.004	4.976 4.945	.018	7.465 7.417	.040 .040	9.953 9.890	.072 .071
56 00	17.532	2.456	.004	4.913	.018	7.370	.040	<b>9.826</b>	.071
15	4.384	2.441	.004	4.881	.018	7.322	-040	9.763	.071
30 45	8.767 13.151	2.425 2.409	.004 .004	4.849 4.817	810. 810.	7.274 7.226	.040 .040	9.699 9.635	.071 .070
57 00	17.535	2.393	.004	4.785	810.	7.178	.039	9.571	.070
15	4.384	2.377	.004	4.753	.017	7.130	.039	9.507	-070
30 45	8.769 13.153	2.361 2.344	.004 .004	4.721 4.689	.017 .017	7.082 7.033	.039 .039	9-442 9-378	.070 .069
58 00	17.537	2.328	.004	4.656	.017	6.985	.039	9.313	.069
15	4.385	2.312	.004	4.624	.017	6.936 6.887	.039 .038	9.248	.069 .068
30 45	8.770 13.155	2.296 2.279	.004 .004	4.591 4.559	.017 .017	6.887 6.838	.038 .038	9.183 9.117	.008 .068
59 00	17.540	2.263	.004	4.526	.017	6.789	.038	9.052	.068
15	4.386	2.246	.004	4-493	.017	6.740	.038	8.986	.068
30 45	8.772 13.157	2.230 2.214	.004 .004	4.460 4.427	.017 .017	6.690 6.641	.038 .038	8.920 8.854	.067 .067
60 00	17.543	2.197	.004	4-394	.017	6.591	.037	8.788	.067
BRITHSONIA	N TABLES	<u></u>					- Digiti		oogle

#### CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TITTE

	(Derivatio	e or most expenses on	ble meanel								
	CO-URDINATES OF DEVELOPED PARALLEL F										
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	15' longitude.	30' longirude.	45' longitude.	T							
8221	1	1									

7

1

-

[Derivation of table explained on no. liji-lyi.]

۲	al dia Tee	CO-URDINATES OF DEVELOPED PARALLEL FOR -									
Latitude parallel.	Meridional dia tancea trum even degrae parallela.	15' kon	gitude.	30' lon	riude.	45' lon	gitude.	ro long	itude.		
32	Macz	x	y	X	y	x	y	x	У		
	Inches.	Inches.	Inches.	Inches	Inches.	Inches.	Inches.	Inches.	Inches.		
<b>60°00</b> ′		2.197	.004	4.394	.017	6.591	.037	8.788	.067		
15	4.386	2.180	-004	4.361	.017	6.541	.037	8.722	066		
30	8.773	2.164	.004	4.327	.016	6.491	-037	8.655	.066		
45	13.159	2.147	.004	4.294	.016	6.441	-037	8.588	-066		
61 00	17.546	2.130	.004	4.261	.016	6.391	.037	8.521	-065		
15	4.387	2.114	.004	4.227	.016	6.340	.036	8.454	.065		
30	8.774	2.097	.004	4.194	.016	6.290	.036	8.387	-064		
45	13.161	2.080	.004	4.160	.016	6.240	.036	8.320	.064		
62 00	17.548	2.063	.004	4.126	610.	6.189	.036	8.252	.064		
15	4.388	2.046	.004	4.092	.016	6.138	.036	8.184	.063		
30	8.776	2.029	.004	4.058	.016	6.088	.035	8.117	60		
45	13.163	2.012	.004	4.024	.016	6.036	.035	8.048	.063		
63 00	17.551	1.995	.004	3.990	.015	5.985		7.980	.062		
					-	_	.035				
15	4.388	1.978	-004	3.956	.015	5.934 5.883	-035	7.912	-062		
30	8.777	1.961	.004	3.922 3.887	.015	5.883	-034	7.844	.061		
45	13.165	1.944	.004	3.887	.015	5.831	.034	7.775	100.		
64∞	17.554	1.926	.004	3.853	.015	5.780	-034	7.706	.060		
15	4.389 8.778	1.909	.004	3.819	.015	5.728	.034	7.637	.060		
30	8.778	1.892	.004	3.784	.015	5.676	.034	7.568	.060		
45	13.167	1.875	.004	3.749	-01 5	5.624	.033	7-499	.059		
65 <b>0</b> 0	17.556	1.857	-004	3.715	.o1 5	5-572	.033	7-430	.059		
15	4.390	1.840	.004	3.680	.015	5.520	.033	7.360	.059		
30	8.779	1.823	.004	3.645	.014	5.468	.033	7.290	.058		
45	13.169	1.805	.004	3.610	.014	5.415		7.220	200		
د ۲				3.010	~	2.4.2	-032	/.220	0,00		
<b>6</b> 6 ∞	17.559	1.788	.004	3-575	.014	5.363	.032	7.151	~57		
15	4.390	1.770	.004	3.540	.014	5.310	.032	7.080	-057		
30	8.780	1.753	.004	3.505	.014	5.258	.032	7.010	.056		
45	13.171	1.735	.003	3-470	.014	5.205	.031	6.940	.o56		
67 00	17.561	1.717	.003	3-435	-014	5.1 52	.031	6.870	-055		
15	4.391	1.700	.003	3.400	.014	5.099	.031	6.799	.055		
3ŏ	4.391 8.782	1.682	.003	3.364	.014	5.046	.031	6.728	-054		
45	13.172	1.664	.003	3.329	.013	4.993	.030	6.658	-054		
<b>68</b> oo	17.563	1.647	.003	3- <b>2</b> 93	.013	4.940	.030	6.586	.053		
15	4.391	1.629	.003	3.258	.013	4.886	.030	6.515	-053		
30	8.783	1.611	.003	3.222	.013	4.833	.020	6.444	.052		
45	13.174	1.593	.003	3.186	.013	4.780	.029	6.373	.052		
69 00	17.565	1.575	.003	3.151	.013	4.726	.029	6.301	.051		
15	4.392	1.557	.003	3.115	.013	4.672	0.000	6.230	1		
30	8.784	1.540	.003	3.079	.013	4.618	.029 .028	6.158	.051		
45	13.176	1.522	.003	3.043	.012	4.564	.028	6.086	-051 -050		
70 00	17.568	1.504	.003	3.007	.012	4.510	.028	6.014	-049		
BMITHSONIA	. T.o.								·		

SMITHSONIAN TABLES.

-

- - - -

Digitized by Google

#### CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 350000

[Derivation of table explained on pp. lin-lvi.]

of	l.onal dis es from degree llels.		CO-ORDI	NATES (	F DEVE	LOPED P	ARALLE	L FOR-		
Latitude o parallel.	Merid.ona tances fr even deg parallels.	15' lor	giude.	30/ lot	gitude.	45' lon	gitude.	1º long	ritude.	
Lag Tag	Mera	x	y	x	y	x	y	x	<b>y</b>	
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	
70°00' 15	 4.392	1.504 1.486	.003 .003	3.007 2.97 I	.012 .012	4.510 4.456	.028 .028	6.014 5.942	.049	
30	8.785	1.467	.003	2.935	.OI 2	4.402	.027	5.870	.049 .048	
45	13.177	1.449	.003		.0I 2	4.348	.027	5.797	.048	
71 00	17.570	1.431	.003	2.862	.012	4.294	.027	5.725	-047	
15 30	4-393 8.786	I.413	.003 .003	2.826	.012 .011	4.239 4.185	.026 .026	5.652 5.580	.047 .046	
45	13.179	1.395 1.377	.003	2.790 2.753	.011	4.130	.026	5.507	.046	
72 00	17.572	1.358	.003	2.717	.011	4.075	.025	5-434	.045	
15	4·393 8.787	1.340	.003	2.681	.011	4.021	.025	5.361	.045	
30 45	8.787 13.180	1.322 1.304	.003 .003	2.644 2.607	1 10. 1 10.	3.966 3.911	.025 .024	5.288 5.215	.044 .044	
73 00	17.573	1.285	.003	2.57 I	.011	3.856	.024	5.142	.043	
15	4.394	1.267	.003	2.534	110.	3.801	.024	5.068	.043	
30 45	8.788 13.181	1.249 1.230	.003 .003	2.497 2.461	010. 010.	3.746 3.691	.024 .023	4.994 4.921	.042 .041	
74 ∞	17.575	1.212	.003	2.424	.010	3.636	.023	4.848	.041	
15 30	4-394 8.788	1.193 1.175	.003 .002	2.387 2.350	010. 010.	3.580 3.525	.023 .022	4.774 4.700	.040 .040	
45	13.183	1.156	.002	2.313	.010	3.470	.022	4.626	.039	
75∞	17.577	1.138	.002	2.276	010.	3.414	.022	4.552	.038	
15 30	4-395 8.789	1.119 1.101	.002 .002	2.239 2.202	.009 .000	3.358 3.303	.021 .021	<b>4.4</b> 78 4.404	.038 .037	
45	13.184	1.082	.002	2.165	.009	3.247	.021	4.329	.037	
76∞	17.579	1.064	.002	2.127	.009	3.191	.020	4.255	.036	
15	4·395 8.790	1.045 1.026	.002 .002	2.090	.009	3.135	.020 .020	4.180 4.106	.036	
30 45	13.185	1.008	.002	2.053 2.016	.009 .009	3.079 3.023	.019	4.031	.035 .034	
77 00	17.580	0.989	.002	1.978	.008	2.967	.019	3.956	.034	
15	4·395 8.791	0.970	.002	1.941	.008	2.911	010. 810.	3.882	.033	
30 45	8.791 13.186	0.952 0.933	.002 .002	1.903 1.866	.008 .008	2.855 2.799	.018 .018	3.807 3.732	.033 .032	
78 00	17.582	0.914	.002	1.828	.008	2.743	.018	3.657	.031	
15	4.396	0.895	.002	1.791	.008	2.686	.017	3.582	.031	
30 45	8.791 13.187	0.877 0.858	.002 .002	1.753 1.716	800. 800.	2.630 2.573	.017 .017 /	3.506 3.431	.030 .030	
<b>79 00</b>	17.583	0.839	.002	1.678	.007	2.517	.016	3.356	.029	
15	4.396	0.820	.002	1.640	.007	2.461	.016	3.281	.028	
30 45	8.792 13.188	0.801 0.782	.002	1.603 1.565	.007	2.404 2.348	.016 .015	3.205	.028 .027	
80 00	17.584	0.764	.002	1.527	.007	2.291	-015	3.054	.026	
BMITHSONIA	N TABLES						Dig	nized by (	soog	

.

.

.

### CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 186000

	÷.	AB	SCISSAS	EL.						
Latitude of parallel.	Meridional di tances from even degree parallels.	5	10'	15'	20'	25'	30'	1	RDINAT Develo Paral	PED
-	A	longitude.	longitude.	longitude.	longitude.	longitude.	longitude.			
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	itude val.	°	Io
0°00′ 10	5.804	2.922 2.922	5.844 5.843	8.765 8.765	11.687 11.687	14.609 14.608	17.531 17.530	Longitude interval.	0	1-
20 30	11.608 17.412	2.922 2.922	5.843 5.843	8.765 8.765	11.686 11.686	14.608 14.608	17.530 17.530		Inches.	Inches.
40	23.216	2.922	5.843	8.764	11.686	14.608	17.529	5	0.000	0.000
50	29.020	2.921	5.843	8.764	11.686	14.607	17.528	10	.000	.000
100		2.921	5.843	8.764	11.685	14.606	17.528	15 20	.000.	000. 100.
10	5.840	2.921	5.842	8.763	11.684	14.606	17.527	25	.000	100.
20	11.608 17.412	2.921	5.842 5.841	8.763 8.762	11.684 11.683	14.604	17.525	30	.000	100.
30 40	23.216	2.9 <b>21</b> 2.920	5.841 5.841	8.761	11.682	14.602	17.524			
50	29.020	2.920	5.840	8.761	11.681	14.601	17.521		<u> </u>	'
2 00		2.920	5.840	8.760	11.680	14.600	17 520		2 ⁰	3°
10	5.804	2.920	5.839	8.759	11.678	14.598	17.520			
20	11.608	2.919	5.839	8.758	11.677	14.596	17.516	5	0.000	0.000
30	17.412	2.919	5.838	8.757	11.676	14-594	17.513	10	.000	.000
40 50	23.216 29.020	2.918 2.918	5.837 5.836	8.756 8.755	11.674 11.673	14.592	17.511	15	100.	100.
	29.020	2.910	5.050	0.735	11.0/3	14.591	17.309	20 25	.001 .002	.002 .003
3∞		2.918	5.836	8.753	11.671	14.589	17.507	30	.003	.004
10	5.804	2.917	5.835	8.752	11.669	14.586	17.504	1	Ŭ	
20 30	11.608 17.413	2.917 2.916	5.834 5.832	8.750 8.749	11.667 11.665	14.584 14.581	17.501 17.497			
40	23.217	2.916	5.831	8.747	11.663	14.578	17.494		40	5°
50	29.021	2.915	5.830	8.746	11.661	14.576	17.491			
400		2.915	5.829	8.744	11.659	14-574	17-488	e	0.000	0.000
10	5.804	2.914	5.828	8.742	11.656	14.570	17.484	5 10	.001	100.
20	11.609	2.913	5.827	8.740	11.654	14.567	17.480	15	.001	.002
30 40	17.413 23.217	2.913 2.912	5.825 5.824	8.738 8.736	11.651 11.648	14.564	17.476	20 25	.002 .004	.003 .005
50	29.022	2.911	5.823	8.734	11.646	14.560 14.557	17.473 17.468	30	.005	.007
	-				·					
500 IO	5.804	2.911 2.910	5.822 5.820	8.732 8.730	11.643 11.640	14.554	17.465			
20	11.609	2.909	5.818	8.727	11.636	14.546	17-459 17-455		6°	7°
30	17.414	2.908	5.817	8.725	11.633	14.542	17.450			
40	23.218	2.908	5.815 5.813	8.722	11.630	14.538	17.445	5	0.000	0.000
50	29.022	2.907	5.015	8.720	11.627	14.534	17.440	IÖ	.001	100.
600		2.906	5.812	8.718	11.624	14.530	17.435	15	.002	.002
10	5.805	2.905	5.810	8.715	11.620	14.524	17.429	20 25	.004 .006	.004 .006
20	11.609	2.904	5.808 5.806	8.712 8.709	11.616 11.612	14.520	17.424	30	.008	.009
30 40	17.414 23.219	2.903 2.902	5.804	8.700	11.608	14.515	17.418			-
50	29.024	2.901	5.802	8.703	11.604	14.506	17.407			'
7 00		2.900	5.800	8.701	11.601	14.501	17.401		8°	
10	5.805	2.899 2.898	5.798	8.697	11.596	14.496	17.395			
20	11.610	2.898	5.796	8.694	11.592	14.490	17.387	5	0.000	
30	17.415	2.897 2.896	5.794	8.690 8.687	11.587	14.484	17.381	IO	.001	
40 50	23.220 29.025	2.895	5.791 5.789	8.684	11.583 11.578	14.478	17.374 17.368	15	.003 .005	
	-,,						_,,	25	.007	
800	•••••	2.894	5.787	8.680	11.574	14.468	17.361	30	010	
<u> </u>								L		<u> </u>

SMITHSONIAN TABLES.

Digitized by GOOGLE

### CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 11

[Derivation of table explained on pp. liii-lvi.]

		1						T		
		AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.	1		
8	Meridional dis- tances from even degree parallels.					<u></u>	,	01	RDINAT	ES OF
Latitude parallel.	dion dion	1							DEVELO	
ati	feri para	5	10'	15	20	25	30'	1	PARALL	EL.
	A	longitude.	longitude.	longitude.	longitude.	longitude.	longitude.			
									1	
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Longitude interval.		
8°00′		2.894	5.787	8.680	11.574	14.468	17.361	ervi ervi	8°	9°
10	5.805	2.892	5.784	8.677	11.569	14.461	17.353	<u>2.</u>	1	
20	11.610	2.891	5.782	8.673	11.564	14.455	17.346			
30	17.416	2.890 2.888	5.779	8.669 8.666	11.559	14.448	17.338		Inches.	Inches.
40 50	23.221 29.026	2.887	5·777 5·775	8.662	11.554 11.549	14.442 14.436	17.331 17.324	5 10	0.000	0.000
J.		•	5775			-113-	-7-3-4	15	.001 .003	.001 .003
900		2.886	5.772	8.658	11.544	14-430	17.317	20	.005	.005
10	5.806 11.611	2.885 2.883	5.769 5.767	8.654 8.650	11.539	14.424	17.308	25	.007	800.
20 30	17.417	2.003	5.707 5.764	8.646	11.533 11.528	14.416 14.410	17.300 17.291	30	.010	.012
40	23.222	2.881	5.761	8.642	11.522	14.402	17.283		1	
50	29.028	2.879	5.758	8.637	11.516	14.396	17.275	——		
		2.878				74 -00	17 066		100	110
IO 00 IO	<b>5.806</b>	2.876	5.755 5.752	8.633 8.628	11.511	14.388 14.380	17.266 17.257			<b></b>
20	11.612	2.875	5.749	8.624	11.498	14.373	17.248	E	0.000	0.000
30	17.417	2.873	5.746	8.619	11.492	14.366	17.239	5	.001	.002
40	23.223	2.872	5.743	8.614	11.486	14.358	17.229	15	.003	.004
50	29.029	2.870	5.740	8.610	11.480	14.350	17.220	20	600.	.006
11 00		2.869	5.737	8.606	11.474	14.342	17.211	25	.009	.010
10	5.806	2.867	5.734	8.601	11.468	14.334	17.201	30	.013	.014
20	11.612	2.865	5.730	8.596	11.461	14.326	17.191			
30	17.419	2.864	5.727	8.590	11.454	14.318	17.181			
40	23.225	2.862 2.860	5.724	8.585	11.447	14.309	17.171		I 2 ⁰	13°
50	29.031	2.000	5.720	8.580	11.440	14.300	17.161			
12 00		2.858	5.717	8.575	11.434	14.292	17.150	5	0.000	0.000
10	5.807	2.857	5.713	8.570	11.426	14.282	17.139	10	.002	.002
20	11.613	2.855	5.709	8.564	11.419	14.274	17.128	15 20	.004	.004
30 40	17.420 23.226	2.853 2.851	5.706 5.702	8.559	11.412 11.404	14.264 14.256	17.117 17.107	25	.007	.007 .012
50	29.033	2.849	5.698	8.553 8.548	11.397	14.246	17.095	30	.016	.017
								-		
1300		2.847 2.846	5.695	8.542	11.390	14.237	17.084			
10 20	5.807 11.614	2.840 2.844	5.691 5.687	8.536 8.530	11.382 11.374	14.228 14.218	17.073 17.061		14°	15°
30	17.421	2.842	5.683	8.524	11.366	14.208	17.049		·	
40	23.228	2.840	5.679	8.519	11.358	14.198	17.038	5	0.000	100.0
50	29.035	2.838	5.675	8.513	11.350	14.188	17.026	10	.002	.002
1		2.836	5.671	8 107	11 242	14 1-98	17 014	15	.004	.005
I4 00 I0	5.808	2.830	5.667	8.507 8.500	11.342 11.334	14.178 14.168	17.014 17.001	20	.008	.009
20	11.615	2.831	5.663		11.326	14.157	16.988	25	.012 .018	.013
30	17.422	2.820	5.658	8.494 8.488	11.317	14.146	16.975	30	.010	.019
40	23.230	2.827	5.654	8.481	11.308	14.136	16.963		·	
50	29.038	2.825	5.650	8.475	11.300	14.125	16.950		16°	
1500		2.823	5.646	8.469	11.292	14.114	16.937		10	
10	5.808	2.821	5.641	8.462	11.282	14.103	16.924			
20	11.616	2.818	5.637	8.455	11.274	14.092	16.910	5	100.0	
30 40	17.424 23.232	2.816 2.814	5.632 5.628	8.448 8.441	11.264 11.255	14.080 14.069	16.897 16.883	10 15	.002 .005	
50	29.040	2.812	5.623	8.435	11.246	14.058	16.870	20	.009	
	· · · ·						-	25	.014	
16 00	•••••	2.809	5.619	8.428	11.237	14.046	16.856	30	.020	

SMITHSONIAN TABLES.

Digitized by GOOGIC

#### CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ISTOT

[Derivation of table explained on pp. lill-lvi.]

•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional di tances from even de gree parallela.	5' longitude.	IO' longitude.	I 5 longitude.	20' longitude.	25' longitude.	30' longitude.	1	RDINAT Devel Parali	PED
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	itude rval.	16°	17°
16°00′ 10	5.809 11.617	2.809 2.807 2.804	5.619 5.614	8.428 8.421 8.414	11.237 11.228 11.218	14.046 14.034 14.022	16.856 16.841 16.827	Longitude interval.	10	17*
20 30	17.426	2.804	5.609 5.604	8.400	11.208	14.010	16.813		Inches.	Inches.
40	23.234	2.800	5.599	8.399	11.199	13998	16.798	5	0.001	100.0
50	29.043	2.797	5.595	8.392	11.189	13.986	16.784	10	.002	.002
-								15	.005	.005
17 00		2.795	5.590	8.385	11.180	13.974	16.769	20		.010
10	5.809	2.792	5.585	8.377	11.170	13.962	16.754	25	.014	.015
20	11.618 17.427	2.790	5.580	8.369 8.362	11.159	13.949	16.739	30	.020	.021
30	23.236	2.787 2.785	5.575	8.354	11.149	13.936 13.924	16.709			
40	29.046	2.782	5.570 5.564	8.347	11.129	13.911	16.693	<u> </u>		
50	-2-4-	2.702	2.2~4	54/			1		180	19°
18 00		2.7 ⁸ 0	5-559	8.339	11.119	13.898	16.678			
10	5.810	2.777	5.554	8.331	11.108	13.885	16.662			
20	11.619	2.774	5-549	8.323	11.097	13.872	16.646	5	0.001	0.001
30	17.429	2.772	5.543	8.315	11.087	13.859	16.630	10	.002	.003
40	23.339	2.769	5.538	8.307	11.076	13.845	16.614	15	.006	.006
5°	<b>29.0</b> 49	2.766	5-533	8.299	11.065	13.832	16.598	20 25	.010. 010.	.010. 016.
19 00		2.764	5.527	8.291	11.054	13.818	16.582	30	.010	.024
1900	5.810	2.761	5.522	8.282	11.043	13.804	16.565	<b>J</b> ²		
20	11.621	2.758	5.516	8.274	11.032	13.790	16.548			
30	17.431	2.755	5.510	8 266	11.021	13.776	16.531			í
40	23.242	2.752	5.505	8.257	11.009	13.762	16.514		20 ⁰	210
50	29.052	2.750	5-499	8.249	10.998	13.748	16.497			
				9			-6.80	5	0.001	0.001
20 00	5.811	2.747	5.493	8.240	10.987 10.975	13.734	16.480	10	.003	.003
10	11.622	2.743 2.741	5.487 5.482	8.231 8.222	10.963	13.719 13.704	16.445	15	.006	.000
20 30	17.433	2.738	5.476	8.213	10.951	13.689	16.427	20	110.	.011
40	23.244	2.735	5.470	8.204	10.939	13.674	16.409	25	.017	-018
50	29.055	2.732	5.464	8.196	10.928	13.650	16.391	30	.025	.026
		-	-	00						
21 00		2.729	5.458	8.187	10.916	13.645	16.373			
10	5.812 11.623	2.726	5.452	8.177 8.168	10.903 10.891	13.629	16.355 16.336	l	22 ⁰	23°
20	17.435	2.723 2.720	5-445	8.159	10.891	13.598	16.318			
30 40	23.247	2.717	5·439 5·433	8.150	10.866	13.583	16.300	-	0.000	0.000
50	29.058	2.714	5.427	8.141	10.854	13.568	16.281	5	0.001	0.001
, , , , , , , , , , , , , , , , , , ,								15	.003	.003 .007
22 00	•••• • • • • •	2.710	5.42I	8.131	10.842	13.552	16.262	20	.012	.012
10	5.812	2.707	5.414	8.122	10.829	13.536	16.243	25	810.	.019
20	11.625	2.704	5.408	8.112	10.816	13.520	16.223	30	.027	.028
30	17.437	2.701	5.401	8.102	10.802	13.503	16.204	1		
40	23.250 29.062	2.697 2.694	5.395 5.388	8.092 8.083	10.790	13.487 13.471	16.165			
50	-9.005	2.094		0.005	//	-J.+/-			24°	
23 00		2.691	5.382	8.073	10.764	13.455	16.145	•	<b>- 7</b>	
10	5.813	2.688	5.375	8.063	10.750	13.438	16.125	<u> </u>		
20	11.626	2.684	5.368	8.053	10.737	13.421	16.105	5	0.001	
30	17.439	2.681	5.362	8.042	10.723	13.404	16.085	10	.003	
40	23.252	2.677	5.355 5.348	8.032	10.710	13.337	16.064	15	.007	
50	29.066	2.674	5.34ð	8.022	10.696	13.371	16.045	20	.013	
		26.77	E 741	8.012	10.683	12.254	16.024	25 30	.020 .028	1
24 00	••••	2.671	5.341	0.012	1	13.354		1 30		
<b>_</b>							<u>.                                    </u>		~	

SMITHSONIAN TABLES.

Digitized by GOOGLE

•

#### 

.

[Derivation of table explained on pp. liii-lvi.]

-		AB	SCISSAS	EL	ORDINATES OF					
Latitude of paralid.	Meridional di tances from even degree parallels.	5 [°] longitude.	IO' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	r	DINATI DEVELO ARALL	PED
	Inches	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Longitude interval.		
24°00'		2.671	5.341	8.012	10.683	13.354	16.024	ngit	24 ⁰	25°
. 10	5.814	2.667	5-334	8.002	10.669	13.336	16.003	_ <u>_</u>		
20	11.628	2.664 2.660	5.327	7.991	10.655	13.319	15.982			
30 40	17-442 23-256	2.000	5.320 5.313	7.981 7.970	10.641	13.301	15.961		Inches.	Inches.
40 50	29.069	2.653	5.306	7.960	10.613	13.266	15.919	5	0.001	0.001
5					Ĭ			10	.003	.003
25 00	•••••	2.650	5.299	7.949	10.599	13.249	15.898	15	.007 .013	.007 .013
10	5.815	2.646	5.292	7.938	10.584	13.231	1 5.877 1 5.854	25	.013	.020
20 20	11.629	2.642 2.639	5.285 5.278	7.927 7.916	10.570	13.212 13.194	15.833	30	.028	.029
30 40	17.444 23.259	2.635	5.270	7.005	10.555	13.176	15.811			-
50	29.074	2.631	5.263	7.894	10.526	13.157	15.788	<b>—</b>		
-					-				26°	27 ⁰
26 00		2.628	5.256	7.883	10.511	13.139	15.767			-/
10	5.816	2.624	5.248	7.872	10.496	13.120	15.744	<b></b>		
20 20	11.631 17.446	2.620 2.616	5.240	7.861 7.849	10.481	13.101	15.721	5	100.0	0.001
30 40	23.262	2.613	5.233 5.225	7.838	10.451	13.063	15.676	10	.003 .008	.003
50	29.077	2.609	5.218	7.827	10.436	13.045	15.654	15	.008	.008
	· · · /	-						25	.021	.022
27 00		2.605	5.210	7.816	10.421	13.026	15.631	30	.030	.031
10	5.816	2.601	5.203	7.804	10.405	13.000	15.608	Ĩ	ľ	ľ
20	11.633	2.597	5.195	7.792	10.390	12.987	15.584			
30 40	17.449	2.593 2.589	<b>5.187</b> 5.179	7.780	10.3.4	12.907	15.500		28°	29°
50	29.082	2.586	5171	7.757	10.342	12.928	15.514			
-9		a 18a			10 227	12.909	15.490	5	0.001	0.001
28 00 10	5.817	2.582 2.578	5.163 5.155	7.745	10.327	12.889	15.466	10	.004	.004
. 20	11.634	2.574	5.147	7.721	10.294	12.868	15.442	15	.008	800.
30	17.451	2.570	5.139	7.709	10.278	12.848	15.418	20	.014	.014
40	23.268	2.566	5.131	7.697	10.262	12.828	15.394	25	.022	.023
so	29.086	2.562	5.123	7.685	10.246	12.808	1 5.369	30	.032	.032
<b>29</b> 00		2.558	5.115	7.673	10.230	12.788	15.345			
10	5.818	2.553	5.107	7.660	10.213	12.767	15.320	!	30°	31°
20	11.636	2.549	5.098	7.648	10.197	12.746	15.295		55	
30	17.454	2.545	5.090 5.082	7.635	10.160	12.725	15.270			
40 50	23.272 29.090	2.541 2.537	5.073	7.610	10.146	12.683	15.220	5	100.0	100.0
<u> </u>			1	1			-	10	.004 .008	.004
30 00		2.533	5.065	7.598	10.130	12.662	15.195	20	.015	.015
10	5.819	2.528	5.056	7.585	10.113	12.641	15.169	25	.023	.023
20	11.638	2.524	5.048	7.572	10.005	12.620	15.143 15.118	30	.033	.034
30	17.457	2.520	5.039	7.559	10.078 10.061	12.598 12.577	15.002			
40 50	23.270	2.515 2.511	5.022	7.540	10.044	12.555	15.066			
-	-,-,+		-	l				1	32°	
31 00		2.507	5.014	7.520	10.027	12.534	15.040			
10	5.820	2.502	5.005	7.507	10.009 9.992	12.512	15.014 14.987	5	0.001	
20 30	11.640 17.460	2.498 2.493	4.996 4.987	7.494	9.992	12.407	14.960	10	.004	
40	23.280	2.489	4.978	7.467	9.956	12.445	14.934	15	.009	
50	29.100	2.485	4.969	7-454	9.938	12.423	14.908	20	.015	
-								25	.024	
32 00		2.480	4.960	7-441	9.921	12.401	14.881	30	.034	

#### CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TELEVIE

[Derivation of table explained on pp. hii-lvi.]

	: ³ e 2	AB	EL.							
Latitude of parallel.	Meridional di tances from even degree parallela.	5 [°] longitude.	IO' longitude.	I 5´ longitude.	20' longitude.	25' longitude.	30' longitude.	I	DINAT DEVELO PARALL	PED
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Longitude interval-		
32°00′		2.480	4.960	7-441	9.921	12.401	14.881	igi i	32 ⁰	33°
Ŭ 10	5.821	2.476	4.951	7.427	0.002	12.379	14.854	3.=		
20	11.642	2.471	4.942	7-413	9.884	12.355	14.827	├──		
30	17.462	2.467 2.462	4.933	7.400	9.866 9.848	12.333	14.800		Inches.	Inches.
40 50	23.283 29.104	2.402	4.924 4.915	7.386 7.373	9.830	12.310 12.288	I4.772 I4.745	5	0.001	0.001
50	~9.04		4.9.3	1.3/3	9.030	12.200	14743	10	.004	.004
33 00		2.453	4.906	7.359	9.812	12.265	14.717	15	.009 .015	.009 .016
10	5.822	2.448	4.896	7.345	9.793	12.241	14.689	25	.015	.024
20	11.643	2.444	4.887	7.331	9.774	12.218	14.661	30	.034	-035
30 40	17.465	2.439	4.878 4.868	7.316	9-755	12.194	14.633	ľ		
40 50	23.287	2.434 2.429	4.859	7.302 7.288	9.736	12.171 12.147	14.605 14.576			
, ³			VC	,	"''	•••••			34°	35°
34 00		2.425	4.850	7.274	9.699	12.124	14.549	l	34	35
10	5.823	2.420	4.840	7.260	9.680	12.100	14.520			
20	11.645	2.415	4.830	7.246	9.661	12.076	14-491	5	0.001	0.001
30	17.468	2.410 2.406	4.821 4.811	7.231	9.642 9.622	12.052	14.462	10	.004	-004
40 50	23.291 29.113	2.400	4.802	7.217	9.604	12.028 12.004	14-434 14-405	15	.009	.000
	29.113		4.002	7.203	9.004	12.004	14403	20 25	.016 .025	.016 .025
35 00		2.396	4.792	7.188	9.584	11.980	14.376	30	.036	.036
10	5.824	2.391	4.782	7.174	9.565	11.956	14.347	5		
20	11.647	2.386	4.773	7.159	9.545	11.932	14.318			
30	17-471	2.381	4.763	7.144	9.526	11.007	14.288			
40	23.294	2.377	4.753	7.130	9.506	11.883	14.259		36°	37°
50	29.118	2.372	4.743	7.115	9486	11.858	14.230			
36 00		2.367	4.733	7.099	9.466	11.833	14.200	5	0.001	0.001
10	5.824	2.362	4723	7.085	9.446	11.808	14.170	10	.004	-004
20	11.649	2.357	4.713	7.070	9.426	11.783	14.139	15	.009	.009
30	17.473	2.351	4.703	7.055	9.406	11.757	14.100	20	.016	.016
40	23.297	2.346	4.693	7.039	9.386	11.732	14.078	25	.025	.026
50	29.122	2.341	4.683	7.024	9.366	11.707	14.048	30	.036	-037
37∞		2.336	4.673	7.009	9.345	11.682	14.018		II	
<b>10</b>	5.826	2.331	4.662	6.994	9.325	11.656	13.987			
20	11.651	2.326	4.652	6.978	9.304	11.630	13.956	1	38°	39°
30	17-477	2.321	4.642	6.963	9.284	11.605	13.925			
40	23.302 29.128	2.310	4.631 4.621	6.947	9.263	11.579	13.894 13.864	5	100.0	0.001
50	29.120	2.311	4.021	6.932	9.242	11.553	13.004	10	.004	-004
38 00		2.305	4.611	6.916	9.222	11.527	13.832	15	.009	.009
10	5.827	2.300	4.600	6.000	9.200	11.501	13.801	20	.017	.017
20	11.653	2.295	4.590	6.884	9.179	11.474	13.769	25 30	.026 .037	.026 .037
30	17.480	2.290	4-578	6.869	9.158	11.448	13.737	1.00		.557
40	23.300	2.284	4.568	6.853	9.1 37	11.421	13.705			
50	29.133	2.279	4.558	6.837	9.116	11.395	13.673		40°	
39∞		2.274	4.548	6.821	9.095	11.369	13.642		40-	
<b>10</b>	5.828	2.268	4.537	6.805	9.073	11.342	13.610	-		
20	11.655	2.263	4.526	6.789	9.052	11.315	13.577	5	0.001	
30	17.483	2.258	4.515	6773	9.030	11.288	13.545	10	.004	
40 50	23.310	2.252	4.504	6.756	9.008 8.987	11.261	13.513	15	.009	
50	29.138	a4/	4-493	6.740	0.90/	11.234	13.480	20 25	.017 .026	
40 00		2.241	4.483	6.724	8.965	11.207	13.448	30	.038	
								-	-000	

SMITHSONIAN TABLES.

Digitized by GOOGLE

#### CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 195000.

[Derivation of table explained on pp. liii-lvi.]

		AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional di tances from even degree parallels.	5' longitude.	IO longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	I	RDINAT DEVELO PARALL	PED
			_				_			
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Longitude interval.	40°	41 ⁰
40°00′	5.829	2.24I 2.236	4.483 4.472	6.724 6.707	8.965 8.943	11.207 11.179	13.448 13.415	5 E	-	4-
10 20	11.657	2.230	4.461	6.691	8.921	11.152	13.382			
30	17.486	2.225	4.450	6.674	8.899	11.124	13.349	1	Inches.	Inches.
40	23.314	2.219	4.439	6.658	8.877	11.097	13.316	5	0.001	0.001
50	29.143	2.214	4.428	6.641	8.855	11.069	13.283	10	.004	.004
		2.208		6.625	8.834	11.042	12 200	15	.009	.009
41 00	5.830	2.200	4.417	6.608	8.811	11.042	13.250	20	.017	.017
10 20	11.659	2.197	4.394	6.591	8.788	10.985	13.183	25	.026	.026
30	17.489	2.192	4.383	6.575	8.766	10.958	13.149	30	.038	.038
40	23.319	2.186	4.372	6.558	8.744	10.929	13.115			
50	29.149	2.180	4.360	6.541	8.721	10.901	13.081			
		0	1	6	8.698	10.873	12018		42 ⁰	43°
42 00	5.831	2.175 2.169	4-349 4-338	6.524 6.507	8.676	10.873	13.048	<u> </u>		
10 20	11.661	2.163	4.326	6.490	8.653	10.816	12.979	5	0.001	0.001
30	17.492	2.157	4.315	6.472	8.630	10.787	12.945	10	.004	.004
40	23.323	2.152	4.303	6.455	8.607	10.759	12.910	15	.010	.010
so so	29.154	2.146	4.292	6.438	8.584	10.730	12.876	20	.017	.017
				6	0.4.			25	.026	.027
43 00		2.140	4.281	6.421	8.561	10.702	12.842	30	.038	.038
10	5.832	2.135	4.269	6.403 6.386	8.538 8.514	10.672	12.00/			
20	11.663	2.129	<b>4</b> .257 <b>4</b> .246	6.368	8.491	10.614	12.737			
30 40	17-495 23.327	2.117	4.234	6.351	8.468	10.585	12.701		44°	45°
50	29.159	2.111	4.222	6.333	8.444	10.556	12.667			
		ļ			1					0.007
44 00		2.105	4.210	6.316	8.421	10.526	12.631	5	0.001 .004	0.001
10	5.833 11.666	2.099	4.199 4.187	6.298 6.280	8.397 8.373	10.496	12.596	15	.010	.010
20	17.498	2.093	4.107	6.262	8.350	10.437	12.524	20	.017	.017
30 40	23.331	2.081	4.163	6.244	8.326	10.407	12.489	25	.027	.027
50	29.164	2.076	4.151	6.227	8.302	10.378	12.453	30	.038	.038
					00			1	1	
45 00		2.070	4.139	6.209	8.278	10.348	12.417		i	
10 20	5.834	2.064 2.057	4.127	6.191 6.172	8.254 8.230	10.317	12.381		46°	47°
20 30	17.501	2.057	4.103	6.154	8.206	10.257	12.308	L		
40	23.335	2.045	4.091	6.136	8.181	10.226	12.272	1 e	0.001	0.001
50	29.169	2.039	4.079	6.118	8.1 57	10.197	12.236	5 10	.004	.004
								15	010.	.010
46 00		2.033	4.067	6.100	8.133	10.166	12.199	20	.017	.017
IO	5.835	2.027	4.054	6.081 6.063	8.108 8.084	10.136	12.163	25	.027	.027
20 30	11.670 17.504	2.02I 2.015	4.042 4.030	6.044	8.059	10.074	12.089	30	.038	.038
	23.339	2.009	4.017	6.026	8.034	10.043	12.052			
50	29.174	2.003	4.005	6.008	8.010	10.013	12.015			
						0.08-	11 009		48°	
47 00	r 8-16	1.996	3.992 3.980	5.989	7.985	9.981 9.951	11.978 11.941			
10 20	5.836 11.672	1.990 1.984	3.968	5.970 5.951	7.935	0.010	11.903	5	0.001	
30	17.508	1.978	3.955	5.933		9.888	11.866	10	.004	
40	23.344	1.971	3.943	5.914	7.910 7.885	9.857	11.828	15	.010	
50	29.180	1.965	3.930	5.895	7.860	9.826	11.791	20	.017	
				.0-6		0.00		25	.026	
48 00	· · · · · ·	1.959	3.917	5.876	7.835	9.794	11.752	30	.038	
L							<u>.</u>		ed by	

SMITHSONIAN TABLES.

Digitized by GOOSIC

#### TABLE 20.

## CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 135000

		AE	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
L titude of paraliei.	Meridional dis- tances from even degree paralleta.	5' longitude.	IO' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.		RDINAT DEVELA Paral	OPED
48°00′ 10 20	Inches. 5.837 11.674	Inches. 1.959 1.952 1.916	Inches. 3.917 3.905 3.892	Inches. 5.876 5.857 5.838	Inches. 7.835 7.810 7.784	Inches. 9-794 9-762 9-730	Inches. 11.752 11.714 11.677	Longitude it terval.	48°	49°
30 40 50	17.511 23.348 29.185	1.940 1.933 1.927	3.879 3.867 3.854	5.819 5.800 5.781	7.759 7.733 7.708	9.699 9.667 9.635	11.638 11.600 11.562	5' 10 15	Inches. 0.001 .004 .010	Inches. 0.001 .004 .010
<b>49 00</b> 10 20 30 40 50	5.838 11.676 17.514 23.352 29.190	1.921 1.914 1.908 1.901 1.895 1.888	3.841 3.828 3.815 3.803 3.790 3.777	5.762 5.743 5.723 5.704 5.684 5.665	7.682 7.657 7.631 7.605 7.579 7.553	9.603 9.571 9.539 9.507 9.474 9.442	11.523 11.485 11.446 11.408 11.369 11.330	20 25 30	.017 .026 .038	.017 .026 .038
50 00 10	5.839	1.882 1.875	3.764 3.752	5.646 5.626	7.527 7.501	9.409 9.376	11.291 11.251		50°	51°
20 30 40 50	11.678 17.517 23.356 29.194	1.869 1.862 1.856 1.849	3-737 3-724 3-711 3-698	5.606 5.587 5.567 5.547	7-475 7-449 7.422 7-396	9-344 9-311 9-278 9-245	11.212 11.173 11.134 11.094	5 10 15 20	0.001 .004 .009 .017	0.001 .004 .009 017
51 00 10 20 30	5-840 11.680 17.520	1.842 1.836 1.829 1.823	3.685 3.672 3.658 3.645	5.528 5.507 5.483 5.468	7.370 7.343 7.317 7.290	9.212 9.179 9.146 9.113	11.055 11.015 10.975 10.936	25 30	.026 .038	.026 .037
40 50	23.360 29.200	1.816 1.809	3.632 3.618	5-448 5-428	7.264	9.080 9.046	10 895 10.855		52°	53°
52 00 10 20 30 40 50	5.841 11.682 17.523 23.364 29.204	1.803 1.736 1.789 1.782 1.776 1.769	3.605 3.592 3.578 3.565 3.551 3.538	5.408 5.388 5.367 5.347 5.327 5.327 5.307	7.210 7.184 7.156 7.130 7.103 7.076	9.013 8.980 8.946 8.912 8.878 8.878 8.844	10.816 10.775 10.734 10.694 10.654 10.613	5 10 15 20 25 30	0.001 .004 .009 .017 .026 .037	0.001 .004 .009 .016 .026 .037
53 00 10 20 30 40	5.842 11.684 17.526 23.368	1.762 1.755 1.748 1.742 1.735	3-524 3-511 3-497 3-483 3-470	5.287 5.266 5.246 5.225 5.205	7.049 7.022 6.994 6.967 6.940	8.811 8.777 8.742 8.708 8.674	10.573 10.533 10.491 10.450		54°	55°
50 54 00 10	29.210 5.843	1.728 1.721 1.714	3.456 3.442 3.429	5.184 5.164 5.143	6.912 6.885 6.857	8.640 8.606 8.572	10.403 10.368 10.327 10.286	5 10 15 20 25	0.001 .004 .009 .016 .025	0.001 .004 .009 .016 .025
20 30 40 50	11.686 17.529 23.372 29.214	1.707 1.700 1.694 1.687	3.415 3.401 3.387 3.373	5.122 5.101 5.080 5.060	6.830 6.802 6.774 6.746	8.537 8.502 8.468 8.433	10.244 10.202 10.161 10.120	30	.036 56°	.036
55 00 10 20 30	5.844 11.688 17.532	1.680 1.673 1.666 1.659	3·359 3·345 3·331 3·317	5.039 5.018 4-997 4.976	6.719 6.691 6.663 6.635	8.398 8.364 8.328 8.294	10.078 10.036 9.994 9.952	5	0.001 .004	
40 50	23.376 29.220	1.652 1.645	3.303 3.289	4-955 4-934	6.607 6.579	8.258 8.224	9.910 9.868	15 20 25	.009 .016 .025	
56 00	••••••	1.638	3-275	4.913	6.551	8.188	9.826	30	.036	

[Derivation of table explained on pp. liii-lvi.]

SMITHSONIAN TABLES.

## CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 191000

[Derivation of table explained on pp. lili-lvi.]

		AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional di tances from even degree parallela.	5 longitude.	IO' longitude.	I 5 longitude.	20' longitude.	25 longitude	30' longitude.	I	RDINAT DEVELO PARALL	PED
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	rude val.	-60	
56°00′ 10 20	5.845 11.690	1.638 1.631 1.624	3.275 3.261 3.247	4.913 4.892 4.870	6.551 6.522 6.494	8.188 8.153 8.118	9.826 9.784 9.741	Longitude interval.	56°	57°
30	17.535	1.616	3.233	4.849	6.466	8.082	9.698		Inches.	Inches.
40	23.380	1.609	3.219	4.828	6.437	8.046	9.656	5	0.001	100.0
50	29.224	1.602	3.204	4.807	6.409	8.011	9.613	ıŏ	.004	.co4
57 00		1.505	3.190	4.785	6.380	7.976	9.571	15	.009 .016	.009
<b>1</b> 0	5.846	1.595 1.588	3.176	4.764	6.352	7.940	9.527	20 25	.010	.016 .024
20	11.692	1.581	3.162	4.742	6.323	7.904	9.485	30	.036	.035
30	17.537	1.574	3.147	4.721	6.294	7.868	9.442	<b>J</b> -	J	
40	23.383 29.229	1.566	3.133	4.699 4.678	6.266 6.237	7.832 7.796	9-398 9-356			
50	<i>ay-22</i> 9	1.55 <b>9</b>	3.119	4.0/0	~~ <u>3</u> /	7.790	7330		58°	<b>F</b> 0 ⁰
58∞		1.552	3.104	4.656	6.208	7.760	9.313		50	59°
10	5.847	1.545	3.090	4.634	6.179	7.724	9.269			
20	11.694	1.538	3075	4.613	6.150	7.688	9.226	5	0.001	0.001
30	17.540	1.530	3.061	4.591	6.122	7.652 7.616	9.182	10	.004	.004
40	23.387	1.523	3.046 3.032	4.569	6.092 6.063	7.579	9.139 9.095	15	.009	800.
50	29.234	1.516	J.052	4-547		1.2/2	9.095	20 25	.015 .024	.015 .024
59 00		1.509	3.017	4.526	6.034	7.543	9.052	30	.034	.034
10	5.848	1.501	2.002	4.504	6.005	7.506	0.008	<b>J</b> -		-34
20	11.695	1.494	2 988	4.482	5.976	7.470	8.963			
30	17.543	1.487	2 97 3	4.460	5.946	7.433	8.920		6.0	
40	23.391	1.479	2.959	4.438	5.917 5.888	7.396	8.876 8.831		60°	61°
5º	<b>29.</b> 238	1.472	2.944	4.416	5.000	7.360	0.031			
60 00		1.465	2.929	4.394	5.858	7.323	8.788	5	0.001	0.001
10	5.849	1.457	2.914	4.372	5.829	7.286	8.743	10	.004	.004
20	11.697	1.450	2.900	4.349	5.799	7.249	8.699	15	.008	.008
30	17.546	1.442	2.885	4.327	5.770	7.212	8.654	20	.015	.014 .023
40	23.394	1.435	2.870	4.305	5.740	7.175	8.610 8.566	25 30	.023 .033	.023
50	29.243	1.428	2.855	4.283	5.710	7.138	0.300	³⁰		
61 00		I.420	2.840	4.261	5.681	7.101	8.521			
10	5.850	1.413	2.825	4.238	5.651	7.064	8.476		62°	63°
20	11.699	1.405	2.810	4.216	5.621	7.026	8.431		04	<b>U</b> U U
30	17.549	1.398	2.795	4.103	5.591	6.988	8.386		1	
40	23.398 29.248	1.390 1.383	2.781 2.766	4.171 4 148	5.501 5.531	6.952 6.914	· 8.342 8.297	5	0.001	0.001
50	29.2qU		/~		3.33*			10	.004	.003 .008
62 00		1.375	2.751	4.126	5.501	6.877	8.252	15	.008	.005
10	5.850	1.358	2.736	4.103	5.471	6839	8.207	25	.014	.014
20	11.701	1.360	2.720	4.081	5.44I	6.801	8.161	30	.032	.031
30	17.551	1.353	2.705	4.058	5.410	6.763	8.116 8.071	Ĩ	Ĩ	
40 50	23.402 29.252	1.345 1.338	2.090 2.675	4.035 4.013	5.380	6.688	8.026	—		
<b>1 2</b>	~y.~)4	1.330	2.0/3	4.513	5.350		0.020		64°	
63 00		1.330	2.660	3.990	5.320	6.650	7.980			
01	5.851	1.322	2 645	3.967	5.290	6.612	7.934 7.889			
20	11.702	1.315	2.630	3.944	5.259	6.574		5	0.001	
30	17.554	1.307	2.614	3 921 3.899	5.228 5.198	6.536 6.498	7.843	10 15	.003 .008	
40 50	23.405 29 2 56	1.300 1.292	2.599 2.584	3.899 3.876	5.198	6.460	7.797 7.751	20	.013	
<b>1 3</b>				- ·	J			25	.021	l i
64 00	••••	1.284	2.569	3.853	5.137	6.422	7.706	30 30	.030	
L								<b>B</b>		

SMITHSONIAN TABLES.

•

#### TABLE 20. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ISTOF

		AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional di tances from even degree parallela.	5 longitude.	I O' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	DEVELO		
64°00′ 10 20	<i>Inches.</i> 5.852 11.704	Inches. I.284 I.277 I.269	Inches. 2.569 2.553 2.538	Inches. 3.853 3.830 3.807	Inches. 5.137 5.106 5.076	Inches. 6.422 6.383 6.345	Inches. 7.706 7.660 7.614	Longitude interval.	64°	65°
30 40 50	17.556 23.408 29.260	1.261 1.254 1.246	2.523 2.507 2.492	3.784 3.761 3.738	5.045 5.014 4.984	6.307 6.268 6.230	7.568 7.522 7.476	5 10 15	Inches. 0.001 .003 .008	Inches. 0.001 .003 .007
65 00 10 20 30 40 50	5.853 11.706 17.558 23.411 29.264	1.238 1.231 1.223 1.215 1.207 1.200	2.477 2.461 2.446 2.430 2.415	3.715 3.692 3.668 3.645 3.622	4-953 4-922 4-891 4-860 4-829 4-708	6.192 6.153 6.114 6.075 6.037	7-430 7-384 7-337 7.290 7-244 7.198	20 25 30	.013 .021 .030	.013 .020 .029
50 66 00 10	5.854	1.192 1.184	2.399 2.384 2.368	3·599 3·575	4.798 4.767	5.998 5.959	7.151		66°	67°
20 30 40 50	5.034 11.707 17.561 23.414 29.268	1.184 1.176 1.168 1.161 1.153	2.305 2.352 2.337 2.321 2.305	3.552 3.529 3.505 3.482 3.458	4.736 4.705 4.673 4.642 4.611	5.920 5.881 5.842 5.803 5.764	7.104 7.057 7.010 6.963 6.916	5 10 15 20	0.001 .003 .007 .013	0.001 .003 .007 .012
67 00 10 20 30	5.854 11.709 17.563	I.145 I.137 I.129 I.121	2.290 2.274 2.258 2.243	3-435 3-411 3-388 3-364	4-580 4-548 4-517 4-485	5.725 5.685 5.646 5.607	6.869 6.822 6.775 6.728	25 30	.020 .029	.019 .028
40 50	23.418 29.272	1.113 1.106	2.227 2.21 I	3.340 3.317	4-454 4-422	5.567 5.528	6.680 6.634		68°	69°
68 00 10 20 30 40 50 69 00	5.855 11.710 17.565 23.420 29.276	1.098 1.090 1.082 1.074 1.066 1.058 1.050	2.195 2.180 2.164 2.148 2.132 2.116 2.100	3.293 3.269 3.246 3.222 3.198 3.174 3.151	4.391 4.359 4.328 4.296 4.264 4.232 4.201	5-489 5-449 5-410 5-370 5-330 5-291 5-251	6.586 6.539 6.491 6.443 6.396 6.349 6.301	5 10 15 20 25 30	0.001 .003 .007 .012 .019 .027	0.001 .003 .006 .011 .018 .026
10 20 30 40	5.856 11.712 17.567 23.423	1.042 1.034 1.026 1.018	2.084 2.068 2.052 2.037	3.127 3.103 3.079	4.169 4.137 4.105 4.073	5.211 5.171 5.131 5.092	6.253 6.205 6.157 6.110		70 ⁰	71°
50 70 00 10 20 30	29.279 5.856 11.713 17.570	1.010 1.002 .994 .986 .978	2.021 2.005 1.989 1.972 1.956	3.055 3.031 3.007 2.983 2.959 2.935	4.041 4.009 3.977 3.945 3.913	5.052 5.012 4.972 4.931 4.891	6.062 6.014 5.966 5.917 5.869	5 10 15 20 25 30	0.001 .003 .006 .011 .017 .024	0.001 .003 .006 .010 .016 .024
40 50 71 00	23.426 29.282	.970 .962 .954	1.940 1.924 1.908	2.911 2.886 2.862	3.881 3.848 3.816	4.851 4.811 4.771	5.821 5.773 5.725		72 ⁰	
10 20 30 40 50	5.857 11.714 17.572 23.429 29.286	.946 .938 .930 .922 .914	1.892 1.876 1.860 1.844 1.828	2.838 2.814 2.790 2.765 2.741	3.784 3.752 3.720 3.687 3.655	4.730 4.690 4.650 4.609 4.569	5.676 5.628 5.579 5.531 5.483	5 10 15 20 25	0.001 .003 .006 .010 .016	
72 00	• • • • • • • • •	.906	1.811	2.717	3.623	4.529	5-434	30	.023	T

[Derivation of table explained on pp. liii-lvi.]

SMITHSONIAN TABLES.

## CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 181000.

[Derivation of table explained on pp. liii-lvi.]

of .		AB	SCISSAS	OF DEV	eloped	PARALL	EL.		DINAT	
Latitude o parallel.	Meridional di tances from even degree parallels.	5 [°] longitude.	IO ['] longitude.	I 5 longitude.	20' longitude.	25 longitude.	30' longitude.	I	DINAL DEVELO PARALL	PED
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	itude val.	72 ⁰	73°
72 ⁰ 00' 10 20	5.858 11.716	.906 .898 .889	1.811 1.795 1.779	2.717 2.693 2.668	3.623 3.590 3.558	4-529 4-488 4-447	5.434 5.386 5.226	Longitude interval.	/*	/3
30 40 50	17.573 23.431 29.289	.881 .873 .865	1.763 1.746 1.730	2.644 2.620 2.595	3.525 3.493 3.460	4-407 4-366 4-325	5.336 5.288 5.239 5.190	5 10	<i>Inches.</i> 0.001 .003	<i>inches.</i> 0.001 .002
73 00 IO 20	5.858 11.717	.857 .849 .841	1.714 1.697 1.681	2.571 2.546 2.522	3.428 3.395 3.362	4.285 4.244 4.203	5.141 5.092 5.044	15 20 25 30	.006 .010 .016 .023	.005 .010 .015 .021
30 40 50	17.575 23.434 29.292	.832 .824 .816	1.665 1.648 1.632	2.497 2.47 3 2.448	3.330 3.297 3.264	4.162 4.121 4.081	4-994 4-945 4-897	J ⁻		
74 00 10 20	5.859 11.718	.808 .800 .791	1.616 1.599 1.583	2.424 2.399 2.374	3.232 3.199 3.160	4.040 3.999 3.957	<b>4-847</b> 4-798 4-748			
30 40 50	17.577 23.436 29.295	.783 .775 .767	1.560 1.550 1.534	2.350 2.325 2.300	3.133 3.100 3.067	3.916 3.875 3.834	4.699 4.650 4.601	5	0.00I .002	0.001
75 00 10 20	5.860 11.719	.7 59 .7 50 .7 <b>4</b> 2	1.517 1.501 1.484	2.276 2.251 2.226	3.034 3.002 2.968	3.793 3.752 3.711	4.552 4.502 4.453	15 20 25	.005 .009 .014	.005 .009 .013
30 40 50	17.578 23.438 <b>29.29</b> 8	.734 .726 .717	1.468 1.451 1.435	2.20I 2.177 2.152	2.935 2.902 2.870	3.669 3.628 3.587	4-403 4-354 4-304	30	.020	.019
76 00 10 20	5.860 11.720	.709 .701 .692	1.418 1.402 1.385	2.127 2.102 2.078	2.836 2.803 2.770	3.546 3.504 3.463	4.255 4.205 4.155			77°
30 40 50	17.580 23.440 29.300	.684 .676 .668	1.368 1.352 1.335	2.053 2.028 2.003	2.737 2.704 2.671	3.421 3.380 3.339	4.105 4.056 4.006	5	0.001	0.000
77 00 10 20 30 40 50	5.860 11.721 17.582 23.442 29.302	.659 .651 .643 .634 .626 .618	1.319 1.302 1.285 1.269 1.252 1.235	1.978 1.953 1.928 1.903 1.878 1.853	2.638 2.604 2.571 2.538 2.504 2.471	3.297 3.256 3.214 3.172 3.131 3.089	3.956 3.907 3.856 3.806 3.757 3.706	10 15 20 25 30	.002 .005 .008 .013 .018	.002 .004 .007 .012 .017
78 00 10 20	5.861 11.722	.609 .601 .593	I.219 I.202 I.185	1.828 1.803 1.778	2.438 2.404 2.37 I	3.047 3.005 2.964	3.656 3.606 3.556		78°	
30 40 50	17.583 23.444 29.304	-593 -584 -576 -568	1.169 1.152 1.135	1.753 1.728 1.703	2.338 2.304 2.270	2.922 2.880 2.838	3.506 3.456 3.406	5	0.000	0.000
30 79 00 10 20 30 40 50	5.861 11.723 17.584 23.445 29.306	•559 •551 •542 •534 •526 •517	1.119 1.102 1.085 1.068 1.052 1.035	1.678 1.653 1.628 1.602 1.577 1.552	2.237 2.204 2.170 2.136 2.103 2.070	2.797 2.755 2.713 2.671 2.629 2.587	3-356 3-305 3-255 3-205 3-155 3-104	5 10 15 20 25 30	.002 .004 .007 .011 .016	.002 .004 .006 .010 .014
80 00		.509	1.018	1.527	2.036	2.545	3.054			

SMITHBORIAN TABLES.

# CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 1155750

Latirude parallel.	Meridional dia tauces from even degree parallela,		CO-ORDINATES OF DEVELOPED PARALLEL FOR -									
1 2 2 1	82991	15' long	ritude.	30' long	gitude.	45' long	gitude.	ro lou	gitude.			
<u> </u>	A A A A	x	y	x	y	x	y	x	y			
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.			
0°00′.		8.647	.000	17.293	.000	25.940	.000	34.586	.000			
15	8.588	8.646	.000	17.293	.00I	25.939	100.	34-585	1001			
30 45	17.176	8.646 8.646	.000. 000.	17.292	100.	25.938	100.	34-584	.003			
				17.291	.001	25.937	-002	34-582	.004			
100	34.352	8.645	.000	17.291	.001	25.936	.003	34.581	.005			
15	8.588	8.644	.000	17.289	.002	25.933	.003	34-577	.007			
30	17.176	8.643	.000	17.287	.002	25.930	.004	34-573	-008			
45	25.764	8.642	.001	17.285	.002	25.927	-005	34.569	.009			
2 00	34.352	8.641	.001	17.283	.003	25.924	.006	34.565	110.			
15	8.588	8.640	100.	17.279	.003	25.919	.007	34-559	.012			
30	17.176	8.638	100.	17.276	.003	25.914	-007	34.552	.014			
45	25.765	8.636	100.	17.273	.004	25.909	.008	34.540	.015			
300	34-353	8.635	100.	17.270	.004	25.904	.009	34-539	.016			
15	8.588	8.633	100.	17.265	.004	25.898	.009	34-530	.018			
30	17.177	8.630	100.	17.260	.005	25.891	.010	34.521	.019			
45	25.765	8.628	100.	17.256	.005	25.884	.011	34.512	.020			
4 00	34-353	8.626	100.	17.251	-005	25.877	.012	34.502	.021			
15	8.589	8.623	.001	17.245	.006	25.868	.012	34-491	.023			
30	17.177	8.620	100.	17.240	.005	25.859	.013	34-479	.024			
45	25.766	8.617	.002	17.234	.006	25.850	.014	34-467	.025			
5∞	34-354	8.614	.002	17.228	.007	25.842	.015	34-456	.026			
15	8.589	8.610	.002	17.221	.007	25.831	.016	34-44I	.028			
30	17.177	8.607	.002	17.213	.007	25.820	.016	34-427	.029			
45	25.766	8.603	.002	17.206	.008	25.809	.017	34.412	.030			
6 00	34-355	8.600	.002	17.199	.008	² 5.799	.018	34-398	.031			
15	8.589	8.595	.002	17.191	.008	25.786	.019	34.381	.033			
30	17.178	8.591 8.587	.002	17.182	.008	25.773	.020	34-364	-034			
45	25.767		.002	17.174	.009	25.760	.021	34-347	.035			
7 00	34.356	8.583	.002	17.165	.009	25.748	.021	34-330	.037			
15	8.589	8.578	.002	17.155	.009	25.7.33	.022	34.310	.038			
30	17.179	8.573 8.568	.003	17.145	.009	25.718	.022	34.291	.040			
45	25.768	8.568	.003	17.136	010.	25.704	.023	34.272	.041			
8 00	34.358	8.563	.003	17.126	.010	25.689	.023	34.252	.042			
15	8.590	8.558	.003	17.115	.010	25.673	.024	34.230	.044			
30	17.180	8.552	.003	17.104	.011	25.656	-024	34.208	.045			
45	25.769	8.546	.003	17.093	.011	25.639	.025	34.186	.046			
900	34.359	8.541	.003	17.082	.012	25.622	.026	34.163	-047			
15	8.590	8.535 8.528	.003	17.069	.012	25.604	.027	34.138	.048			
	17.180	8.528	.003	17.057	.012	25.585	.027	34.114	.050			
45	25.771	8.522	.003	17.045	.013	25.567	.028	34.089	.051			
10 00	34.361	8.516	.003	17.032	.01 3	25.548	.029	34.064	.052			

SMITHSONIAN TABLES.

## CO-ORDINATES FOR PROJECTION OF MAPS. SCALE THETE

[Derivation of table explained on pp. liii-lvi.]

8	al dis-		CO-ORDI	NATES C	F DEVE	LOPED P	ARALLE	L FOR -	
Latitude parallel.	Meridional di tances from even degree parallela.	15' long	gitude.	30' lon	gitude.	45' lon	gitude.	ro loui	ritude.
ja 	Marsa	x	y	x	у	x	y	x	y
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
100001		8.516	.003	17.032	.013	25.548	.029	34.064	.052
15	8.591	8.509	.003	17.019	.013	25.528	.030	34.037	.054
30 45	17.181	8.502 8.496	.003 .003	17.005 16.991	.013 .014	25.507 25.487	.031 .032	34.010 33.982	.055 .056
11 00		8.489							-
	34.363	{	.004	16.977	.014	25.466	.032	33.955	.057
15	8.591	8.481	.004	16.962	.014	25.444	.033	33.925	.058
30 45	17.183	8.474 8.466	.004	16.947 16.933	.015 .015	25.421	.033	33.895 33-865	.059 .060
-					.015	25.399	.034		
12 00	34-365	8.459	.004	16.918	.015	25.376	-035	33.835	.061
15	8.592	8.451	.004	16.901	.016	25.352	.035	33.803	.063
30	17.184	8.443	.004	16.885	.016	25.328	.035 .036	33.770	.064
45	25.776	8.434	-004	16.869	.016	25.304	.036	33.738	-065
1300	34.368	8.426	.004	16.853	.017	25.279	.037	33.706	.066
15	8.592	8.418	.004	16.835	.017	25.253	.038	33.671	.067
30	17.185	8.409	.004	16.818	.017	25.227	.039	1 33.636	.069
45	25.778	8.400	.004	16.800	.018	25.201	.040	33.601	.070
14 00	34.370	8.391	.004	16.783	810.	25.174	.040	33.566	.071
15	8. 502	8.382	.005	16.764	.018	25.146	.041	33.528	.072
30	8.593 17.186	8.373	.005	16.745	.018	25.118	.041	33-490	.073
45	25.780	8.363	.005	16.720	.019	25.090	.042	33-453	.074
1500	34-373	8.354	.005	16.708	.019	25.061	.042	33.415	.075
15	8.504	8.344	.005	16.688	.019	25.031	.043	33-375	.077
30	8.594 17.188	8.334	.005	16.668	.019	25.001	.044	33.335	.078
<b>4</b> 5	25.782	8.324	.∞5	16.647	.020	24.971	.045	33.295	-079
16 00	34-376	8.314	.005	16.627	.020	24.941	.045	33.255	.080
15	8.595	8.303	.005	16.606	.020	24.909	.045	33.212	.081
30	17.190	8.292	.005	16.585	.020	24.877	.046	33.170	.082
<b>4</b> 5	25.784	8.282	.005	16.564	.021	24.845	.046	33.127	.083
17 00	34-379	8.271	.005	16.542	.021	24 81 3	.047	33.084	.084
15	8.596	8.260	.005	16.520	.021	24.779	.048	33.039	.085
30	17.191	8.249	.005	16.497	.021	24.746	.049	32.994	.087
45	25.787	8.237	.006	16.475	.022	24.712	.050	32.949	.088
18 00	34.382	8.226	.006	16.452	.022	24.678	.050	32.904	.089
15	8.596	8.214	.006	16.428	.022	24.642	.051	32.856	.000
30	17.193	8.202	.006	16.404	.023	24.607	.051	32.809	.091
45	25.790	8.190	.006	16.381	.023	24.57 I	.052	32.761	.092
19 00	34.386	8.178	.006	16.357	.023	24.535	.052	32.714	.093
15	8.597	8.166	.006	16.332	.023	24.498	.053	32.664	.094
30	17.195	8.153	.006	16.307	.023	24.460	.054	32.614	
45	25.792	8.141	.006	16.282	.024	24.422	.055	32.563	.095 .096
20 00	34.390	8.128	.006	16.257	.024	24.385	.055	32.513	.097
		1	I						$\sim$

## CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TRATES

[Derivation of table explained on pp. lili-lvi.]

ſ	٣	ul dia- oun pree		CO-ORD	INATES	OF DEVI	LOPED	PARALLE	L FOR-	
I	Latitude ( parallel.	Meridional dia tauces from even degree parallela.	15' lor	ngitude.	30' lor	gitude.	45' los	agitude.	r° lor	gitude.
	<u>j</u> z	Pe se	x	У	x	у	x	У	x	7
I		Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
	20°00′		8.128	.006	16.257	.024	24.385	.055	32.513	.097
	15	8.598	8.115	.006 .006	16.230	.024	24.346	-056	32.461	.098
H	30	17.197	8.102 8.089	.000	16.204 16.178	.025 .025	24.306 24.267	.056 .057	32.408	.099 .100
H	45	<b>2</b> 5.795	0.009		10.170	.045	24.20/	.03/	32.356	.100
	21 00	34-394	8.076	.006	16.1 52	.025	24.227	.057	32.303	.101
1	15	8.599	8.062	.006	16.124	.025	24.186	.058	32.248	.102
H	30	17.199	8.048	.006	16.097	.026	24.145	.058	32.193	.103
ł	45	25.798	8.035	-007	16.069	.026	24.104	.059	32.138	.104
	22 00	34.398	8.021	-007	16.042	-026	24.062	.059	32.083	.105
I	15	8.600	8.006	.007	16.013	.026	24.019	.060	32.026	.106
1	30	17.201	7.992	.007	15.984	-027	23.976	.060	31.968	.107
I	45	25.801	7.978	.007	15.955	.027	23.933	.061	31.911	.108
	23 00	34.402	7.963	.007	1 5.92 <b>7</b>	.027	23.890	.061	31.853	.109
	15	8.602	7.948	.007	15.897	.027	23.845	.062	31.794	.109
I	30	17.203	7.933 7.918	.007	15.867	.028	23.800	.062	31.734	.110
I	45	25.804	7.918	.007	15.837	.028	23.756	.063	31.674	.111
	24 00	34.406	7.904	-007	15.807	.028	23.711	.063	31.614	.112
ł	15	8.603	7.888	.007	15.776	.028	23.664	.064	31.552	.113
ł	30	17.205	7.872	.007	15.745	.029	23.617	.064	31.489	.114
I	45	25.808	7.857	.007	15.713	.029	23.570	.065	31.427	.115
	25 00	34.410	7.841	.007	1 5.682	.029	23.524	.065	31.365	.116
I	15	8.604	7.825	.007	15.650	.029	23.475	.065	31.300	.117
Н	30	17.207	7.809	.007	15.617	.029	23.426	.066	31.235	.117
П	45	25.811	7.793	.007	15.585	.030	23.378	.067	31.170	.118
	26 00	34.415	7.7 <b>76</b>	.007	I 5.553	.030	23.329	.067	31.106	.119
	15	8.605	7.760	.007	15.519	.030	23.279	.067	31.039	.120
	30	17.210	7.743	.008	15.486	.030	23.229	.068	30.972	.121
	45	25.814	7.726	.008	15.452	.030	23.179	.068	30.905	.121
	27 00	34.419	7.709	.008	15.419	.031	23.128	.069	30.838	.122
	15	8.606	7.692	.008	1 5.384	.031	23.076	.060	30.769	.123
	- 30 30	17.212	7.675	.008	15.350	.031	23.024	.070	30.699	.124
	45	25.818	7.657	.008	15.315	.031	22.972	.070	30.630	.124
	28 00	34.424	7.640	.008	I 5.280	.031	22.920	.070	30.560	.125
	15	8.607	7.622	.008	I 5.244	.031	22.866	.071	30.489	.126
	30	17.215	7.604	.008	15.208	.032	22.813	.071	30.417	.127
	45	25.822	7.586	.008	15.173	.032	22.7 59	.072	30.345	.127
	29 00	34.430	7.568	.008	15.137	.032	22.705	.072	30.274	.128
	16	8.609	7.550	.008	15.100	.032	22.650	.072	30.200	.129
H	15 30	17.217	7.531	.000	15.063	.032	22.594	.073	30.125	.130
	45	25.826	7.513	.008	15.026	.033	22.539	.073	30.051	.130
	30 00	34-435	7-494	.008	14.989	.033	22.483	.074	29.978	131
L					•				•	

SMITHSONIAN TABLES.

### CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 1181780.

[Derivation of table explained on pp. lin-lvi.]

3.610         7.220         5830         4.440         3.611         7.213         5.834         4.446         3.613         7.225         5.838         4.451         3.614         7.228         5.842         4.456         3.615         7.231         5.846	rs' lon z 7.494 7.475 7.456 7.437 7.418 7.398 7.359 7.359 7.359 7.359 7.359 7.359 7.359 7.359 7.239 7.2259 7.238 7.217 7.176 7.154 7.133 7.112	gitude. 7 <i>Inches.</i> .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .008 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009 .009	30' lon x 14.989 14.951 14.951 14.951 14.974 14.836 14.758 14.758 14.778 14.639 14.558 14.558 14.558 14.558 14.558 14.518 14.435 14.393 14.352 14.309 14.266 14.224	rgitude. y /mcAes. .033 .033 .033 .033 .033 .033 .033 .033 .034 .034 .034 .034 .034 .034 .034 .034 .034 .034 .034 .035 .035 .035 .035 .035 .035 .035	x /sc.kez. 22.483 22.426 22.369 22.312 22.254 22.195 22.195 22.078 22.078 22.019 21.958 21.898 21.898 21.837 21.777 21.714 21.590 21.527 21.464 21.400	gitude. y Inches. .074 .074 .075 .075 .075 .075 .075 .075 .076 .076 .076 .076 .077 .077 .077 .077 .078 .078 .078 .078 .078 .078 .078 .078 .078	x /nckes. 29.978 29.902 29.825 29.749 29.672 29.594 29.515 29.437 29.358 29.278 29.278 29.116 29.036 28.053 28.869 28.703 28.618 28.513	gitude. y <i>Inches.</i> .131 .132 .133 .133 .133 .134 .135 .136 .136 .137 .137 .138 .138 .139 .139 .139 .140 .141
schez.           3.610           7.220           5830           4.440           3.611           7.213           5.834           4.446           3.613           7.225           5.838           4.4451           8.614           7.228           5.842           4.456           3.615           7.231           5.846	Inches. 7:494 7:475 7:436 7:437 7:418 7:398 7:379 7:359 7:359 7:340 7:319 7:299 7:259 7:259 7:259 7:259 7:259 7:259 7:259 7:259 7:259 7:259 7:259 7:259 7:217 7:197 7:176 7:154 7:133	Inckes. .008 .008 .008 .008 .008 .008 .008 .0	/mcArr. 14.989 14.951 14.913 14.874 14.836 14.797 14.758 14.778 14.758 14.778 14.639 14.558 14.558 14.558 14.558 14.558 14.558 14.435 14.393 14.352 14.309 14.266	Inches. -033 -033 -033 -033 -033 -033 -033 -034 -034 -034 -034 -034 -034 -034 -034 -034 -034 -034 -035 -035 -035 -035 -035 -035	/ac.ker. 22.483 22.426 22.369 22.312 22.254 22.195 22.137 22.078 22.019 21.958 21.898 21.898 21.898 21.837 21.777 21.714 21.652 21.529 21.527 21.464 21.400	Inches. .074 .074 .075 .075 .075 .075 .076 .076 .076 .076 .077 .077 .077 .077	/ackee. 29.978 29.002 29.825 29.749 29.672 29.594 29.515 29.437 29.358 29.278 29.278 29.278 29.278 29.278 29.107 29.116 29.036 28.053 28.869 28.703 28.618 28.513	Inches. .131 .131 .132 .133 .134 .135 .135 .136 .136 .137 .136 .137 .137 .138 .138 .139 .139 .140 .141
3.610         7.220         5830         4.440         3.611         7.213         5.834         4.446         3.613         7.225         5.838         4.451         3.614         7.228         5.842         4.456         3.615         7.231         5.846	7-494 7-475 7-456 7-437 7-418 7-398 7-379 7-359 7-359 7-340 7-319 7-299 7-299 7-279 7-259 7-238 7-217 7-197 7-197 7-176 7-154 7-133	.008 .008 .008 .008 .008 .008 .008 .008	14.989 14.951 14.951 14.951 14.874 14.836 14.797 14.758 14.718 14.679 14.598 14.558 14.558 14.558 14.518 14.435 14.393 14.352 14.393 14.352	-033 -033 -033 -033 -033 -033 -034 -034	22.483 22.426 22.369 22.312 22.254 22.195 22.195 22.078 22.019 21.958 21.898 21.898 21.837 21.777 21.714 21.652 21.590 21.527 21.464 21.400	.074 .074 .074 .075 .075 .075 .075 .075 .075 .076 .076 .076 .077 .077 .077 .077 .077	29.978 29.902 29.825 29.749 29.672 29.594 29.515 29.437 29.358 29.278 29.358 29.278 29.116 29.036 28.953 28.869 28.703 28.618 28.513	.131 .131 .132 .133 .134 .135 .135 .135 .136 .136 .137 .137 .137 .138 .138 .139 .139 .139 .139 .139
7.220 5.830 4.440 3.611 7.213 5.834 4.446 3.613 7.225 5.838 4.451 8.614 7.228 5.842 4.456 3.615 7.231 5.846	7-475 7-456 7-437 7-418 7-398 7-379 7-359 7-359 7-359 7-359 7-340 7-319 7-299 7-279 7-259 7-238 7-219 7-238 7-2197 7-197 7-176 7-154 7-133	.008 .008 .008 .008 .008 .008 .008 .008	14.951 14.913 14.874 14.836 14.797 14.758 14.718 14.639 14.598 14.558 14.558 14.518 14.435 14.435 14.435 14.393 14.352 14.309 14.266	.033 .033 .033 .033 .034 .034 .034 .034	22.426 22.369 22.312 22.254 22.195 22.137 22.078 22.019 21.958 21.898 21.837 21.777 21.714 21.652 21.590 21.527 21.464 21.400	.074 .074 .075 .075 .075 .075 .076 .076 .076 .076 .077 .077 .077 .077	29.502 29.825 29.749 29.594 29.594 29.515 29.437 29.358 29.278 29.278 29.116 29.036 28.053 28.860 28.703 28.618 28.513	.131 .132 .133 .133 .134 .135 .135 .136 .136 .137 .137 .137 .138 .138 .139 .139 .139 .139 .139
7.220 5.830 4.440 3.611 7.213 5.834 4.446 3.613 7.225 5.838 4.451 8.614 7.228 5.842 4.456 3.615 7.231 5.846	7-456 7-437 7-418 7-398 7-379 7-359 7-340 7-319 7-299 7-238 7-279 7-238 7-279 7-238 7-217 7-197 7-176 7-154 7-133	.088 .088 .088 .088 .088 .088 .088 .088	14.973 14.874 14.836 14.797 14.758 14.718 14.679 14.639 14.598 14.558 14.558 14.518 14.435 14.393 14.352 14.393 14.352	.033 .033 .033 .034 .034 .034 .034 .034	22.369 22.312 22.254 22.195 22.137 22.078 22.019 21.958 21.898 21.837 21.777 21.714 21.652 21.590 21.527 21.464 21.400	.074 .075 .075 .075 .076 .076 .076 .077 .077 .077 .077 .077	29.825 29.749 29.672 29.594 29.515 29.437 29.358 29.278 29.278 29.116 29.036 28.053 28.869 28.703 28.618 28.618 28.533	.132 .133 .134 .135 .135 .135 .136 .136 .137 .137 .138 .138 .139 .139 .139 .139 .139
5830 4.440 3.611 7.213 5.834 4.446 3.613 7.225 5.838 4.451 8.614 7.228 5.842 4.456 3.615 7.231 5.846	7-437 7-418 7-398 7-379 7-359 7-340 7-319 7-299 7-259 7-259 7-259 7-259 7-259 7-259 7-238 7-217 7-197 7-176 7-154 7-133	.008 .008 .008 .008 .008 .008 .009 .009	14.874 14.836 14.797 14.758 14.718 14.679 14.639 14.598 14.558 14.558 14.518 14.435 14.393 14.352 14.393 14.352 14.309 14.266	-033 -033 -033 -034 -034 -034 -034 -034	22.312 22.254 22.195 22.137 22.078 22.019 21.958 21.898 21.837 21.777 21.714 21.652 21.590 21.527 21.464 21.400	.075 .075 .075 .076 .076 .076 .077 .077 .077 .077 .078 .078 .078 .078	29.749 29.672 29.594 29.515 29.437 29.358 29.278 29.278 29.116 29.036 28.053 28.869 28.703 28.618 28.618 28.618	.133 .134 .135 .135 .135 .136 .136 .137 .137 .137 .138 .138 .139 .139 .139 .139
3.611 7.213 5.834 4.446 3.613 7.225 5.838 4.451 8.614 7.228 5.842 4.456 3.615 7.231 5.846	7.398 7.379 7.359 7.340 7.319 7.299 7.239 7.259 7.238 7.217 7.197 7.176 7.154 7.133	.008 .008 .008 .008 .009 .009 .009 .009	14.797 14.758 14.718 14.679 14.639 14.598 14.558 14.558 14.518 14.435 14.393 14.352 14.393 14.352 14.309 14.266	.033 .034 .034 .034 .034 .034 .034 .034	22.195 22.137 22.078 22.019 21.958 21.898 21.837 21.777 21.714 21.652 21.590 21.527 21.464 21.400	.075 .076 .076 .077 .077 .077 .077 .078 .078 .078 .078	29.594 29.515 29.437 29.358 29.278 29.177 29.116 29.036 28.953 28.869 28.703 28.618 28.513	.134 .135 .135 .136 .136 .137 .137 .137 .138 .138 .139 .139 .139 .139
7.213 5-834 4.446 3.613 7.225 5.838 4.451 3.614 7.228 5.842 4.456 3.615 7.231 5.846	7.379 7.359 7.340 7.299 7.279 7.279 7.259 7.259 7.259 7.238 7.217 7.197 7.176 7.154 7.133	.008 .008 .008 .008 .009 .009 .009 .009	14-758 14-718 14-679 14-639 14-598 14-558 14-518 14-518 14-435 14-435 14-393 14-352 14-309 14-266	.034 .034 .034 .034 .034 .034 .034 .035 .035 .035 .035	22.137 22.078 22.078 21.958 21.898 21.837 21.777 21.714 21.652 21.5590 21.527 21.464 21.400	.078 .076 .076 .077 .077 .077 .077 .078 .078 .078 .078	29.515 29.437 29.358 29.278 29.197 29.116 29.036 28.053 28.869 28.703 28.618 28.618 28.533	.135 .136 .136 .137 .137 .137 .138 .138 .139 .139 .139 .140 .141
5.834 4.446 3.613 7.225 5.838 4.451 8.614 7.228 5.842 4.456 3.615 7.231 5.846	7.379 7.359 7.340 7.299 7.279 7.279 7.259 7.259 7.259 7.238 7.217 7.197 7.176 7.154 7.133	.008 .008 .008 .008 .009 .009 .009 .009	14.718 14.679 14.639 14.598 14.558 14.558 14.518 14.476 14.435 14.393 14.352 14.309 14.266	.034 .034 .034 .034 .034 .035 .035 .035 .035 .035	22.078 22.019 21.958 21.898 21.837 21.777 21.714 21.652 21.590 21.527 21.464 21.400	.076 .077 .077 .077 .077 .078 .078 .078 .078	29.515 29.437 29.358 29.278 29.197 29.116 29.036 28.053 28.869 28.703 28.618 28.618 28.533	.135 .136 .136 .137 .137 .137 .138 .138 .139 .139 .139 .140 .141
4446 3.613 7.225 5.838 4.451 8.614 7.228 5.842 4.456 3.615 7.231 5.846	7.340 7.319 7.299 7.279 7.238 7.217 7.197 7.197 7.176 7.154 7.133	.008 .009 .009 .009 .009 .009 .009 .009	14.679 14.598 14.598 14.518 14.476 14.435 14.393 14.352 14.399 14.266	.034 .034 .034 .034 .034 .035 .035 .035 .035	22.019 21.958 21.898 21.837 21.777 21.714 21.652 21.590 21.527 21.464 21.400	.076 .077 .077 .077 .078 .078 .078 .078 .078	29.358 29.278 29.197 29.116 29.036 28.053 28.869 28.786 28.703 28.618 28.513	.136 .136 .137 .137 .138 .138 .139 .139 .139 .139 .140
3.613 7.225 5.838 4.451 8.614 7.228 5.842 4.456 8.615 7.231 5.846	7.319 7.299 7.279 7.259 7.238 7.217 7.197 7.176 7.176 7.154 7.133	85,85 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65 65,65	14.639 14.598 14.558 14.558 14.518 14.476 14.435 14.393 14.352 14.352 14.309 14.266	.034 .034 .034 .035 .035 .035 .035 .035	21.958 21.898 21.837 21.777 21.714 21.652 21.590 21.527 21.464 21.400	.077 .077 .077 .078 .078 .078 .078 .079 .079	29.278 29.197 29.116 29.036 28.053 28.869 28.786 28.703 28.618 28.513	.136 .137 .137 .138 .138 .139 .139 .139 .140 .141
7.225 5.838 4.451 3.614 7.228 5.842 4.456 3.615 7.231 5.846	7.299 7.279 7.259 7.238 7.217 7.197 7.176 7.154 7.133	.009 .009 .009 .009 .009 .009 .009 .009	14.598 14.558 14.518 14.476 14.435 14.393 14.352 14.309 14.266	.034 .034 .034 .035 .035 .035 .035 .035 .035	21.898 21.837 21.777 21.714 21.652 21.590 21.527 21.464 21.400	.077 .077 .078 .078 .078 .078 .079 .079	29.197 29.116 29.036 28.953 28.869 28.786 28.703 28.618 28.533	.137 .137 .138 .138 .139 .139 .139 .140 .141
5.838 4-451 8.614 7.228 5.842 4.456 8.615 7.231 5.846	7.279 7.259 7.238 7.217 7.197 7.176 7.154 7.133	.009 .009 .009 .009 .009 .009 .009	14.558 14.518 14.476 14.435 14.393 14.352 14.309 14.266	.034 .035 .035 .035 .035 .035 .035	21.837 21.777 21.714 21.652 21.590 21.527 21.464 21.400	.077 .078 .078 .078 .078 .079 .079	29.116 29.036 28.953 28.869 28.786 28.703 28.618 28.513	.137 .138 .138 .139 .139 .139 .140 .141
4.451 8.614 7.228 5.842 4.456 8.615 7.231 5.846	7.259 7.238 7.217 7.197 7.176 7.154 7.133	.009 .009 .009 .009 .009 .009	14-518 14-476 14-435 14-393 14-352 14-352 14-309 14-266	.034 .035 .035 .035 .035 .035 .035	21.777 21.714 21.652 21.590 21.527 21.464 21.400	.078 .078 .078 .078 .079 .079	29.036 28.953 28.869 28.786 28.703 28.618 28.533	.138 .138 .139 .139 .139 .140 .141
8.614 7.228 5.842 4.456 8.615 7.231 5.846	7.238 7.217 7.197 7.176 7.154 7.133	.009 .009 .009 .009 .009 .009	14.476 14.435 14.393 14.352 14.309 14.266	.035 .035 .035 .035 .035 .035	21.714 21.652 21.590 21.527 21.464 21.400	.078 .078 .078 .079 .079	28.953 28.869 28.786 28.703 28.618 28.533	.138 .139 .139 .140 .141
7.228 5.842 4.456 8.61 5 7.231 5.846	7.217 7.197 7.176 7.154 7.133	.009 .009 .009 .009 .009	14.435 14.393 14.352 14.309 14.266	.035 .035 .035 .035 .035 .035	21.652 21.590 21.527 21.464 21.400	.078 .078 .079 .079	28.786 28.703 28.618 28.533	.139 .139 .140 .141
5.842 4.456 3.615 7.231 5.846	7.217 7.197 7.176 7.154 7.133	,000 ,000 ,000 ,000	14.393 14.352 14.309 14.266	.035 .035 .035 .035	21.590 21.527 21.464 21.400	.078 .078 .079 .079	28.786 28.703 28.618 28.533	.139 .139 .140 .141
4.456 8.615 7.231 5.846	7.176 7.154 7.133	.000 .000	14.352 14.309 14.266	.035 .035 .035 .035	21.527 21.464 21.400	.079 .079	28.703 28.618 28.533	.140 .141
8.61 5 7.231 5.846	7.154 7.133	.009 .009	14.309 14.266	.035 .035	21.464 21.400	.079	28.618 28.533	.141
7.23Ĭ 5.846	7.133	.000	14.266	.035	21.400		28.533	
5-846						.070	28.533	.141
·	7.112	.009	14.224	.025			1 0 00	
1.60				.~55	21.336	.080	28.448	.142
4.462	7.091	.009	14.181	.035	21.272	.080	28.362	.142
3.617	7.069	.009	14.138	.036	21.207	.080	28.275	.142
7.234	7.047	.009	14.094	.036	21.141	.080	28.188	.143
5.851	7.025	.009	14.050	.036	21.076	.080	28.101	.143
4.468	7.003	.009	14.007	.036	21.010	.081	28.014	·I44
3.618	6.981	.009	13.962	.036	20.943	.081	27.924	.144
7.237	6.959	.009	13.917	.036	20.876	180.	27.835	-144
5.855	6.936	.009	13.873	.036	20.809	.081	27.745	.145
4-474	6.914	.009	13.828	.036	20.742	.082	27.655	.145
3.620	6.891	.009	13.782	.036	20.673	.082	27.564	.145
7.240	6.868	.000	13.736	.036	20.604		27.472	.146
;-860	6.845	.009	13.690	.037	20.536	.082	27.381	.146
1.480	6.822	<b>.009</b>	13.645	.037	20.467	.082	27.289	.147
3.621	6.799	.009	13.598	.037	20.397	.083	27.196	.147
7.243	0.775	.009	13.551	.037	20.326	.083		.147
5.864	6.752	.009	13.504	.037	20.256	.083	27.008	.147
-485	6.729	.009	13.457	.037	20.186	.083	26.914	.148
3.623	6.705	.009	13.409	.037	20.114	.083	26.819	.148
7.246	6.681	.009	13.361	.037	20.042		26.723	.148
668 I	0.657	.009	13.314	.037	¹ 9-970	.084	20.027	.148
,	6.633	.009	13.266	.037	19.899	.084	26.532	.149
75 4-375 4-37	240 860 480 621 243 864 485 623	240         6.868           860         6.845           480         6.822           480         6.822           243         6.759           485         6.752           485         6.729           6.623         6.705           6.684         6.681           868         6.657	240         6.868         .009           860         6.845         .009           480         6.822         .009           621         6.799         .009           243         6.775         .009           864         6.729         .009           485         6.729         .009           485         6.729         .009           623         6.705         .009           868         6.657         .009	240         6.868         .009         13.736           860         6.845         .009         13.690           480         6.822         .009         13.645           .621         6.799         .009         13.598           .243         6.775         .009         13.551           .864         6.722         .009         13.457           .623         6.705         .009         13.457           .245         6.681         .009         13.361           .868         6.657         .009         13.314           491         6.633         .009         13.266	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

SMITHSONIAN TABLES.

## CO-ORDINATES FOR PROJECTION OF MAPS. SCALE INVEST

[Derivation of table explained on pp. liii-lvi.]

of	om ores		CO-ORD	INATES	OF DEVE	PARALLE	EL FOR-		
Latitude parallel.	Meridional dia tances from even degree parallele.	15' lon	gitude.	30' lon	gitude.	45' lon	gitude.	1º long	gitude.
I B	Masa	x	У	x	y	x	у	x	У
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
40°00′ 15	 8.624	6.633 6.608	.009 .009	13.266 13.217	.037 .037	19.899 19.825	.084 .084	26.532 26.434	.149
30	17.249	6.584	.009	13.168	.037	19.752	.084	20.330	.149 .149
45	25.873	6.560	.009	13.119	.037	19.679	.084	26.238	-149
41 00	34-497	6.535	.009	13.070	037	19.605	.084	26.140	.150
15	8.625	6.510	.009	I 3.020	.037	19.530	.084	26.041	.150
30 45	17.250 25.875	6.485 6.460	.009 .009	12.970 12.920	.037 .037	19.456 19.381	.084 .084	25.941 25.841	.150 .150
_							.085	1	
42 00	34.500	6.435	.009	12.871	.037	19.306	-	25.741	.150
15	8.627 17.255	6.410 6.385	.009 .009	12.820 12.769	.037 .038	19.230 19.154	.085 .085	25.640	.150
30 45	25.882	6.359	.009	12.718	.038 .038	19.077	.085	25.538 25.436	.151 .151
43 00	34.510	6.334	.009	12.667	.038	19.001	.085	25-335	.151
15	8.629	6.308	.009	12.615	.038	18.923	.085	25.231	.151
30	17.257	6.282	.009	12.563	.038	18.845	.085	25.127	.151
45	25.886	6.256	.009	12.512	.038	18.767	.085	25.023	.151
44 00	34.515	6.230	.009	12.460	.038	18.689	.085	24.919	.151
15	8.630	6.203	.009	12.407	.038	18.610	.085	24.814	.151
30 45	17.261 25.891	6.177 6.151	.009 .009	12.354 12.301	.038 .038	18.531 18.452	.085 .085	24.708	.151 .151
45 00	34.522	6.124	.009	12.249	.038	18.373	.085	24-497	.151
15	8.632	6.097	.009	12.195	-038	18.292	.085	24.390	.151
30	17.264	6.071	.009	12.141	.038	18.212	.085	24.283	.151
45	25.896	6.044	.009	12.088	.038	18.131	.085	24.175	.151
46 00	34.528	6.017	.009	12.034	.038	18.051	.085	24.068	.1 51
15	8.633	5.990	.009	11.979	.038	17.969	.085	23.959	.151
30 45	17.267 25.901	5.962 5.935	.009 .009	11.925 11.870	.038 .038	17.887 17.805	.085 .085	23.849	.151 .151
							.085		
47 00	34-534	5.908	.009	11.815	.038	17.723		23.631	.151
15	8.635 17.270	5.880 5.852	.009 .009	11.760 11.704	.038 .038	17.640	.085 .085	23.520 23.408	.151
30 45	25.905	5.824	.009	11.648	.038	17 550 17.473	.085	23.297	.151 .151
48 00	34.540	5.796	.009	11.593	.038	17.389	.085	23.186	.150
15	8.637	5.768	.009	11.536	.038	17.305	.085	23.073	.1 50
30	17.273	5.740	.009	11.536 11.480	.038	17.220	.004	22.960	.150
45	25.910	5.712	.009	11.424	.037	17.135	.084	22.847	.150
49 00	34.546	5.684	.009	11.367	.037	17.051	.084	22.734	.1 50
15	8.638	5.655	.009	11.310	.037	16.965	.084	22.620	.150
30 45	17.276 25.914	5.626 5.598	.009 .009	11.253 11.195	.037 .037	16.879 16.793	.084 .084	22.505 22.391	.150 .150
50 00	34.552	5.569	.009	11.138	.037 .037	16.707	.084	22.276	.1 50
L									

SMITHSONIAN TABLES.

Digitized by GOOSIC

.

# CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TRATER

[Derivation of table explained on pp. liii-lvi.]

8	al dia-		CO-ORD	INATES	OF DEVI	ELOPED	PARALLE	EL FOR-	-
Latitude parallel.	Meridional dia tances from even degree parallela.	15' lon	gitude.	30' lon	gitude.	45' lon	gitude.	1º lon	çitude.
<u>j</u> z	Nast.	x	у	x	У	x	У	x	y
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
50°00′	8.640	5.569	.009 .009	11.138 11.080	.037	16.707	.084	22.276	.1 50
15 30	17.279	5.540 5.511	.009	11.000	.037 .037	16.620 16.532	.084 .084	22.160 22.043	.149 .149
45	25.919	5.482	.009	10.963	.037	16.445	.083	21.927	.149
51 00	34-558	5-453	.009	10.905	.037	16.358	.083	21.810	.148
15	8.641	5-423	.009	10.846	.037	16.269	.083	21.692	.148
30	17.282 25.924	5-394	.009 .009	10.787	.037	16.181	.083	21.574	.148
45	*J.924	5.364		10.728	.037	16.092	.083	21.456	-147
52 00	34.565	5-334	.009	10.669	.037	16.004	.083	21.338	-147
15	8.643 17.285	5.305	.009 .009	10.609	.036	15.914	.082	21.218	.146
30 45	25.928	5.275 5.245	.009	10.549 10.490	.036 .036	15.824 15.734	.082 .082	21.099	.146
-			-		-			20.979	.145
53 00	34-571	5.215	.009	10.430	.036	15.645	.082	20.860	·I45
15	8.644	5.185	.009	10.369	.036	15-554	.082	20.738	.145
30 45	17.288 25.932	5.154 5.124	.009 .009	10.309 10.248	.036 .036	15.463	180. 180.	20.617	.144
د <del>ہ</del> 54 00	34.576	5.094	.009	10.187		15.372 15.281	.081	20.496	.144
34.00	34-5/0	3.024	~~~	10.107	.036	15.201	1001	20.374	•144
15	8.646	5.063	.009	10.126	.036	1 5.189	.081	20.252	.143
30	17.291	5.032	.009	10.064 10.003	.036	15.097	.080	20.129	.143
45	25.937	5.002	.009	10.003	<b>.03</b> 6	15.004	.080	20.006	.142
55 00	34.582	4-97 I	.009	9.942	.036	14.912	.080	19.883	.142
15	8.647	4.940	.009	9.879	.035	14.819	.080	19.759	.141
30	17.294	4.909 4.878	.009	9.817	.035	14.726	-079	19.634	-141
45	25.941	4.070	.009	<b>9</b> ·755	.035	14.633	.079	19.510	.140
56 00	34.588	4-846	.009	9.693	.035	14-539	-079	19.3 <b>86</b>	.140
15	8.648	4.815	.009	9.630	.035	14-445	.079	19.260	.140
30	17.297	4.784	.009	9.567	.035	14.351	.078	19.134	.139
45	25.946	4.7 52	.009	9.504	.035	14.256	-078	19.008	.139
57 00	34-594	4.720	.009	9-44 I	.035	14.162	.078	18.882	.138
15	8.650	4.689	.009	9-377	.035	14.066	.077	18.754	.138
30	17.300	4.657	.009	9.314	.034	13.970	-077	18.627	.137
45	25.950	4.625	.009	9.250	.034	13.875	.077	18.500	.137
58 oo	34.600	4-593	.009	9.186	.034	13.779	.076	18.372	.136
15	8.651	4.561	.008	9.122	.034	13.683	.076	18.244	.135
30	17.303	4.529	.008	9.058	.034	13.586	.076	18.115	.135
45	25.954	4-497	.008	8.993	.034	13.490	.075	17.986	.134
59 00	34.605	4-464	.008	8.929	.033	13.393	-07 5	17.858	.134
15	8.653	4-432	.008	8.864	.033	13.296	.075	17.728	.133
30	17.305	4.399	.008	8.799	.033	13.198	.075	17.597	.133
45	25.958	4.367	.008	8.734	.033	13.100	-074	17.467	.132
60 00	34.611	4-334	.008	8.669	.033	13.003	.074	17.337	.131
			-					Nized by C	ioogl
MITHBORIA	N TABLES	•		10	07				0

# CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 198798

	19 8 8		CO-ORDINATES OF DEVELOPED PARALLEL FOR -									
Latitude of parallel.	Meridional di tances from even degree parallels.	15' lor	gitude.	30/ los	gitude.	45' los	ngitude.	r° lor	gitude.			
Tati	The second	X	y	I	У	x	y	x	y			
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.			
60°00′	8614	4-334	800. 800.	8.669 8.603	.033	13.003 12.904	.074	17.337	.131			
15 30	8.654 17.308	4.301 4.269	.000	8.537	.032 .032	12.004	.074 .073	17.206 17.074	.131 .130			
45	25.962	4.236	.008	8.471	.032	I 2.707	.073	16.943	.129			
61 00	34.616	4.203	.008	8.406	.032	12.608	.072	16.811	.128			
15	8.655	4.170	.008	8.339	.032	12.509	.072	16.679	.128			
30 45	17.311 25.966	4.136 4.103	.008 .008	8.273 8.207	.032 .031	12.410 12.310	.072 .071	16.546 16.413	.127 .126			
			_									
62 00	34.621	4.070	.008	8.140	.031	12.210	.07 I	16.280	.125			
15 30	8.657 17.313	4.036 4.003	.008 .008	8.073 8.006	.031 .031	12.110 12.000	.07 I .070	16.146 16.012	.125 .124			
45	25.970	3.970	.008	7.939	.031	11.909	.070	15.878	.124 .123			
63 00	34.626	3.936	.008	7.872	.031	11.808	.069	I 5.744	.122			
15	8.658	3.902	.008	7.804	.030	11.707	.069	1 5.609	.122			
30	17.316	3.868	.007 .007	7.737 7.669	.030	11.605	.068 .068	15.474	.121			
45	² 5.974	3.835	/		.030	11.504		15.338	.120			
64.00	34.632	3.801	.007	7.602	.030	11.402	.067	I 5.203	.119			
15	8.659 17.318	3.767	.007 .007	7·533 7·465	.029 .029	11.300 11.198	.067 .066	15.067	.119 811.			
30 45	25.977	3-733 3.698	.007	7.397	.029	11.096	.000	14.930 14.794	.110			
65 00	34.636	3.664	.007	7.329	.029	10.993	.065	14.658	.116			
15	8.660	3.630	.007	7.260	.028	10.890	.065	14.520	.115			
30	17.321	3.596	.007	7.191	.028	10.787	.064	14.383	.114			
45	25.981	3.561	.007	7.123	.028	10.684	-064	14.245	.113			
66 00	34.641	3-527	.007	7.054	.028	10.581	.063	14.108	.112			
15	8.661	3.492	.007	6.984	.028	10.477	.063 .062	13.969	.111			
30 45	17.323 25.984	3.458 3.423	.007 .007	6.915 6.846	.027 .027	10.373 10.269	.002	13.830 13.692	.111. .110			
67 00	34.646	3.388	.007	6.776	.027	10.165	.061	13.553	.109			
15	8.663	3-353	.007	6.706	.027	10.060	.061	13.413	.108			
30	17.325	3-353 3.318	.007	6.637	.026	9.955	.060	13.273	.107			
45	25.988	3.283	.007	6.567	.026	9.850	.060	13.134	.106			
68 00	34.650	3.248	.007	6.497	.026	9.746	.059	12.994	.105			
15	8.664	3.213	.007	6.427	.026	9.640	.059 .058	12.854	.104			
30 45	17.327 25.991	3.178 3.143	.006 .006	6.356 6.286	.025 .025	9-535 9-429	.058 .058	12.713 12.572	.103 .102			
69 00	34.655	3.108	.006	6.216	.025	9-323	.057	12.431	.101			
	8.665	3.072	.006	6.145	.025	9.217	017	-				
15 30	17.329	3.072 3.037	.000	6.074	.025	9.111	.057 .056	12.290 12.148	.100 .099			
45	25.994	3.002	.006	6.003	.024	<u>9</u> .005	.056	12.006	.099 .098			
70 00	34.659	2.966	.006	5.932	.024	8.899	.055	11.865	.097			

[Derivation of table explained on pp. lili-lvi.]

SMITHSONIAN TABLES.

## CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 110710.

[Derivation of table explained on pp. liii-lvi.]

70	Meridional dis- tances from even degree parallels.		CO-ORDINATES OF DEVELOPED PARALLEL FOR									
Latitude parallel.	ridion: acces fr en deg raliels	15' lon	gitude.	30' lon	gitude.	45' lon	gitude.	1º long	ritude.			
part	Peta	x	<b>y</b>	X	y	x	у	x	<b>y</b>			
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.			
70°00′ 15	8.666	2.966 2.930	.006 .000	5.932 5.861	.024 .024	8.899 8.792	.055 .055	11.865 11.722	.097 .096			
30 45	17.331 25.997	2.895 2.859	.006 .000	5.790 5.718	.023 .023	8.685 8.578	.054 .053	11.580 11.437	.095 .094			
71 00	34.663	2.824	.0006	5.647	.023	8.471	.052	11.294	.093			
15	8.667	2.788	.006	5.576	.023	8.363	.052	11.151	.092			
30 45	17.333 26.000	2.752 2.716	.006 .006	5.504 5.432	.022 .022	8.256 8.148	.051 .051	11.008 10.864	.091 .090			
72 00	34.667	2.680	.006	5.360	.022	8.040	.050	10.720	.089			
15 30	8.668 17.335	2.644 2.608	.006 .005	5.288 5.216	.022 .021	7.932 7.824	.050 .049	10.576 10.432	.088 .087			
45	26.003	2.572	.005	5.144	.021	7.716	.049	10.288	.086			
73∞	34.670	2.536	.005	5.072	.021	7.608	.048	10.144	.085			
15 30	8.668 17.337	2.500 2.463	.005 .005	<b>4-999</b> <b>4-927</b>	.021 .020	7-499 7-390	.048 .047	9.998 9.854	.084 .083			
45	26.006	2.427	.005	4.854	.020	7.281	.046	9.708	.081			
74 00	34.674	2.391	.005	4.782	.020	7.172	.045	9.563	.080			
15 30	8.669 17.339	2.354 2.318	.005 .005	4.709 4.636	.020 .019	7.063 6.954	.044 .044	9.417 9.272	.079 .078			
45	26.008	2.281	.∞š	4.563	.01 <u>9</u>	6.844	.043	9.126	.077			
7500	34.677	2.245	.005	4-490	.019	6.735	.043	8.980	.076			
15 30	8.670 17.340	2.208 2.172	.004 .004	4-417 4-343	.019 810.	6.625 6.515	.042 .042	8.834 8.687	.074 .073			
45	26.010	2.135	.004	4.270	.018	6.405	.041	8.540	.072			
76 00	34.680	2.098	.004	4.197	.018	6.296	.040	8.394	.071			
15 30	8.67 I 17.342	2.062 2.025	.004 .004	4.123 4.050	.018 .017	6.185 6.075	.040 .039	8.247 8.100	.069 .068			
45	26.013	1.988	.004	3.976	.017	5.964	.038	7.952	.067			
77∞	34.684	1.951	.004	3.903	.017	5.854	.037	7.805	.066			
15 30	8.672 17.343	1.914 1.877	.004 .004	3.829 3.755	.017 .016	5.743 5.632	.037 .036	7.658 7.510	.065 .064			
45	26.015	1.840	.004	3.755 3.681	.016	5.522	.036	7.362	.063			
78 oo	34.686	1.804	.004	3.607	.015	5.411	.035	7.214	.062			
15 30	8.672 17.344	1.766 1.729	.004 .004	3-533	.015 .015	5.300 5.188	.034 .034	7.066 6.918	.060 .050			
45	26.017	1.692	.004	3-459 3-385	.014	5.077	.033	6.769	.059 .058			
79 00	34.689	1.655	.004	3.310	-014	4.966	.032	6.621	.057			
15 30	8.673 17.346	1.618 1.581	.003 .003	3.236 3.162	.014 .013	4.854 4.742	.031 .030	6.472 6.323	.055 .054			
45	26.018	1.544	.003	3.087	.013	4.631	.030	6.174	.053			
80 00	34.691	1.506	.003	3.013	.013	4.519	.029	6.026	.052			
							1.000	ized by 🕓	000			

SMITHSONIAN TABLES.

### CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TIT.

[Derivation of table explained on pp. liii-lvi.]

of	l dis- on dis- ree	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude ( parallel.	Meridional di tances from even degree parallela.	5 longitude.	IO' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' lougitude.		RDINAT Develo Parali	)PED
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	월 : :		
0°00′		5.764	11.529	17.293	23.058	28.822	34.586	Longitude interval.	00	Io
10	11.451	5.764	11.528	17.293	23.057	28.821	34.585	<b>—</b>		
20	22.901	5.764	11.528	17.292	23.056	28.821	34.585		Inches.	Inches.
30 40	34.352 45.803	5.764 5.764	11.528	17.292	23.056	28.820 28.819	34.583	5	0.000	0.000
50	57.254	5.764 5.764	11.528 11.527	17.291 17.291	23.055 23.054	28.818	34.583 34.582	IŌ	.000	.000
	J/- J4	3.7.4		-/	-3.034	20.0.0		15	.000.	100. 100.
I 00	68.704	5.764	11.527	17.291	23.054	28.818	34.581	20 25	.000	.002
10	11.451	5.763	11.526	17.289	23.052	28.816	34.579	30	.000	-003
20	22.901	5.763	11.525	17.288	23.050	28.813	34.576			
30	34-352	5.762	11.524	17.287	23.049	28.811	34-573			
40	45.803	5.762	11.524	17.285	23.047	28.809 28.807	34.571			
50	57.254	5.761	11.523	17.284	23.045	20.007	34.568			<u> </u>
200	68.704	5.761	11.522	17.283	23.044	28.805	34.565		2 ⁰	3°
10	11.451	5.760	11.520	17.281	23.041	28.801	34.561			
20	22.902	5.759	11.519	17.278	23.038	28.797	34-556	5	0.000	0.000
30	34-353	5.759	11.517	17.276	23.035	28.794	34-552	10	100.	100.
40	45.804	5.758	11.516	17.274	23.032	28.790	34.548	15	.001 .002	.002 .003
50	57-254	5·75 <b>7</b>	11.514	17.272	23.029	28.786	34.543	25	.004	.005
300	68.705	5.756	11.513	17.270	23.026	28.783	34-539	30	.005	.008
10	11.451	5.756	11.511	17.267	23.022	28.778	34.533			
20	22.902	5.754	11.509	17.264	23.018	28.773	34.527			
30	34.353	5.753	11.507	17.260	23.014	28.767	34.520			
40	45.804	5.752	11.505	17.257	23.010	28.762	34 514			
50	57.255	5.751	11.503	17.254	23.006	28.757	34.508		<b>4</b> °	5°
400	68.706	5.750	11.501	17.251	23.002	28.752	34.502		0.000	0.000
10	11.451	5.749	11.498	17.247	22.996	28.746	34-495	5 10	100.	100.
20	22.903	5.748	11.496	17.243	22.991	28.739	34.487	15	.003	.003
30	34.354	5.746	11.493	17.240	22.986	28.733	34-479	20	.005	.coð
40 50	45.805 57.256	5.745	11.490 11.488	17.236	22.981 22.976	28.726 28.720	34.471	25	.007	.009
_	57.230 68.708	5-744		17.232			34.463	30	.011	.013
500		5.743	11.485	17.228	22.970	28.713	34-456			
10 20	11.452	5.741	11.482	17.223	22.964	28.705	34.446			
20 30	22.903	5-739 5-738	11.479 11.476	17.218 17.213	22.958 22.951	28.697 28.689	34.436			
40	34-355 45-806	5.736 5.736	11.4/0 11.472	17.209	22.951	28.681	34.427 34.417		6°	7°
50	57.258	5.735	11.469	17.204	22.938	28.673	34.408		<u> </u>	<u> </u>
6 00	68.710	5.733	11.466	17.199	22.932	28.665	34.398	5 10	0.000 .002	0.000
10	11.452	5.73I	11.462	17.193 17.188	22.924	28.656	34.3 ⁸ 7	15	.004	.005
20	22.904	5.729	11.458		22.917	28.646	34-375	20	.007	.008
30	34.356	5.727	11.455	17.182	22.910	28.637	34.364	25	110.	.013 .018
40	45.808	5.726	11.451	17.177	22.902	28.628	34-353	30	.016	-010
50 7 00	57.260 68.712	5.724	II.447	17.171	22.894 22.887	28.618 28.609	34-34 ²			
7 00	00.712	5.722	11.443	17.165	22.007	20.009	34.330			

SMITHSONIAN TABLES.

Digitized by GOOGLE

### CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TITES.

[Derivation of table explained on pp. liii-lvi.]

8		EL	- ORDINATES OF							
Lativude o parallel.	Meridional di tances from even degree parallels.	5' longitude.	IO' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	1	RDINA1 Develo Parali	OPED
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.			
7°∞′	68.712	5.722	11.443	17.165	22.887	28.609	34.330	Longitude interval.	7°	8°
10	11.452	5-720	11.439	17.159	22.878	28.598	34-317	<b>н</b>		
20	22.905	5.717	11.435	17.152	22.869	28.587	34.304		Inches.	Inches.
30	34.358	5.715	11.430	17.146	22.861	28.576	34.291	5	0.000	0.001
40	45.810	5.713	11.426	17.139	22.852	28.565	34.278	10	.002	.002
50	57.262	5.711	11.422	17.132	22.843	28.554	34.265	15	.002	.002
		-						20	.008	.009
8 00	68.715	5-709	11.417	17.126	22.834	28.543	34.252	25	.013	.014
	**							30	.018	.021
10 20	11.453 22.906	5.706	11.412	17.119	22.825 22.815	28.531	34-237	<u> </u>		
20 30		5.704 5.701	II.407 II.403	17.111	22.805	28.519 28.507	34.222 34.208			
40	34-359 45-812	5.699	11.403	17.104 17.096		28.494	34.208 34.193			
50	57.265	5.696	11.393	17.000	22.795 22.786	28.494	34-193			
900	68.718	5.694	11.388	17.082	22.776	28.470	34.163			109
,		7.024		-,	//5		57.05			
10	11.454	5.691	11.382	17.073	22.764	28.456	34.147			
20	22.907	s.688	11.377	17.065	22.754	28.442	34.130	5	100.0	0.001
30	33.361	5.686	11.371	17.057	22.742	28.428	34.114	10	.003	.003
40	45.814	5.683	11.366	17.049	22.732	28.415	34.097	15	.006	.006
50	57.268	5.680	11.360	17.040	22.720	28.401	34.081	20	.010. 610.	110. 810.
10 00	68.722	5-677	11.355	17.032	22.710	28.387	34.064	25 30	.023	.018
					aa 6a0		24.2.6		<b>.</b>	
10 20	11.454	5.674	11.349	17.023	22.698 22.685	28.372 28.357	34.046 34.028			
	22.909 34.263	5.671 5.668	11.343	17.014 17.005	22.005	28.357	34.020			
30 40	45.817	5.665	11.337 11.331	16.996	22.661	28.327	33.992			
50	57.272	5.662	11.324	16.987	22.649	28.311	33.973			
J-	5,,-	5.502					55.275	1	110	I 2 ⁰
11 00	68.726	5.659	11.318	16.978	22.637	28.296	33-955			
10	11.455	5.656	11.312	16.968	22.624	28.280	33.935	5	0.001	0.001
20	22.910	5.652	11.305	16.958	22.610	28.263	33.015	10	.003 .007	.003
30	34.365	5.649	11.298	16.048	22.597	28.246	33.895	15	.007	.014
40	45.820	5.646	11.292	16.938	22.584	28.230	33.875	25	.020	.021
50	57-275	5.642	11.285	16.928	22.570	28.213	33.855	30	.020	.031
12 00	68.730	5.639	11.278	16.918	22.557	28.196	33.835			
10	11.456	5.636	11.271	16.907	22.542	28.178	33.814			
20	22.912	5.632	11.264	16.896	22.528	28.160	33.792			
30	34.367	5.628	11.257	16.885	22.514	28.142	33.770			
40	45.823	5.625	11.250	16.874	22.499	28.124	33.749		13°	14°
50	57.279	5.621	11.242	16.864	22.485	28.106	33.727			
1300	68.735	5.618	11.235	16.853	22.470	28.088	33.706	5 10	0.001 .004	0.001 .004
10	11.457	5.614	11.227	16.841	22.455	28.069	33.682	15	.008	.009
20	22.913	5.610	11.220	16.829	22.439	28.049	33.659	20	.015	ð10.
30	34.370	<b>5.606</b>	11.212	16.818	22.424	28.030	33.635	25	.023	.025
40	45.827	5.602	11.204	16.806	22.408	28.010	33.612	3Õ	.033	-035
50	57.284	5.598	11.196	16.794	22.392	27.991	33.589			
14 00	68.740	5-594	11.188	16.783	22.377	27.971	33.565			-

#### CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TITT

ABSCISSAS OF DEVELOPED PARALLEL. :Ð Meridional dia tances from even degree parallela. ۲ ORDINATES OF Latitude o parallel. DEVELOPED 10' 15 201 25' 30' 5 PARALLEL. longitude. longitude. longitude longitude. longitude. longitude. Longitude interval. Inches. Inches. Inches. Inches. Inches. Inches. Inches. 15° 14⁰ 14°00′ 11.188 33.565 68.740 16.783 27.97 I 5-594 22.377 5.590 5.586 5.582 11.180 10 11.458 16.770 22.360 27.950 33.540 22.915 16.758 22.344 27.930 20 11.172 33.515 Inches Inches 34-373 45-830 57-288 27.009 27.888 33.490 33.465 30 11.163 16.745 22.327 0.001 5 100.0 11.155 16.733 5-578 22.310 40 IŌ .004 .004 11.147 27.867 5.573 16.720 22.294 33.440 50 .009 .016 .000 15 .017 20 27.846 1500 68.746 5.569 11.138 16.708 22.277 33.415 .026 25 .025 .038 30 33.389 33.362 .03Š 27.824 5.565 16.694 IO 11.459 11.130 22.259 5.560 27.802 22.241 20 22.917 11.121 34-376 45.834 33-335 33-308 22.223 30 5.556 11.112 16.667 27.779 16.654 11.103 27.757 40 5.551 33.282 50 57.293 5.547 11.004 16.641 22.188 27.735 16 00 68.752 5.542 11.085 16.628 22.170 27.713 33.255 170 160 11.460 11.076 16.613 27.689 IO 5.538 22.151 33.227 16.599 16.585 16.571 5.533 5.528 5.524 11.066 27.665 33.198 20 22.919 22.132 0.001 0.001 5 34.379 45.838 27.642 33.170 30 11.057 22.113 .005 ιō .004 11.047 27.618 33.142 40 22.094 .010 . . . 15 57.298 22.075 ςο 5.519 11.038 16.556 27.594 33.113 .019 20 .018 25 028 .020 16.542 68.758 33.085 17 00 5.514 11.028 22.056 27.571 3Ō .040 .042 22.036 10 11.461 5.509 11.018 16.527 27.546 33.055 5.504 5.499 16.512 11.008 22.016 20 22.921 27.521 33.025 34.382 45.843 16.497 16.482 30 10.998 10.988 21.996 27.495 32.994 5.494 5.489 21.976 32.964 **4**0 27.470 50 16.467 57.304 10.978 21.956 27.445 32.934 18° 100 18 00 5-484 16.452 68.764 10.968 27.420 21.936 32.904 11.462 10.957 16.436 32.872 10 5-479 21.915 21.894 27.394 0.001 0.001 5 22.924 34.386 45.848 5.473 5.468 10.947 16.420 20 27.367 32.840 .005 IŌ .005 21.872 32.800 10.936 16.404 30 27.341 15 .01Ī .0I 2 21.852 **4**0 5.463 10.926 16.389 27.315 32.777 20 .021 .020 5.458 32.746 10.915 16.373 21.830 50 57.310 25 .031 .032 .046 30 .044 21.809 68.771 16.357 19 00 5.452 10.905 27.262 32.714 11.463 10.893 16.340 21.787 32.680 27.234 27.206 10 5-447 22.926 5.441 16.324 16.307 21.765 32.647 20 10.871 34.390 45.853 5.436 27.178 32.614 30 21.742 40 32.580 5.430 10.860 16.200 21.720 27.1 50 10.849 20⁰ 21⁰ 16.274 21.698 50 57.316 5.424 27.123 32.547 68.779 10.838 20 00 5.419 16.257 21.676 27.095 32.513 5 100.0 0.001 10.826 .005 11.464 16.239 21.652 IŌ .006 32.478 10 5.413 27.065 32.443 32.408 .012 10.814 16.222 21.620 15 .013 20 22.929 5.407 27.036 34·394 45-858 21.605 2Ō .022 .022 10.803 16.204 30 5.401 27.007 21.582 32.373 32.338 40 5.396 10.791 16.187 26.978 25 .034 .035 30 .049 .051 50 10.779 16.169 21.558 26.048 57.322 5.390 5.384 10.768 26.919 21 00 68.787 16.151 21.535 32.303

[Derivation of table explained on pp. liii-lvi.]

SMITHSONIAN TABLES.

## CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ....

[Derivation of table explained on pp. lili-lvi.]

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			AB	SCISSAS	OF DEV	ELOPED	PARALL	el.			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Latitude of parallel.	Meridional dis- tances from even degree parallela.			-				I	DEVELO	PED
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	ude al.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	21°00′	<b>68.</b> 787	5.384	10.768	16.151	21.535	26.919	32.303	interv	210	22 ⁰
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	22.932	5.372	10.743	16.115	21.486	26.858	32.230		Inches.	Inches.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		34-397							5		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							26.767				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	37.3-9	3.333	10.707	10.000		=0.707	5			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22 00	68.795	5-347		16.042	21.389		32.083	25	-035	.036
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			5.341			21.363	26.704		1 30	.051	.052
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			5-334	10.009	10.003	21.338					
5057.3365.31510.63115.94621.26126.57731.89223 0068.8035.30910.61815.92721.23626.54531.85323°2022.9375.20610.59115.86721.18226.47831.77450.0012022.9375.20610.59115.86721.18226.47831.77450.0010.0024045.8745.28910.55515.84721.12926.41231.654200.220.0245057.3435.27610.55115.84721.10226.37831.614300.0540.0242022.9405.26310.52615.78921.05226.31531.577250.0380.3932022.9405.26310.52615.78921.02226.31531.577250.0360.3932022.9405.24210.49815.74520.99526.24431.4930.0540.5562115.75720.99726.09334.4055.24210.44815.72520.90726.20331.455250.688.215.22710.45515.68220.91026.13731.32550.0020.0022022.9435.21510.442615.56320.85226.05331.279100.0560.058250.688.215.22010.41115.66120.88126.10131.32250.0020.002		45.868	5.320	10.050	15.904	21.312				ļ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		57.336		10.611				31.802			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-								<u> </u>	220	240
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		** 160					a6	ar 81a		-5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					15.007		26.478				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5.280	10.578	15.867		26.445	31.733	5		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5.282		15.847		26.412	31.694			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					15.827		26.378				.025
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	24 00	68.812	5.269	10.538		21.076	26.345	31.614	25	.038	.039
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	11 470	5.262	10.526	15.780	21.052	26.215	31.577			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	, ,				15.767		26.279		ł		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				10.483				31.450	1	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50		5.235	10.469	-	20.938				25°	26°
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25 00	68.821	5.227	10.455	15.682	20.910	26.137	31.365		<u> </u>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						20.881					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						20.852					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		34.415					-				.026
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		43.000									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<b>1 3</b>		J. 171		- 3- 31 3		-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	J			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26 00	68.830	5.184	10.369	I 5-553	20.737		· .			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					15.531		25.884			1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		22.946	5.169	10.339	15.508		25.847			1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		34.419			15.486						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						20.018	00.000	30.882		27 ⁰	28°
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	27 00	68.838	5.140	10.279	15.419	20.558	25.698	30.838			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	11.475	5.132	10.264	15.396	20.528	25.659	30.791			
30         34.424         5.116         10.233         15.349         20.466         25.582         30.699         25         .042         .043           40         45.899         5.109         10.218         15.326         20.435         25.544         30.653         30         .042         .043           50         57.374         5.101         10.202         15.303         20.404         25.505         30.607         30         .061         .063						20.497	25.621	30.745			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		34.424	5.116	10.233	15.349						
50 57.374 5.101 10.202 15.303 20.404 25.505 30.007 0								30.053			
<b>28 00</b> 68.849 5.093 10.187 15.280 20.374 25.467 30.560	<b>5</b> 0	57.374	5.101	10.202	15.303	20.404	25.505	30.007	<b>1</b>		Ť
	28 00	68.849	5.093	10.187	1 5.280	20.374	25.467	30.560			т

SMITHSONIAN TABLES.

## CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TITT

[Derivation	of table	explained	OB DD.	liii-lvi. 1

		1								
	Meridional dis- tances from even degree parallels.	AB	SCISSAS	OF DEV	EL.		RDINAT	PR OF		
de lei. o	Meridional di tances from even degree parallela.		1		1			נין	DEVELO	OPED
Latitude parallel.	are of the second	5	10'	15	20'	25	30'	1 1	PARALI	للقام ا
3*	Хчон	longitude.	longitude.	longitude.	longitude.	longitude.	longitude.			
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	itude val.	- 00	
28°00′	68.849	5-093	10.187	1 5.280	20.374	25.467	30.560	Longitude interval.	28°	29 ⁰
10	11.476	5.085	10.171	15.256	20.342	25.427	30.513			
20	22.953	5.077	10.155	15.232	20.310	25.387	30.465		Inches.	Inches.
30	34-430	5.069	10.139	1 5.208	20.278	25.347	30.417	5	0.002	0.002
40	45.906	5.061	10.123	15.185	20.246	25.308	30.369	10	.007	.007
50	57.3 ⁸ 3	5-054	10.107	15.161	20.214	25.268	30.321	15 20	.016 .028	.016 .028
29 00	68.859	5.046	10.091	15-137	20.182	25.228	30.274	25 30	.043 .063	.044 .064
10	11.478	5-037	10.075	15.112	20.150	25.187	30.224	<b>1</b>		· · · · · ·
20	22.957	5.029	10.058	15.087	20.117	25.146	30.175			
30	34-435	5.021	10.042	15.063	20.084	25.105	30.126			
40	45.913	5.013	10.025	15.038	20.051	25.064	30.076			
50	57-391	5.004	10.009	15.013	20.018	25.022	30.027			
30 00	68.870	4-996	9-993	14.989	19.985	24.981	29.978		30°	31°
10	11.480	4.988	9.976	14.963	19.951	24.939 24.896	29.927			
20	22.960	4.979	9.959	14.938	19.917	24.896	29.876	5	0.002	0.002
30	34-440	4-97 I	9-942	14.912	19.883	24.854	29.825	10	.007	-007
40	45.920	4.962	9-925	14.887	19.849	24.812	29.774	15	.016	.017
50	57-400	4-954	9.908	14.862	19.815	24.769	29.723	20 25	.029 .045	.030 .046
31 00	68.880	4-945	9.891	14.836	19.782	24.727	29.672	3ŏ	.065	.067
10	11.482	4-937	9.873	14.810	19.747	24.683	29.620			
20	22.964	4.928	9.856	14.784	19.712	24.640	29.568			
30	34-446	4.919	9.838	14.758	19.677	24.596	29.515			
40	45.927	4.910	9.821	14.731	19.642	24.552	29.463			
50	57-409	4.902	9.804	14.705	19.607	24.509	29.411		32°	33°
32 00	68.891	4-893	9.786	14.679	19.572	24-465	29.358			
10	11.484	4.884	9.768	14.652	19.536	24.420	29.305	5	0.002	0.002
20	22.967	4.875	9.750	14.625	19.500	24.376	29.251	10	.007	.008
30	34.451	4.866	9·732	14.598	19.465	24.331 24.286	29.197	15	.017	.017
40	45.934	4.857	9.714	14.572	19.429		29.143	20 25	.030	.031 .048
50	57-418	4.848	9.696	14.545	19.393	24.241	29.089	25 30	.047 .068	.040
33 00	68.902	4.839	9.679	14.518	19.357	24.196	29.036			
10	11.485	4.830	9.660	14.490	19.320	24.150	28.980			
20	22.971	4.821	9.642	14.462	19.283	24.104	28.925			
30	34.456	4.812	9.623	14.435	19.246	24.058	28.870			
40 50	45.942 57 <b>.</b> 427	4.802 4.793	9.605 9.586	14.407 14.379	19.210 19.173	24.012 23.966	28.814 28.759		34°	35°
34 00	68.913	4.784	9.568	14.352	19.136	23.920	28.704	5	0.002	0.002
_					0	an 0		10	.008	.008
10	11.487	4.774	9.549	14.323	19.098	23.872	28.647	15	.017	810.
20	22.975	4.765	9.530	14.295	19.060	23.825	28.590	20	.031	.031
30	34.462	4.755	9.511	14.267	19.022 18.984	23.778	28.533 28.476	25	.049	.049
40 50	45-949 57 <b>-4</b> 37	<b>4.</b> 740 <b>4.</b> 7 <b>37</b>	9.492 9-473	14.238 14.210	18.946	23.730 23.683	28.420	30	.070	-071
35 00	68.924	4.727	9-454	14.181	18.908	23.6 <u>3</u> 6	28.363			
<u> </u>										

SMITHBONIAN TABLES.

Digitized by GOOGLE

# CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TITES

[Derivation of table explained on pp. liii-lvi.]

		AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional di tances from even degree parallels.	5' longitude.	IO' longitude.	I 5' longitude.	20' longitude.	25´ longitude.	30' longitude.	Ī	EDINAT DEVELO PARALL	PED
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	ral.		
35°00′	68.924	4.727	<b>9-4</b> 54	14.181	18.908	23.636	28.363	Longitude interval.	35°	36°
10 20 39 49 59	11.489 22.978 34.468 45.957 57.446	4.717 4.708 4.698 4.688 4.679	9-435 9-415 9-396 9-377 9-357	14.152 14.123 14.094 14.065 14.036	18.870 18.831 18.792 18.753 18.714	23.587 23.539 23.490 23.442 23.393	28.305 28.246 28.188 28.130 28.072	5 10 15	Inches. 0.002 .008 .018	<i>Inches.</i> 0.002 .co8 .018
36 00	68.935	4.669	9.338	14.007	18.676	23.345	28.014	20 25	.031 .049	.032 .050
10 20 30 40 50	11.491 22.983 34-474 45.965 57-457	4.659 4.649 4.639 4.629 4.619	9.318 9.298 9.278 9.258 9.238	13.977 13.947 13.917 13.887 13.858	18.636 18.596 18.556 18.517 18.477	23.295 23.245 23.195 23.146 23.096	27.954 27.894 27.835 27.775 27.715	30	.071	.072
37 00	68.948	4.609	9.219	13.828	18.437	23.046	27.65 <b>6</b>		37°	38°
10 20 30 49 50	11.493 22.986 34.480 45.973 57.466	4.599 4.589 4.579 4.568 4.558	9.198 9.178 9.157 9.137 9.117	13.797 13.767 13.736 13.706 13.675	18.396 18.356 18.315 18.274 18.234	22.995 22.944 22.894 22.843 22.792	27.594 27.533 27.472 27.411 27.350	5 10 15 20 25	0.002 .008 .018 .032 .050	0.002 .008 .018 .033 .051
38 00	68.959	4.548	9.096	13.645	18.193	22.741	27.289	30	.073	.073
10 20 30 40 50	11-495 22.990 34-485 45-980 57-475	4.538 4.527 4.517 4.506 4.496	9.076 9.055 9.034 9.013 8.992	13.613 13.582 13.551 13.520 13.488	18.151 18.109 18.068 18.026 17.984	22.689 22.637 22.585 22.533 22.48I	27.227 27.164 27.102 27.039 26.977			40°
39 00	68.970	4-486	8.971	13.457	17.943	22.429	26.914			40
10 20 30 40 50	11-497 22.994 34-491 45.988 57-485	4·475 4-464 4-454 4·443 4-433	8.950 8.929 8.908 8.886 8.885	I 3.425 I 3.393 I 3.36I I 3.330 I 3.298	17.900 17.858 17.815 17.773 17.730	22.375 22.322 22.269 22.216 22.163	26.851 26.787 26.723 26.659 26.595	5 10 15 20 25 30	0.002 .008 .018 .033 .051 .074	0.002 .008 .019 .033 .052 .074
40 00	68.982	4.422	8.844	13.266	17.688	22.110	26.532			
10 20 30	11.499 22.998 34-497	4-411 4-400 4-389	8.822 8.800 8.779	13.233 13.201 13.168	17.644 17.601 17.557	22.055 22.001 21.947 21.892	26.466 26.401 26.336 26.271			
40 50	45.996 57-495	4.378 4.368	8.7 57 8.735	13.135	17.514 17.470	21.838	26.206		41°	42 ⁰
41 00 10	68.994 11.501	4-357 4-346	8.713 8.691	13.070 13.037	17.427 17.383	21.784 21.728	26.140 26.074	5 10	0.002	0.002
20 30 40 50	23.002 34.503 46.004 57.506	4-335 4-324 4-312 4-301	8.669 8.647 8.625 8.603	13.03/ 13.004 12.971 12.937 12.904	17.303 17.338 17.294 17.250 17.205	21.673 21.673 21.618 21.562 21.507	26.007 25.941 25.875 25.808	15 20 25 30	.019 .033 .052 .075	.019 .033 .052 .075
42 00	69.007	4.290	8.581	12.871	17.161	21.451	25.742			т
Burruson	IAN TAD						- D	igitize	aby G	<del>oogl</del>

#### TABLE 22. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE THEF

ABSCISSAS OF DEVELOPED PARALLEL. ġ Meridional dia tances from even degree parallels. 멍 ORDINATES OF Latitude o parallal. DEVELOPED 20' 30' 5 10 15 25 PARALLEL. longitude. longitude. longitude longitude longitude. longitude Longitude interval. Inches. Inches. Inches. Inches. Inches. Inches. Inches. 42⁰ 43⁰ 42°00' 8.581 12.871 69.007 17.161 21.451 25.742 4.200 8.558 12.837 21.395 21.338 21.282 25.674 IO 11.503 **4.2**79 **4.26**8 17.116 8.535 8.513 12.803 20 17.071 25.606 Inches. Inches 34.510 46.01 3 12.769 25.538 30 4.256 17.025 0.002 0.002 5 16.980 8.490 12.735 40 4.245 21.225 25-470 .008 .008 IÕ 50 4.234 16.935 21.169 8.467 57.510 12.701 25.402 .019 . 019 15 .033 .033 20 8.445 12.667 16.800 4.222 43 00 21.112 60.010 25.334 .052 .052 25 .075 .075 30 12.633 12.598 12.564 16.844 16.798 25.265 4.211 8.422 21.054 11.505 10 4.199 4.188 8.399 8.376 8.353 25.196 23.010 20 20.997 16.751 34.515 20.939 20.882 25.127 30 40 4.176 12.529 16.705 25.058 8.330 20.824 24.980 50 4.165 12.494 16.659 57.525 44 00 16.613 69.030 4.153 8.307 12.460 20.767 24.920 44° 45° 8.283 20.708 24.849 10 11.507 4.142 12.425 16.566 20 23.014 4.130 8.260 12.390 16.519 20.649 24.779 0.002 0.002 ٢ 4.118 8.236 30 34.522 12.354 16.473 20.591 24.709 ĩõ .008 .008 8.213 40 4.106 12.319 16.426 20.532 .019 .oig 15 24.568 8.189 12.284 16.379 20.473 50 57.536 4.095 .034 -034 20 .052 .053 .076 25 69.043 4.083 8.166 24.498 45 00 12.249 16.332 20.415 30 .075 8.142 16.284 24.426 10 11.509 4.071 12.213 20.355 8.118 16.236 16.188 20.295 20 4.059 12.177 24.354 24.283 34.528 46.037 8.094 12.141 30 4.047 20.236 40 4.035 8.070 12.105 16.141 20.176 24.211 8.046 20.116 50 57.546 4.023 12.070 16.093 24.139 47° 46° 46 00 24.068 69.055 4.011 8.023 12.034 16.045 20.056 15.997 15.948 15.899 3.999 3.987 11.997 11.961 23.995 10 11.511 7.998 19.996 0.002 0.002 5 23.922 23.849 23.776 .008 23.023 ıõ .008 20 7.974 19.935 19.974 19.813 34-534 46.045 3.975 3.963 11.925 30 7.950 15 .019 .019 15.851 20 .034 .034 40 7.925 15.802 11.852 .053 .076 7.901 19.753 25 .052 50 57.557 3.951 23.703 3ŏ .075 47 00 69.068 7.877 11.815 19.692 23.630 3.938 15.754 7.852 15.704 15.655 15.606 19.630 19.569 11.513 3.926 11.778 10 23.556 3.914 7.827 20 23.027 11.741 23.482 3.901 3.889 7.803 7.778 34.540 46.053 11.704 11.667 30 19.507 23.408 15.556 15.507 40 23.334 23.260 19.445 48° 49° 19.383 50 57.567 3.877 7.753 11.630 48 00 69.080 3.864 7.729 11.593 19.322 23.186 15.457 0.002 0.002 5 .008 .008 IŌ 11.555 11.518 3.852 19.259 10 11.516 7.704 1 5.407 23.111 15 .019 .019 3.839 15.357 15.307 15.257 23.035 22.960 22.885 20 23.031 7.679 19.196 20 .033 .033 7.653 34.546 46.062 3.827 11.480 30 19.134 .052 .052 25 40 3.814 19.071 11.442 .075 30 .075 3.802 7.603 11.405 15.206 19.008 22.810 ŝo 57.577 3.780 **49 0**0 60.003 7.578 11.367 15.156 18.945 22.734

[Derivation of table explained on pp. liii-lvi.]

SMITHSONIAN TABLES.

### CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TIST

[Derivation of table explained on pp. liii-lvi.]

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		in a single	AB	SCISSAS	OF DEV	eloped	PARALL	EL.			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Latitude of parallel.	Meridional di tances from even degree parallela.	-			•	•	-	I	DEVELO	PED
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	rade rai		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	49°00′	69.093	3.789	7.578	11.367	15.156	18.945	22.734	Longi	490	500
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			3.776					22.658			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								22.501			Inches.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	, [,] ,	51-5-1	37-3	7.43-	,-		,				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	\$0.00	69.105	3.713	7.425	11.138	14.850	18.563	22.276			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			57-5								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	11.520		7.399	11.099	14.799	18.499	22.198	30	.075	-075
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20		3.687		11.060	14.747	18.434				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				7.348			18.369			l i	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	46.078					18.305			ł	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>5</u> 0	57.598	3.648		10.944	14.592	18.240	21.888			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	51 00	69.117	3.635	7.270	10.905	14.540	18.176	21.811		51°	52°
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	11.521	3.622	7.244	10.866	14.488	18.110	21.732	<u> </u>		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				7.218		14.436		21.653		0.002	0.002
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30				10.787	14.383			10		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					10.748		17.913				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	\$7.607		7.139	10.709	14.278	17.848	21.417			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	52 00	<b>69.</b> 128		7.113	10.669	14.226	17.782	21.338	25	.051	.051
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11.522	2.542	7.086	10 620	14.172	17.716	21.250		1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										53°	54°
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	53∞	09.140									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				6.926							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	• • • •										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.872							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.045							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	57.027	3-409	0.010	10.220	13.037	17.040	20.455			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	54 00	69.152	3.396	6.791	10.187	13.583	16.979	20.374	JU	~/3	,.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				e.e.					1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11.527	3.382				10.910				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		23.055	3.308								
50         57.636         3.327         6.655         9.982         13.310         16.637         19.964         55°         50°           55 00         69.164         3.314         6.628         9.941         13.255         16.569         19.883         5         0.002         0.002           10         11.529         3.300         6.600         9.900         13.200         16.500         19.800         15         0.08         .008           20         23.059         3.286         6.572         9.859         13.145         16.431         19.717         20         0.32         .031           30         34.588         3.272         6.545         9.817         13.089         16.362         19.634         25         .049         .049           40         46.117         3.258         6.517         9.776         13.034         16.293         19.551         30         .071         .070           50         57.646         3.245         6.489         9.734         12.979         16.224         19.468         30         .071         .070	30	34.502		6,699		13.419					
55 00         69.164         3.314         6.628         9.941         13.255         16.569         19.883         5         0.002         0.002           10         11.529         3.300         6.600         9.900         13.200         16.500         19.800         15         .008         .008           20         23.059         3.286         6.572         9.859         13.145         16.431         19.717         20         .032         .031           30         34.588         3.272         6.545         9.817         13.089         16.302         19.634         25         .049         .049           40         46.117         3.258         6.517         9.776         13.034         16.293         19.551         30         .071         .070           50         57.646         3.245         6.489         9.734         12.979         16.224         19.468         30         .071         .070		57.636		6.655	9.982	13.304	16.637			55°	56°
10         11,529         3,300         6,000         9,900         13,200         16,500         19,000         15         .018         .018           20         23,050         3,286         6,572         9,859         13,145         16,431         19,717         20         .032         .031           30         34,588         3,272         6,545         9,817         13,069         16,362         19,634         25         .049         .031           40         46,117         3.258         6,517         9,776         13,034         16,293         19,551         30         .071         .049           50         57,646         3,245         6,489         9,734         12,979         16,224         19,408         30         .071         .070								19.883			
20         23.050         3.286         6.572         9.859         13.145         16.431         19.717         20         .032         .031           30         34.588         3.272         6.545         9.817         13.089         16.362         19.634         25         .049         .049           40         46.117         3.258         6.517         9.776         13.034         16.293         19.551         30         .071         .070           50         57.646         3.245         6.489         9.734         12.979         16.224         19.468         30         .071         .070	10	11.020	2,200	6.600	0.000	13.200	16.000	19.800			
30         34.588         3.272         6.545         9.817         13.089         16.362         19.634         25         .049         .049           40         46.117         3.258         6.517         9.776         13.034         16.293         19.551         30         .049         .049           50         57.646         3.245         6.489         9.734         12.979         16.224         19.468         30         .071         .070			3,286		0.800		16.431				
40 46.117 3.258 6.517 9.776 13.034 16.293 19.551 30 .071 .070 50 57.646 3.245 6.489 9.734 12.979 16.224 19.468 30 .071 .070		24.488			9.817	13.080	16.362				
<b>50</b> 57.646 3.245 6.489 9.734 12.979 16.224 19.468 30 10, 1		46.117					16.293				
		57.646						19.468	30	.0/1	,.
		_					16.155				
			1	l	1	l	I	l			

SMITHSONIAN TABLES.

Digitized by GOOSIC

.

#### TABLE 22. CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TITT

	: ¹ 88	AB	SCISSAS	OF DEV	eloped	PARALL	EL.			
Latitude of parallel.	Meridional dia tances from even degree parallela.	5 longitude.	IO' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	1	DINAT DEVELO PARALL	PED
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	a ie		
56°∞′	69.176	3.231	6.462	9.693	12.924	16.155	19.385	Longitude interval.	56°	57°
10	11.531	3.217	6 4 3 4	9.651	12.868	16.085	19.301	<u> </u>		
20	23.063	3.203	6.406	9.609	12.812	16.015	19.217		Inches.	Inches.
30	34.594	3.189	6.378	9-567	12.756	15.945	19.134	5	0.002	0.002
40	46.125	3.175	6.350	9.525	12.700	15.875	19.050	IŌ	.008	.008
50	57.656	3.161	6.322	9.483	12.644	15.805	10.900	15	.018	.017
57∞	69.188	3.147	6.294	9,441	12.588	15.735	18.882	20	.031	.031
, " ~ I		J. 47		****		- 37,33		25	.049	.048
10	11.533	3.133	6.266	9.398	12.531	15.664	18.797	30	.070	.069
20	11.533 23.066	3.119	6.237	9.356	12.475	15.594	18.712			
30	34-599	3.104	6.209	9.314	12.418	15.523	18.627			
40	46.132	3.090	6.181	9.271	12.362	15.452	18.542			
50	57.666	3.076	6.152	9.229	12.305	15.381	18.457			
58 oo	69.199	3.062	6.124	9.186	12.248	15.311	18.373		58°	59°
10	11.535	3.048	6.096	9.143	12.191	15.239	18.287	┣──		
20	23.070	3.034	6.067	0.101	12.134	15.168	18.201	5	0.002	0.002
30	34.605	3.019	6.038	9.058	12.077	15.096	18.115	I IO	.008	.007
40	46.140	3.005	6.010	9.015	12.020	15.025	18.029	15	.017	.017
50	57.675	2.991	5.981	8.972	11.962	14.953	17.944	20	.030	.030
59 <b>0</b> 0	69.210	2.976	5-953	8.929	11.905	14.882	17.858	25 30	.047 .068	.046 .067
10	11.537	2.962	5.924	8.885	11.847	14.809	17.771			
20	23.074	2.947	5.895	8.842	11.790	14.737	17.684	Í		
30	34.610	2.933	5.866	8.799	11.732	14.665	17.597			
40	46.147	2.918	5.837	8.755	11.674	14.592	17.510	i i		
50	57.684	2.904	5.808	8.712	11.616	14.520	17.424			
60 00	69.221	2.890	5·779	8.669	11.558	14-448	17-337		60°	61°
10	11.539	2.875	5.750	8.625	11.500	14.375	17.249	5	0.002	0.002
20	23.077	2.860	5.721	8.581	11.441	14.302	17.162	10	.007	.007
30	34.616	2.846	5.691	8.537	11.383	14.229	17.074	15	.016	.016
40	46.154	2.831	5.662	8.493	11.324	14.156	16.987	20	.029	.029
50	57.693	2.816	5.633	8.450	11.266	14.083	16.899	25	.045	-045
61 00	69.232	2.802	5.604	8.406	11.208	14.010	16.811	30	.065	.064
10	11.540	2.787	5.574	8.361	11.148	13.026	16.723	1		
20	23.081	2.772	5.545	8.317	11.000	13.936 13.862	16.634			
30	34.621	2.758	5.115	8.273	11.030	13.788	16.546			
40	46.162	2.743	5.486	8.229	10.972	13.715	16.457		62°	6.0
50	57.702	2.728	5.456	8.184	10.912	13.641	16.369		02-	63°
62 00	69.242	2.713	5.427	8.140	10.854	1 3.567	16.280	5	0.002	0.002
10	11.542	2 699	5.307	8.096	10.794	13.493	16.191	10	.007	.007
20	23.084	2.684	5·397 5·367	8.051	10.734	13.418	16.102	15	.016	.015
30	34.626	2.669	5.337	8.006	10.675	13.344	16.012	20	.028	.027
40	46.168	2.654	5.308	7.961	10615	13.269	15.923	25	.044	-043
50	57.710	2.639	5.278	7.917	10.556	13.195	15.833	30	.063	.061
63 00	69.253	2.624	5.248	7.872	10.496	13.120	15.744			

[Derivation of table explained on pp. liii-lvi.]

.

SMITHSONIAN TABLES.

## CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TITT

[Derivation of table explained on pp. liii-lvi.]

5	ul dia- om ree	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.		DINAT	
Latitude ( parallel.	Meridional di tances from even degree parallels.	5 [°] longitude.	10' longitude.	I 5´ longitude.	20' longitude.	25' longitude.	30' longitude.	I	PARALL	PED
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	al.	63°	64°
63°∞′	69.253	2.624	5.248	7.872	10.496	13.120	I 5.744	Longitude interval.	03	~4
10	11.544	2.609	5.218	7.827	10.436	13.045	15.654	<u> </u>		
20 30	23.087 34.631	2.594 2.579	5.188 5.158	7.782	10.376	12.970	15.564 15.473		Inches.	Inches.
40	46.175	2.564	5.128	7.737	10.256	12.820	15.383	5	0.002	0.002
50	57.718	2.549	5.098	7.647	10.196	12.745	15.293	10	.007 .015	.007 .015
64 00	69.262	2.534	5.068	7.602	10.136	12.670	1 5.203	20 25	.027 .043	.026 .041
10	11.545	2.519	5.037	7.556	10.075	12.594	15.112	30	.061	-060
20	23.091	2.504	5.007	7.511	10.014	12.518	1 5.022			
30	34.636	2.488	4.977	7.465	9.954	12.442	14.930			
40 50	46.182	2-473 2-458	4.947	7.420	9.893 9.832	12.367 12.291	14.840			
_	57.727	2.450	4.916	7.374	9.032	12.291	14.749			
<b>65</b> ∞	69.272	2.443	4.886	7.329	9.772	12.215	14.658	Ì	65°	66°
10	11.547	2.428	4.855	7.283	9.711	12.139	14.566		0.002	0.002
20 20	23.094	2.412	4.825	7.237	9.650 9.588	12.062	14.474 14.383	5 10	.0002	.006
30 40	34-641 46-188	2.397	4.794 4.764	7.191	9.500	11.900	14.303	15	.014	.014
50	57.735	2.366	4-733	- 7.100	9.466	11.833	14.199	20	.026	.025
			+/35	/	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-+-	25	.040	.039
66 00	69.282	2.351	4.702	7.054	9.405	11.756	14.107	30	.058	.056
10	11.548	2.336	4.672	7.007	9-343 9-282	11.679	14.015	1	1	
20	23.097	2.320	4.641	6.961		11.602	13.922 13.830			
30 40	34.646 46.194	2.305 2.290	4.610	6.915 6.869	9.220 9.158	11.525	13.738		·	
50	57.742	2.274	4-579 4-548	6.823	9.097	11.371	13.645	1	67°	68°
67 00	69.291	2.259	4.518	6.776	9.035	11.294	13.553			
				6				5	0.001	0.001
10	11.550	2.243	4-487	6.730 6.683	8.973	11.217	13.460	10	.006	.006
20 30	23.100 34.650	2.228 2.212	4.455	6.637	8.911 8.849	11.139	13.366 13.273	15	.014	.013 .023
- <del>3</del> 0 40	46.200	2.197	4-424 4-393	6.590	8.787	10.984	13.180	25	.024	.023
50	57.750	2.181	4.362	6.543	8.724	10.906	13.087	30	.054	.053
68 00	69.300	2.166	4-33I	6.497	8.662	10.828	12.994			
10	11.552	2.150	4.300	6.450	8.600	10.750	12.900		1	
20	23.103	2.134	4.269	6.403	8.538	10.672	12.806			
30	34.654	2.119	4.237	6.356	8.475	10.594	12.712		69°	70°
40	46.206	2.103	4.206	6.309	8.412	10.516	12.619	I I	9	70-
<u>5</u> 0	57.758	2.088	4.175	6.263	8.350	10.438	12.525	-		
<u>69</u> 00	69.309	2.072	4.144	6.216	8.288	10.360	12.431	5 10 15	0.001	0.001 .005 .012
10	11.553	2.056	4.112	6.169	8.225	10.281	12.337	20	.022	.012
20	23.106	2.040	4.081	6.121	8.162	10.202	12.242	25	.035	.034
30	34.659	2.025	4.049	6.074	8.099	10.124	12.148	30	.051	.049
40 50	46.212 57.764	2.009 1.993	4.018 3.986	6.027 5.980	8.036 7.973	10.045 9.966	12.054 11.959		_	
70 00	69.317	1.977	3.955	5.932	7.910	9.888	11.865			
Ľ.							I		G	
								1111172	Statement of the local division in which the local division in the	4-34-34-3-4

SMITHSONIAN TABLES.

### CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TITT

	÷.	ÅB	SCISSAS	OF DEV	ELOPED	PARALL	BL-			
Latitude of parallel.	Meridionel di tances from even degree parallela.	5 longitude.	10' longitude.	I 5 longitude.	20' longitude.	25' longitude.	30' . longitude.	I	RDINAT DEVELO PARALL	PED
70°00′	Inches. 69.317	Inches. 1.977	Inches.	Inches.	Inches. 7.910	Inches. 9.888	Inches. 11.865	Longitude interval.	70°	71°
/***		1.9//	3-955	5.932			11205	2ª		
10 20	11.554	1.962	3.923 3.892	5.885	7.846	9.808	11.770			
30	23.109 34.663	1.946 1.930	3.860	5.837 5.790	7.783	9.729 9.650	11.675	ر ا	Inches.	Inches.
40	46.217	1.014	3.828	5.742	7.656	9.571	11.485	10	0.001	0.001
50	57.772	1.898	3.796	5.695	7.593	9.491	11.389	15	.005 .012	.012
71 œ	69.326	1,882	3.765	5.647	7.530	9412	11.294	20 25	.022 .034	.021 .032
10	11.556	1.866	3-733	5.600	7.466	9-333	11.199	30	-049	-047
20	23.111	1.800	3.701	5.552	7.402	9.253	11.103	I		
30	34.667	1.835	3.669	5.504	7.338	9.173	11.008			
40	46.222	1.819	3.637	5.456	7.275	9.094	10.012	1		
50	57.778	1.803	3.605	5.408	7.211	9.014	10.816			
72 00	69.334	1.787	3· <b>574</b>	5.360	7.147	8.934	10.721		72 ⁰	73°
10	11.557	1.771	3-542	5.312	7.083	8.854	10.625			
20	23.114	1.755	3.509	5.264	7.019	8.774	10.528	5	0.001	0.001
30	34.670	1.739	3-477	5.216	6.955	8.694	10.432	IÕ	-005	
40	46.227	1.723	3-445	5.168	6.891 6.826	8.614	10.336	15	110.	.011
50	57.784	1.707	3-413	5.120	0.020	8.533	10.240	20	.020	.019
73∞	69.341	1.691	3.381	5.072	6.762	8.453	10.144	25 30	.03I .044	.029 .042
10	11.558	1.674	3.349	5.024	6.698	8.373	10.047			
20	23.116	1.658	3-317	4-975	6.634	8.292	9.820			
30 40	34.674 46.232	1.642 1.626	3.284	4.927 4.878	6.569	8.211 8.131	9853			
50	57.790	1.610	3.252 3.220	4.830	6.440	8.050	9.757			
74 00	69.348	1.594	3.188	4.782	6.376	7.970	9.563		74°	75°
10	11.559	1.578	3.155	4.722	6.311	7.889	9.466	5	0.001	100.0
20	23.118	1.562	3.123	4.733 4.685	6.246	7.808	9.369	10	.004	.004
30	34.677	1.545	3.091	4.636	6.181	7.727	9.272	15	.010	.009
40	46.236	1.529	3.058	4-587	6.116	7.645	9.175	20	.018	.017
50	57.796	1.513	3.026	4-539	6.052	7.565	9.077	25	.028	.026 .038
75∞	69.355	I-497	2.993	4.490	5.987	7-484	8.980	30		ەر د
10	11.560	1.480	2.961	4.441	5.922	7.402	8.882			
20	22.120	1.464	2.928	4.392	5.856	7.321	8.785			1
30	34.681	I.448	2.896	4.344	5.792	7.240	8.687			
40 50	46.241 57 <b>.80</b> 1	1.432 1.415	2.863 2.831	4.295 4.246	5.726 5.661	7.158	8.590		76°	77°
-			-		· .	7.077	8.492		<u> </u>	
76 00	69.361	1.399	2.798	4.197	5.596	6.995	8.394	5	0.001	0.001
10	11.561	1.383	2.765	4.148	5.530	6.913	8.296	10	.004	.004
20	23.122	1.366	2.733	4.099	5-465	6.832	8.198	15	.009 .016	.008 .015
30	34.683	1.350	2.700	4.050	5.400	6.750 6.668	8.099	20 25	.010	.015
40 50	46.244 57 <i>.</i> 806	I.334 I.317	2.667 2.634	4.001 3.952	5.334 5.269	6.586	8.002 7.903	30	.036	.013
77 <b>00</b>	69.367	1.301	2.602	3.903	5.204	6.505	7.805		Ţ	

[Derivation of table explained on p. liii-lvi.]

SMITHSONIAN TABLES.

## CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TITE

8		A	BSCISSAS	OF DE	ELOPED	PARALE	ŝL.			
Latitude o parallel.	Meridional di tances from even degree parallela.	5 ^{' .} longitude.	10' longitude.	I 5' longitude.	20' longitude.	25 longitude.	30' longitude.	1	RDINAT DEVELO PARALL	PED
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	epi-je		
77°00′	69.367	1.301	2.602	3.903	5.204	6.505	7.805	Longitude interval.	77°	78°
10	11.562	1.284	2.569	3.854	5.138	6.423	7.707			
20	23.124	1.268	2.536	3.804	5.072	6.341	7.609		Inches.	Inches.
30	34.686	1.252	2.503	3-755	5.006	6.258	7.510	5	0.001	0.001
40	46.248	1.235	2.470	3.706	4-941	6.176	7-411	10	.004	.003
50	57.810	1.219	2.438	3.656	4.875	6.094	7.313	15	.004	.005
78 œ	69-373	I.202	2.405	3.607	4.810	6.012	7.214	20 25	.015 .023	.014 .021
10	11.563	1.186	2.372	3.558	4.744	5.930	7.115	30	.033	-031
20	23.120	1.169	2.339	3.508	4.678	5.847	7.016			
30	34.689	1.153	2.306	3-459	4.612	5.765	6.918			
40	46.252	1.136	2.273	3.410	4.546	5.683	6.819			
50	57.814	1.120	2.240	3.360	4.480	5.600	6.720			
79 00	69-377	1.104	2.207	3.311	4-414	5.518	6.621		79°	80°
10	11.564	1.087	2.174	3.261	4.348	5-435	6.522	5	0.001	0.001
20	23.127	1.070	2.141	3.211	4.282	5.352	6.422	10	.003	.003
30	34.691	1.054	2.108	3.162	4.216	5.270	6.323	15	.007	
40	46.255	1.037	2.075	3.112	4.1 50	5.187	6.224	20	.013	.OI I
50	57.818	1.021	2.042	3.062	4-083	5.104	6.125	25	.020	.018
				-		•		30	.028	.026
80 00	69.382	1.004	2.009	3.013	4.017	5.022 .	6.026			

[Derivation of table explained on p. liii-lvi.]

SMITHSONIAN TABLES.

121



### CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TITTE

CO-ORDINATES OF DEVELOPED PARALLEL FOR-붋 Meridional dia tances from even degree parallela. ** 50' longitude. r^o longitude. 10' longitude. 20' longitude. 30' longitude. 40' longitude. Latitude ( parallel. x x y x y Ŧ y x y у y x -mm ma mm. New MEME. mm -185.5 556.6 278.3 463.8 o°ooʻ 92.8 o. o. .0 371.1 .0 ۰. .0 92.1 184.3 276.4 368.6 556.6 185.5 371.1 10 92.8 ø .0 278.3 .0 .0 463.8 .0 .0 556.6 556.6 185.5 92.8 278.3 463.8 20 .0 .0 .0 371.1 ٥. .0 .0 278.3 278.3 371.0 30 92.8 .0 185.5 .0 .0 . 463.8 o. o. 556.6 185.5 40 92.8 463.8 .0 ۰ .0 371.0 .0 o. o. 50 ¥60.7 92.8 م 185.5 ٥. 278.3 **.**. 371.0 .0 463.7 م 556.5 .I 463.7 92.8 278.3 371.0 556.5 1 00 185.5 .0 **.**0 .0 .I ٥. .1 92.1 184.3 276.4 368.6 185.5 463.7 556.4 10 92.7 .0 .0 278.2 .0 371.0 .0 **.**I .I 463.7 185.5 371.0 556.4 20 92.7 278.2 ю. о. ۰. ۰. .1 .I 185.5 185.4 556.4 30 92.7 م .0 278.2 .0 370.9 0. 463.7 .r .1 40 278.2 556.3 92.7 463.6 ۰ .0 o. .0 370.9 .1 **.**I ¥60.7 370.9 463.6 556.3 ŝo 92.7 185.4 278.2 .0 .0 م. .1 .1 .2 185.4 556.3 463.6 2 00 278.1 92.7 ۰. .0 .0 370.8 .1 .1 .2 .... 92.1 184.3 276.4 368.6 185.4 463.5 463.4 556.2 556.1 370.8 278.1 IO 92.7 ٥. .2 o. o. .r .1 185.4 20 92.7 .0 .0 278.1 .0 370.8 .1 .1 .2 556.0 278.0 463.4 92.7 370.7 30 ۰. o. .0 .1 .I .2 185.3 370.6 463.3 556.0 92.7 40 278.0 .2 .0 .0 .0 .1 .2 278.0 ¥60.7 50 92.7 ۰. 185.3 Ω. .1 370.6 .1 463.2 .2 555.9 .2 185.3 300 463.2 55**5.8** 92.6 ٥. .0 277.9 .1 370.6 .1 .2 .2 92.1 184.3 276.4 368.6 185.2 277.9 277.8 463.1 10 Q2.6 .0 o. .1 370.5 .1 .2 555-7 •3 92.6 20 .0 .0 .1 370.4 .1 463.0 .2 555.7 ٠š 277.8 463.0 30 92.6 .0 185.2 .0 .1 370.4 .1 .2 ٠3 555-S 462.8 185.1 92.6 40 o. .0 277.7 .1 370.3 .1 .2 555-4 ٠Ĵ 370.2 ç0 460.7 ó2.6 .0 185.1 .0 277.7 .1 .1 462.8 .2 555.4 •3 185.1 4 00 92.5 .0 277.6 .2 462.7 ۵. .1 370.2 .2 555.2 •3 92.1 184.3 276.4 368.6 185.0 277.6 462.6 10 92.5 .0 .0 .1 370.1 .2 ·3 .2 555.1 20 ģ2. 5 **.**0 185.0 .0 277.5 .1 370.0 .2 462.5 .3 .3 .2 555.0 185.0 184.9 369.9 369.8 554-9 554-8 30 92.5 .0 о. 277.4 .1 .2 462.4 .2 40 ģ2.5 462.3 .0 277.4 م .I .2 •3 •4 184.9 460.7 92.4 369.8 462.2 554.6 50 .0 ۰ 277.3 .1 .2 ٠Ĵ 4 500 184.8 369.7 369.6 369.5 369.4 369.2 .2 462.1 92.4 .0 .0 277.3 .1 •3 554-5 -4 92.2 184.3 184.8 462.0 10 92.4 .0 .1 277.2 .1 .3 .3 554·3 554·2 .2 -4 184.7 20 92.4 .0 277.1 .1 461.8 .I .2 -4 276.4 368.6 184.7 30 .2 554.0 553.9 553.7 ģ2.3 **.**0 .1 277.0 .1 461.7 .3 .3 -4 92.3 184.6 •5 •5 40 .0 .1 276.9 .1 .2 461.6 50 460.7 <u>92.3</u> 369.2 184.6 276.9 .2 461.4 .0 .1 .1 ٠Ĵ 184.5 369.0 368.9 368.8 276.8 6 00 92.3 ٥. 461.3 •5 •5 .1 .I .2 -4 553.6 92.2 184.3 276.4 368.6 553-4 553-2 553.0 552.8 10 92.2 .0 184.5 276.7 461.2 .1 .1 .2 4 276.6 92.2 184.4 461.0 20 .0 .I .I .2 -4 ٠Š 184.3 276.5 276.4 92.2 368.7 160.8 30 .0 .1 .1 .2 .Š -4 184.3 368.6 92.1 40 .2 460.7 .0 .I .1 4 92.1 276.3 552.7 50 460.7 ٥. 184.2 .1 .1 368.4 .2 460.6 -4 .6 368.3 7 00 92.1 184.2 .I 276.2 .1 460.4 .6 .0 •3 4 552.5 368.2 92.2 184.3 276.4 368.6 184.1 276.1 460.2 .6 10 92.0 ٠Ś 552.2 .0 .1 .1 -4 368.0 552.1 184.0 184.0 20 Q2.0 .0 .I 276.0 .1 460.0 .6 •3 -4 367.9 367.8 551.9 551.6 . 275.9 275.8 .6 30 92.0 ٥. .1 .1 ٠Ĵ 459.9 -4 183.9 183.8 Ă٥ 0.10 .0 .1 .1 .6 •3 459-7 -4 460.7 367.6 50 91.9 0. .1 27 5.7 .I ٠Ĵ 459-5 ٠5 551.4 •7 8 00 183.7 275.6 367.5 91.9 .0 .I .2 .3 459-4 ٠5 551.2 •7

[Derivation of table explained on pp. liii-lvi.]

SMITHSONIAN TABLES.

### CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 3000000

[Derivation of table explained on pp. lili-lvi.]

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		co	-ORDI	NATI	es of	DEV	ELOPE	D PA	RALLI	EL FO	0 <b>R —</b>	
Latitude of parallel.	Meridional dia tances from even degree parallela.	10' long	itude.	20' long	itude.	30' long	itude.	40' long	itude.	50' long	itude.	1º lon	çitude.
Lati	Mer tan par	x	y	x	y	x	y	X	у	x	у	x	y
	<i>mm</i> .	<i>mm</i> .	mm.	MM.	mm.	mm.	mm.	<i>mm</i> .	mm.	<i>mm</i> .	<i>mm</i> .	<i>mm</i> .	mm.
8°00′		91.9	.0	183.7	л.	27 5.6	.2	367.5	•3	·459-4	•5	551.2	•7
10 20	92.2 184.3	91.8 91.8	0. 0.	183.7 183.6	I. I.	275.5	.2 .2	367.3	•3	459.2	•5	551.0	-7
30	276.5	91.8	.0	183.5	 I.	27 5.4	.2	367.0	.3 .3	459.0 458.8	.5 .5	550.7 550.5	•7 •7
40	368.6	91.7	0.	183.4	I.	27 5.1	.2	366.8	.3	458.6	.5	550.3	.7
50	460.8	91.7	.0	183.3	1.	275.0	.2	366.7	•3	4 58.4	•5	550.0	•7
900		91.6	0.	183.3	I.	274.9	.2	366.5	.3	458.2	•5	549.8	.8 .8
10 20	92.2 184.3	91.6 91.5	.0. 0.	183.2 183.1	I. I.	274.8	.2 .2	366.4	·3 ·3	458.0 457.7	•5 •5	549-5 549-2	.8
30	276.5	91.5	.0	183.0	.I	274.5	.2	366.0	.3	457.5	.5	549.0	.8
40	368.6	91.5	.0	182.9	I.	274.4	.2	365.8	•4	457-3	<b>6</b> .	548.8	.8
50	460.8	91.4	0.	182.8	I.	274.2	.2	365.6	•4	457.0	.6	548.5	.8
10 00	····	91.4	0.	182.7	1.	274.1	.2	365.5	-4	456.8	.6	548.2	.8
10 20	92.2 184.3	91.3 91.3	0. 0.	182.6	І. І.	274.0	.2 .2	365.3 365.1	·4 •4	456.6	.6 .6	547-9 547.6	.8 .9
30	276.5	91.2	.0	182.4	.1	273.7	.2	364.9	.4	456.1	.6	547.3	.9
40	368.7	91.2	.0	182.3	1.	273.5	.2	364.7	-4	455.9	.6	547.0	.9
50	460.8	91.1	0.	182.2	I.	273.4	.2	364.5	•4	455.6	.6	546.7	.9
11 00		91.1	0.	182.1	I.	273.2	.2	364.3	•4	455.4	.6	546.4	.9
10 20	92.2 184.3	91.0 91.0	0. 0.	182.0	I. I.	273.1	.2	364.I 363.8	·4 ·4	455.1	.6 .6	546.1 545.8	.9 .9
30	276.5	90.9	.0	181.8	1.	272.7	.2	363.6	.4	454.6	.7	545.5	.9
40	368.7	90.9	.0	181.7	Ι.	272.6	.2	363.4	-4	454-3	•7	545.2	1.0
50	460.8	90.8	0.	181.6	1.	272.4	.2	363.2	•4	454.0	•7	544.8	1.0
12 00		90.8	0.	181.5	I.	272.2	.2	363.0	•4	453.8	•7	544-5	1.0
10 20	92.2 184.4	90.7 90.6	0. 0.	181.4	I. I.	272.1	.2 .2	362.8 362.5	·4 ·4	453.4	·7 ·7	544.1 543.8	I.O I.O
30	276.5	90.6	.0	181.1	1.	271.7	.3	362.3	•4	452.8	.7	543.4	1.0
40	368.7	90.5	0.	181.0	I.	271.6	•3	362.1	•4	452.6	•7	543.1	1.0
50	460.9	90.5	0.	180.9	I.	271.4	•3	361.8	-5	452.3	•7	542.8	1.1
1300 10	92.2	90.4 90.3	0. 0.	180.8 180.7	I. I.	271.2	.3	361.6 361.4	-5	452.0	•7	542.4 542.0	1.I 1.I
20	184.4	90.3	.0	180.6	I.	270.8	·3 ·3	361.1	·5 ·5	451.7	.7 .8	541.7	1.1 1.1
30	276.6	90.2	.0	180.4	I.	270.6	•3	360.8	-5 -5 -5	451.0	.8	541.3	1.1
40 50	368.8 461.0	90.2 90.1	0. 0.	180.3 180.2	1. .I	270.4	·3 ·3	360.6 360.4	•5	450.8	.8 .8	540.9	1.I 1.I
-	401.0	·					-	- ·	-5	450.4		540.5	
14 00		90.0 90.0	0.	180.1	I.	270.1	•3	360.1	•5	450.2	.8 .8	540.2	I.I
10 . <b>20</b>	92.2 184.4	89.9	0. 0.	179.9	I. I.	269.9 269.7	·3 ·3	359.8 359.6	•5 •5	449.8	.0 .8	539.8 539-4	I.2 I.2
30	276.6	80.8	.0	179.7	.1	269.5	.3	359.3	.5	440.2	.8	539.0	I.2
40	368.8	89.8	0.	179.5	1.	269.3	.3	2:0.0	•5	440.0	.8	5 20.0	1.2
50	461.0	89.7	o.	179-4	I.	269.1	•3	358.8	•5	448.5	.8	538.2	1.2
1500		89.6	0.	179.3	I.	268.9	•3	358.5	۰5	448.2	.8	537.8	1.2
10 20	92.2 184.4	89.6 89.5	0. 0.	179.1 179.0	I. I.	268.7 268.5	•3	358.2 358.0	.5	447.8	.8 .8	537-4 536.9	1.2 1.2
30	276.6	89.4	.0	178.8	1.	268.3	;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	357.7	.6	447.I	.9	536.5	I.2
40	368.8	89.3	.0	178.7	1.	268.0	•3	357-4	.6	446.7	.9	536.0	1.3
so	461.0	89.3	0.	178.5	I.	267.8	•3	357.1	.6	446.4	.9	535.6	1.3
16 00		89.2	0.	178.4	I.	267.6	•3	356.8	.6	446.0	.9	535-2	1.3
	r	•	•	1		1		1		- D.	L		DOC

## CO-ORDINATES FOR PROJECTION OF MAPS. SCALE INTERIOR

[Derivation of table explained on pp. liii-lvi.]

			co	ORDI	NATI	es of	DEV	elope	D PA	RALLI	EL F	0R —	
de lei g	Meridional dia tances from even degree parallela.	10' long	itude.	so/ long	jtude.	30' long	itude.	40' long	itude.	50' long	itude.	ı° long	jitude.
Latitude parallel.	Meri- Perso	x	y	x	7	x	y	x	7	I	7	I	<b>y</b>
16°00' 10		89.2 89.1	.0 .0	мм. 178.4 178.2	.I I	267.6 267.4	••••• •3 •3	356.8 356.5	.6 .6	446.0 445.6	•••• .9 .9	535-2 534-7	 1.3 1.3
20 30 40 50	184-4 276.6 368.8 461.0	89.0 89.0 88.9 88.8	6 6 6 6	178.1 177.9 177.8 177.6	л. л. л. л.	267.2 266.9 266.7 266.5	ເວັນ	355-9 355-9 355-3	.6 .6 .6	445.2 444.8 444-4 444-1	9999	534-3 533-8 533-3 532-9	I.3 I.3 I.3 I.4
17 00 10 20 30 40 50	92.2 1844 276.7 368.9 461.1	88.7 88.7 88.6 88.5 88.4 88.3	<b>66666</b>	177.5 177.3 177.2 177.0 176.8 176.7		266.2 265.0 265.7 265.5 265.2 265.0	<b>ůůůů</b> 44	355.0 354-6 354-3 354-0 353-6 353-3	, , , , , , , , , , , , , , , , , , ,	443-7 443-3 442-9 442-5 442.0 441.6	.9 .9 1.0 1.0 1.0 1.0	532.4 532.0 531.5 531.0 530.5 530.0	I-4 I-4 I-4 I-4 I-4 I-4
18 00 10 20 30 40 50	92.2 184-5 276.7 368.9 461.2	88.3 88.2 88.1 88.0 87.9 87.8	<b>6666</b> 6	176.5 176.3 176.2 176.0 175.8 175.6	i i i i i	264.8 264.5 264.2 264.0 263.7 263.5	******	353.0 352.6 352.3 352.0 351.6 351.3	ବ୍ର୍ ଚ୍ ଚ୍ ଚ୍ ଚ୍ ଚ୍	441.2 440.8 440.4 440.0 439.6 439.1	1.0 1.0 1.0 1.0 1.0 1.0	529-5 529-0 528-5 528-0 527-5 526-9	I-4 I-4 I.5 I.5 I.5 I.5 I.5
19 00 10 20 30 40 50	92.2 184.5 276.7 369.0 461.2	87.7 87.6 87.6 87.5 87.4 87.3	<b>66666</b>	175-5 175-3 175-1 174-9 174-8 174-6	i 4 i 1 i 1	263.2 263.0 262.7 262.4 262.1 261.9	*****	351.0 350.6 350.2 349.9 349.5 349.2	777777	438.7 438.2 437.8 437.4 436.9 436.4	1.0 1.0 1.0 1.1 1.1 1.1	526.4 525.9 525.4 524.8 524.3 523.7	1.5 1.5 1.5 1.5 1.5 1.6
20 00 10 20 30 40 50	92.2 184.5 276.8 369.0 461.2	87.2 87.1 87.0 86.9 86.8 86.7	<b>66666</b>	174-4 174-2 174-0 173-8 173-7 173-5	 	261.6 261.3 261.0 260.8 260.5 260.2	*****	348.8 348.4 348.0 347.7 347.3 346.9	·7 ·7 ·7 ·7 ·7	436.0 435.6 435.0 434.6 434.2 433.6	1.1 1.1 1.1 1.1 1.1 1.1 1.1	523.2 522.7 522.1 521.5 521.0 520.4	1.6 1.6 1.6 1.6 1.6 1.6
21 00 10 20 30 40 50	92.3 184.5 276.8 369.0 461.3	86.6 86.5 86.4 86.3 86.2 86.1	<b>b b b b b b</b>	173.3 173.1 172.9 172.7 172.5 172.3		259.9 259.6 259.3 259.0 258.8 258.4	******	346.6 345.2 345.8 345.4 345.0 344.6	·7 ·7 ·7 ·7 ·7	433-2 432.7 432.2 431.7 431.2 430.8	I.I I.I I.2 I.2 I.2 I.2	519.8 519.2 518.6 518.0 517.5 516.9	1.6 1.6 1.6 1.7 1.7 1.7
22 00 10 20 30 40 50	92.3 184.5 276.8 369.1 461.4	86.0 85.9 85.8 85.7 85.6 85.5	6 6 6 6 6 6	172.1 171.9 171.7 171.5 171.3 171.1	.2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .	258.2 257.8 257.6 257.2 256.9 256.6	*****	344.2 343.8 343.4 343.0 342.6 342.2	.7.28.28.28.28.28.28.	430.2 429.8 429.2 428.8 428.2 428.2 427.7	I.2 I.2 I.2 I.2 I.2 I.2 I.2	516.3 515.7 515.1 514.5 513.8 513.8	1.7 1.7 1.7 1.7 1.7 1.7 1.7
23 00 10 20 30 40 50	92.3 184.6 276.8 369.1 461.4	85-4 85-3 85-2 85-1 85-0 84-9	6 6 6 6 6	170.9 170.7 170.4 170.2 170.0 169.8	.2 .2 .2 .2 .2 .2	256.3 255.7 255.7 255.3 255.0 254.7	*****	341.8 341.3 340.9 340.4 340.0 339.6	.8 .8 .8 .8 .8 .8 .8	427.2 426.6 426.1 425.6 425.0 424.5	1.2	512.6 512.0 511.3 510.7 510 1 5094	1.7 1.8 1.8 1.8 1.8 1.8 1.8
24 00		84.8	•	169.6	.2	254.4	-4	339.2	.8	424.0		508.7	1.8

SNITHSONIAN TABLES.

## CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ITATE

[Derivation of table explained on pp. lili-lvl.]

			со	-ORDII	NATE	SOF	DEVI	LOPE	D PA	RALLE	L FO	DR-	
lei.	M eridional dis- tances from even degree parallela.	10' long	itude.	20' long	itude.	30' long	itude.	40' long	itude.	50' long	citude.	ro long	jitude.
Latitude o parallel.	Meridio tances even de parallel	x	<b>y</b>	Ξ	<b>y</b>	x	7	x	7	· I	7	I	7
	<i></i>	<i>.</i>	<b>MM</b> .	<i></i>	MM.	<b>MENE.</b>	<b>mm</b> .	<i>.</i>	<b>mm</b> .	<i>.</i>	<i>mm</i> .	-	<i>mm</i> .
24°00′ IO 20 30 40 50	92.3 184.6 276.9 369.2 461.5	84.8 84.7 84.6 84.5 84.4 84.2	<b>6 6 6 6 6</b>	169.6 169.4 169.1 168.9 168.7 168.5	.2 .2 .2 .2 .2 .2 .2 .2 .2	254-4 253-7 253-7 253-4 253-0 252-7	****	339.2 338.7 338.3 337.8 337.4 337.0	.8 .8 .8 .8 .8 .8 .8	424.0 423.4 422.8 422.3 421.8 421.2	1.3 1.3 1.3 1.3 1.3 1.3	508.7 508.1 507.4 506.8 506.1 505.4	1.8 1.8 1.8 1.8 1.8 1.9
25 00 10 20 30 40 50	92.3 184.6 276.9 369.2 461.6	84.1 84.0 83.9 83.8 83.7 83.6	I. I. I. I. I. I.	168.3 168.0 167.8 167.6 167.3 167.1	.2 .2 .2 .2 .2 .2 .2	252.4 252.0 251.7 251.3 251.0 250.6	<b></b>	336.5 336.0 335.6 335.1 334.6 334.2	8 8 8 8 8 8 8 8	<b>420.6</b> <b>420.0</b> <b>419.5</b> <b>418.9</b> <b>418.3</b> <b>417.8</b>	I.3 I.3 I.3 I.3 I.3 I.3 I.3	504.8 504.1 503.4 502.7 502.0 501.3	1.9 1.9 1.9 1.9 1.9 1.9
26 00 10 20 30 40 50	92.3 184.6 277.0 369.3 461.6	83.4 83.3 83.2 83.1 82.9 82.8	I. I. I. I. I. I.	166.9 166.6 166.4 166.1 165.9 165.7		250.3 249.9 249.6 249.2 248.8 248.5	<b>…</b>	333.7 333.2 332.8 332.3 331.8 331.3		417.2 416.6 416.0 415.4 414.8 414.2	I.3 I.3 I.3 I.3 I.4 I.4	500.6 499.9 499.1 498.4 497.7 497.0	1.9 1.9 1.9 2.0 2.0
27 80 10 20 30 40 50	92.3 184.7 277.0 369.3 461.6	82.7 82.6 82.5 82.3 82.2 82.1	1. 1. 1. 1. 1. 1.	165.4 165.2 164.9 164.7 164.4 164.2	  	248.1 247.8 247.4 247.0 246.7 246.3	ຕ່າວ່າວ່າ	330.8 330.4 329.8 329.4 328.9 328.4	9999999	413.6 413.0 412.3 411.7 411.1 410.4	I.4 I.4 I.4 I.4 I.4 I.4	496.3 495.5 494.8 494.0 493.3 492.5	2.0 2.0 2.0 2.0 2.0 2.0 2.0
28 00 10 20 30 40 50	92.4 184.7 277.0 369.4 461.8	82.0 81.8 81.7 81.6 81.5 81.3	1. 1. 1. 1. 1. 1.	163.9 163.7 163.4 163.2 162.9 162.7	.2 .2 .2 .2 .2 .2 .2	245.9 245.5 245.1 244.7 244.4 244.0	ໍ່າ <u>ເ</u> ນີ່ນີ່	327.9 327.4 326.8 326.3 325.8 325.8	999999 999999	409-8 409-2 408.6 407-9 407-3 406.6	I-4 I-4 I-4 I-4 I-4	491.8 491.0 490.3 489.5 488.8 488.8	2.0 2.0 2.0 2.0 2.0 2.1
29 00 10 20 30 40 50	92.4 184.7 277.1 369.4 461.8	81.2 81.1 80.9 80.8 80.7 80.5	1. 1. 1. 1. 1. 1.	162.4 162.1 161.9 161.6 161.3 161.1	.2 .2 .2 .2 .2 .2 .2 .2 .2	243.6 243.2 242.8 242.4 242.0 241.6	ທ່ານທ່ານ	324.8 324.3 323.8 323.2 322.7 322.2	999999	406.0 405.4 404.7 404.0 403.4 402.7	14 14 14 14 14 15	487.2 486.4 485.6 484.8 484.0 483.2	2.I 2.I 2.I 2.I 2.I 2.I 2.I
30 00 10 20 30 40 50	92.4 184.8 277.1 369.5 461.9	80.4 80.3 80.1 80.0 79.9 79.7	I. I. I. I. I.	160.8 160.5 160.3 160.0 159.7 159.5		241.2 240.8 240.4 240.0 239.6 239.2	<b>・</b> ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	321.6 321.1 320.6 320.0 319.4 318.9	9999999	402.0 401.4 400.7 400.0 399.3 398.6	I.5 I.5 I.5 I.5 I.5 I.5	482.5 481.6 480.8 480.0 470.2 478.4	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1
31 00 10 20 30 40 50	92.4 184.8 277.2 369.6 462.0	79.6 79-4 79-3 79-2 79-0 78-9	1. 1. 1. 1. 1. 1. 1.	1 59.2 1 58.9 1 58.6 1 58.3 1 58.1 1 57.8	.2 .2 .2 .2 .2 .2 .2	238.8 238.4 237.9 237.5 237.1 236.7	ຸ.	318.4 317.8 317.2 316.7 316.1 315.6		398.0 397.2 396.6 395.8 395.2 394-4	1.5 1.5 1.5 1.5 1.5 1.5	477-5 476.7 475-9 475-0 474.2 473-3	2.1 2.1 2.2 2.2 2.3 2.3 2.2
32 00	·····	78.8	1.	1 57.5	.2	236.2	•5	31 5.0	1.0	393.8	I.5	472.5 <del>Go</del>	2.2

SMITHSONIAN TABLES.

## CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 3000000

[Derivation of table explained on pp. liii-lvi.]

			со	ORDI	NATI	es of	DEV	ELOPE	D PA	RALLI	EL F	OR —	
Latitude of parallel	Meridional di tances from even degree parallela.	10' long	itude.	20' long	itude.	30' long	itude.	40' long	itude.	50' long	jitude.	1º long	itude.
	Mer	'x	7	x	у	x	3	x	y	x	у	<b>x</b>	7
	<i></i>	<i>mm</i> .	mm.	<i>mm</i> .	mm.	<b>.</b>	<b>m</b> m.	тт.	mm.	тт.	mm.	тт.	<b>M</b> M.
32°00′		78.8	Ι.	1 57.5	.2	236.2	۰5	315.0	1.0	393.8	1.5	472.5	2.2
10 20	92.4 184.8	78.6 78.5	І. І.	1 57.2 1 56.9	.2 .2	235.8 235.4	•5 •5	314.4	1.0 1.0	393.0 392.3	1.5 1.5	471.6	2.2 2.2
30	277.2	78.3	1.	156.6	.2	235.0	-5	313.3	1.0	391.6	1.5	469.9	2.2
40 50	369.6 462.0	78.2 78.0	л. л.	1 56.3 1 56.0	.2 .2	234.5 234.I	.5 .5	312.7 312.1	1.0 1.0	390.8 390.1	1.5 1.5	469.0 468.1	2.2 2.2
33 00		77 <b>·9</b>	.1	155.8	.2	233.6	.6 .6	311.5	1.0	389.4 388.6	1.5	467.3	2.2
10 20	92-4 184-8	77.7 77.6	л. г.	155.5 155.2	.2 .2	233.2 232.7	.0. 6.	310.9 310.3	1.0 1.0	387.9	1.5 1.5	466.4 465.5	2.2
30	277.3	77-4	.1	154.9	.2	232.3	.6	309.7	1.0	387.2	1.6	464.6	2.2
40 50	369.7 462.1	77.3 77.1	і. І.	1 54.6 I 54.3	.2 .2	231.9 231.4	.6 .6	309.2 308.6	1.0 1.0	386.4 385.7	1.6 1.6	463.7 462.8	2.2 2.2
34 00		77.0	л.	1 54.0	•3	231.0	.6	<b>308.</b> 0	1.0	384.9	1.6	461.9	2.3
10 20	92.4 184.9	76.8 76.7	1. 1.	153.7 153.4	.; .;	230.5 230.0	.6 .6	307.4 306.7	1.0 1.0	384.2 383.4	1.6 1.6	461.0	2.3 2.3
30	277.3	76.5	.1	153.1	•3	229.6	.6	306.1	1.0	382.6	1.6	459.2	2.3
40 50	369.7 462.1	76.4 76.2	1. 1.	1 52.8 1 52.4	.3 .3	229.1 228.7	6. 6.	305.5 304.9	1.0 1.0	381.9 381.1	1.6 1.6	458.3 457.3	2.3 2.3
35 00		76.1	л.	1 52.1	•3	228.2	.6	304.3	1.0	380.4	1.6	456.4	2.3
10 20	92.4 184.9	75.9 75.8	I. I.	151.8 151.5	.3 .3	227.8	.6 6.	303.7 303.0	1.0 1.0	379.6 378.8	1.6 1.6	455.5 454.6	2.3 2.3
30	277.4	75.6	.1	151.2	.3	227.3 226.8	.6	302.4	1.0	378.0	1.6	453.6	2.3
40 50	369.8 462.2	75-4 75-3	л. л.	1 50.9 I 50.6	 	226.4 225.9	6. 6.	301.8 301.2	1.0 1.0	377.2 376.5	1.6 1.6	452.7 451.8	2.3 2.3
3600		75.1	л.	1 50.3	•3	225.4	.6	300.6	1.0	375.7	1.6	450.8	2.3
10	92.5	75.0	.I	150.0	•3	224.9	.6	299.9	1.0	374.9	1.6	449.9	2.3
20 30	184.9 277.4	74.8 74.7	I. .I	149.6 149.3	.; ;	224.5 224.0	.6 6.	299.3 298.6	1.0 1.0	374.I 373-3	1.6 1.6	448.9 448.0	2.3 2.3
40	369.8	74.5	.1	149.0	•3	223.5	.6	298.0	I.0	372.5	1.6	447.0	2.3
50	462.3	74-3	.I	148.7	•3	223.0	.6	297.4	1.0	371.7	1.6	446.0	2.3
37 00 10	92.5	74-2 74-0	І. І.	148.4 148.0	.3 .3	222.5 222.1	.6 .6	296.7 296.1	1.0 1.0	370.9 370.1	1.6 1.6	445.I 444.I	2.3 2.3
20	185.0	73.8	<b>.</b> I	147.7	.3	221.6	.6	295.4	1.0	369.2	1.6	443.1	2.3
30 40	277.4 369.9	73-7 73-5	І. І.	147.4 147.1	·;	221.1 220.6	.6 .6	294.8 294.1	1.0 1.0	368.4 367.6	1.6 1.6	442.I 441.2	2.3 2.4
50	462.4	73-3 73-4	.1	146.7	.3 .3	220.1	.6 .6	293.4	1.0	366.8	1.6	440.2	2.4
38 00		73.2	л.	146.4	•3	219.6	.6	292.8	1.0	366.0	1.6	439.2	2.4
10 20	92.5 185.0	73.0 72.9	л. г.	146.1	•3	219.1 218.6	.6 .6	292.I 291.4	1.0 1.1	365.I 364.3	1.6 1.6	438.2	2.4
30	277.5	72.7	г. г.	145.7 145.4	•3 •3	218.1	.6	290.8	1.1	363.5	1.6	437.2 436.2	2.4
40	370.0	72.5	I.	145.1	•3	217.6		290.1	1.1	362.0 361.8		435.2	
50	462.5	72.4	.1	144.7	•3	217.1	.6	289.4	1.1		1.6	434.2	2.4
39 00		72.2	I.	144.4	•3	216.6	.6	288.8	1.1	361.0	1.7	433.1	2.4
10 20	92.5 185.0	72.0 71.8	І. І.	144.0 143.7	.3 .3	216.1 215.6	<b>.6</b> .6	288.1 287.4	1.I 1.I	360.1	I.7 I.7	432.1	2.4 2.4
30	277.5	71.7	.ι	143.4	•3	21 5.0	.6	286.7	1.1	358.4	1.7	430.1	2.4
40 50	370.0 462.6	71.5 71.3	1. 1.	143.0 142.7	•3 •3	214.5 214.0	.6 .6	286.0 285.3	1.1 1.1	357-5 356.6	I.7 I.7	429.0 428.0	2.4 2.4
40 00		71.2	.1	142.3	·3	213.5	.6	205.5 284.6	1.1	355.8	1.7	427.0	2.4
L	l		I							l		1000	

SMITHSONIAN TASLES.

### CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 1 100000.

[Derivation of table explained on pp. liii-lvi.]

			co	ORDI	NATI	IS OF	DEVI	ELOPEI	D PA	RALLE	L FO	DR-	
Latitude of parailel.	Meridional di tances from even degree parallela.	10' long	itude.	20' long	itude.	30' long	itude.	40' long	itude.	50' long	itude.	1° longi	tude.
Lati	Mer	x	y	x	y	x	y	x	y	x	y	x	7
	mm.	-	жж.	mm.	mm.	<b>80</b> 578.	тт.	<i>mm</i> .	mm.	mm.	<i>mm</i> .	<i>m</i> m.	M.M.
40°00′ 10 20 30 40 50	92.5 185.1 277.6 370.1 462.6	71.2 71.0 70.8 70.6 70.5 70.3	I. I. I. I. I. I.	142.3 142.0 141.6 141.3 140.9 140.6	ູ່ນີ່ມູ່ນີ່ມູ່ນີ່	213.5 212.9 212.4 211.9 211.4 210.8	ĠĠĠĠĠ	284.6 283.9 283.2 282.6 281.8 281.1	I.I I.I I.I I.I I.I I.I	355-8 354-9 354-0 353-2 352-3 351-4	1.7 1.7 1.7 1.7 1.7 1.7	427.0 425.9 424.9 423.8 422.8 421.7	2.4 2.4 2.4 2.4 2.4 2.4 2.4
41 00 10 20 30 40 50	92.5 185.1 277.6 370.2 462.7	70.1 69.9 69.8 69.6 69.4 69.2	I. I. I. I. I.	140.2 139.9 139.5 139.2 138.8 138.4		210.3 209.8 209.2 208.7 208.2 207.7	Ġ <b>ĠĠ</b>	280.4 279.7 279.0 278.3 277.6 276.9	I.I I.I I.I I.I I.I I.I	350.6 349.6 348.8 347.9 347.0 346.1	I.7 I.7 I.7 I.7 I.7 I.7 I.7	420.7 419.6 418.5 417.5 416.4 415.3	2.4 2.4 2.4 2.4 2.4 2.4 2.4
42 00 IO 20 30 40 50	92.6 185.1 277.7 370.2 462.8	69.0 68.9 68.7 68.5 68.3 68.1	I. I. I. I. I. I.	138.1 137.7 137.4 137.0 136.6 136.3		207.1 206.6 206.0 205.5 204.9 204.4	ĠĠĠĠĠ	276.2 275.4 274.7 274.0 273.2 272.5	I.I I.I I.I I.I I.I I.I	345.2 344-3 343-4 342-4 341.5 340.6	1.7 1.7 1.7 1.7 1.7 1.7	414.2 413.2 412.1 410.9 409.9 408.8	2.4 2.4 2.4 2.4 2.4 2.4 2.4
43 00 10 20 30 40 50	92.6 185.2 277.7 370.3 462.9	68.0 67.8 67.6 67.4 67.2 67.0	I. I. I. I. I. I.	135.9 135.5 135.2 134.8 134.4 134.0		203.8 203.3 202.7 202.2 201.6 201.1		271.8 271.0 270.3 269.6 268.8 268.1	1.1 1.1 1.1 1.1 1.1 1.1	339.8 338.8 337.9 337.0 336.0 335.1	1.7 1.7 1.7 1.7 1.7 1.7 1.7	407.7 406.6 405.5 404.4 403.3 402.1	2.4 2.4 2.4 2.4 2.4 2.4 2.4
44 00 10 20 30 40 50	92.6 185.2 277.8 370-4 463.0	66.8 66.6 66.5 66.3 66.1 65.9	I. I. I. I. I. I.	1 33.7 1 33.3 1 32.9 1 32.6 1 32.2 1 31.8		200.5 200.0 199.4 198.8 198.3 197.7		267.4 266.6 265.8 265.1 264.4 263.6	I.I I.I I.I I.I I.I I.I	334.2 333.2 332.3 331.4 330.4 329.5	1.7 1.7 1.7 1.7 1.7 1.7	401.0 399.9 398.8 397.7 396.5 395.4	2.4 2.4 2.4 2.4 2.4 2.4
45 00 10 20 30 40 50	92.6 185.2 277.8 370.4 463.0	65.7 65.5 65.3 65.1 64.9 64.7	I. I. I. I. I. I.	131.4 131.0 130.6 130.3 129.9 129.5	ູ ບໍ່ບໍ່ບໍ່ບໍ່ບໍ່	197.1 196.6 196.0 195.4 194.8 194.2	9. 9. 9. 9.	262.8 262.1 261.3 260.5 259.8 259.0	1.1 1.1 1.1 1.1 1.1 1.1	328.6 327.6 326.6 325.6 324.7 323.7	1.7 1.7 1.7 1.7 1.7 1.7	394-3 393.1 391.9 390.8 389.6 388.4	2.4 2.4 2.4 2.4 2.4 2.4 2.4
46 00 10 20 30 40 50	92.6 185.3 277.9 370.5 463.1	64.6 64.4 64.2 64.0 63.8 63.6	I. I. I. I. I.	129.1 128.7 128.3 127.9 127.6 127.2		193.6 193.1 192.5 191.9 191.3 190.7	.6	258.2 257.4 256.6 255.9 255.1 254.3		322.8 321.8 320.8 319.8 318.9 317.9	1.7	387.3 386.2 385.0 383.8 382.7 381.5	2.4 2.4 2.4 2.4 2.4 2.4 2.4
47 00 10 20 30 40 50	92.6 185.3 277.9 370.6 463.2	63.4 63.2 63.0 62.8 62.6 62.4	I. I. I. I. I. I.	126.8 126.4 126.0 125.6 125.2 124.8		190.1 189.5 188.9 188.3 187.8 187.2	.6 6.	253.5 252.7 251.9 251.1 250.4 249.6	I.I I.I I.I	31 5.9 31 4.9 31 3.9 31 3.0	I.7 I.7 I.7 I.7 I.7	380.3 379.1 377.9 376.7 375.5 374.3	2.4 2.4 2.4 2.4 2.4 2.4 2.4
48 00	·····	62.2	I.	124.4	•3	186.6	.6	248.8	1.1	311.0	1.7	373.1	2.4
SHITHSONIA	N TABLES	•				107	_			Digi	tized	<del>, G</del>	1500

### CO-ORDINATES FOR PROJECTION OF MAPS. SCALE INTER

[Derivation of table explained on pp. liii-ivi.]

			co	-ORDII	TAN	SOF	DEVI	LOPEI	D PA	RALLE	L PC	)R	
ada of Liai	Meridional dia tances from even degree parallela.	10' long	itude.	so' long	itude.	30' long	itude.	40' long	itude.	50' long	itude.	1º long	pitude.
Latitude ( parallel.	<b>HAR</b>	I	7	x	7	x	y	x	7	I	7	x	y
	<b>MM</b> .	<i></i>	M.M.	-	<b></b>	-	<b>MM</b> .	<b></b>	<b>MIM.</b>	-	<i>.</i>	<b>311.511.</b>	-
48°00′		62.2	.I	124.4	•3	186.6	.6	248.8	1.1	311.0	1.7	373-I	24
10	92.7	62.0	1.	124.0	•3	186.0	.6	248.0	1.1	310.0	1.7	371.9	2-4
20	185.3	61.8	1.	123.6	•3	1854	.6	247.2	I.I	309.0	1.7	370-7	2.4
30	278.0 370.6	61.6 61.4	л. г.	123.2	·3 ·3	184.7 184.1	6. 6.	246.3 245.5	1.1 1.1	307.9	1.7 1.7	369.5 368.3	2.4 2.4
40 50	463.3	61.2	1.	122.4	 .3	183.5	.6 .6	244-7 244-7	1.1 1.1	305.9	1.7	367.1	2.4
49 00		61.0 60.8	.ı	122.0	•3	182.9 182.3	ð. 9.	243.9	1.1	304.9	1.7	365-9 364-7	24
10 20	92.7 185-4	60.6	I. I.	121.6	.3 .3	181.7	.0 .6	243.I 242.3	1.1 1.1	303.9 302.8	1.7	363-4	2.4 2.4
30	278.0	60.4	I.	120.7	·3	181.1	.6	241.4	1.1	301.8	1.7	362.2	2.4
40	370.7	60.2	.1	120.3	•3	180.5	.6	240.6	1.1	300.8	1.7	361.0	24
50	463.4	60.0	1.	119.9	·3	179-9	6.	239.8	1.1	299.8	1.7	3598	24
50 00		59.8	л.	119.5	•3	179.2	<b>.</b>	270.0	1.1	298.8	1.7	358.5	24
10	92.7	59-5	.1	119.1	•3	179.2 178.6	.6	239.0 238.2	1.1	207.7	1.7	357.2	24
20	185.4	59-3	.I	118.7	•3	178.0	.6	237.3	1.1	2966	1.7	356.0	24
30	278.1	59.1 58.9	.1	118.2	•3	177-4	.6	236.5	1.1	295.6	1.7	354-7	2.4
40 50	370.8 463.4	58.9 58.7	1. I.	117.8	·3 ·3	176.8 176.1	6. 6.	235.7 234-8	1.I 1.I	294.6 293.6	1.7 1.7	353-5 352-3	24 24
51 00 10	02.7	58.5 58.3	л. г.	117.0 116.6	. <u>.</u>	175.5 174-9	<b>.6</b> .6	234.0 233.2	I.I I.I	292.5 291.4	1.7 1.6	351.0	2.4 2.4
20	185.	58.1	.1	116.2	.3	174.2	.6	232.3	1.1	200.4	1.6	349-7 348-5	24
30	278.I	\$7.0	.I	115.7	•3	173.6	.6	231.5	1.1	289.4	1.6	347.2	2.4
40	370.8	57.6	л.	115.3	•3	173.0	.6	230.0	1.1	288.2	1.6	345-9	24
50	463.6	57-4	ι.	114.9	•3	172.3	6.	229.8	1.1	287.2	1.6	344.6	24
52 00	•••••	57.2	.I	114.5	•3	171.7	.6	228.9	1.0	286.2	1.6	343-4	24
10	92.7	57.0	.1	114.0	•3	171.1	.6	228.I	1.0	285.I	1.6	342.1	24
20	185.4 278.2	56.8 56.6	л. г.	113.6	•3	170.4 169.8	.6 .6	227.2 226.4	1.0	284.0 283.0	1.6 1.6	340.8	2.4
30	370.9	56.4	.1	113.2 112.8	; ;	169.1	ð.	225.5	1.0 1.0	281.9	1.6	339-5 338-3	2.3 2.3
50	463.6	56.2	.1	112.3	.; ;3	168.5	6	224.6	1.0	280.8	1.6	337.0	2.3
53 00		56.0	.t	111.9	•3	167.9	6	223.8	1.0	279.8	1.6	335-7	2.3
10	92.7 185.5	55-7	I.	111.5	•3	167.2 166.6	.6	222.9	I.0	278.6	1.6	334-4	2.3
20 30	278.2	55.5	г. г.	111.0 110.6	•3	165.9	6. 6.	222.I 221.2	1.0 1.0	277.6 276.5	1.6 1.6	333.1 331.8	2.3 2.3
40	371.0	55-3 55-1	.1	110.2	.3 .3	165.2	.6	220.3	1.0	275-4	1.6	330.5	2.3
50	463.7	54.9	.1	109.7	.3	164.6	.6	219.5	1.0	274-4	1.6	329.2	2.3
54 00		54.6	ı.	109.3	•3	164.0	.6	<b>218.</b> 6	1.0	27 3.2	1.6	327.9	2.3
10	92.8	54-4	.1	108.0	•3	163.3	.6	217.7	1.0	272.1	1.6	326.6	2.3
20	185.5	54.2	1.	108.4	-3	162.6	.6	216.8	1.0	271.0	1.6	325.3	2.3
30	278.3	54.0	.I. T	108.0	•3	162.0	.6	216.0	1.0	269.9	1.6	323.9	2.3
40 50	371.0 463.8	53.0 53.6	1. I.	107.5 107.1	J	161.3 160.6	0. 6.	21 5.1 214.2	1.0 1.0	200.0 267.7	1.6 1.6	322.6 321.3	2.3
55 00		53-3	л.	106.7	.3	160.0	.6	213.3	1.0	<b>266.</b> 6	1.6	320.0	2.3
10	92.8	53.1	л.	106.2	.3	159-3 158.7	.6	212.4	1.0	265.6	1.6	318.7	2.3
20	185.5	52.9	.ι	105.8	-3	1 58.7	.6	211.6	1.0	264.4	1.6		2.3
30	278.3	52.7	.I	105.3	•3	1 58.0	.6	210.7	1.0	263.4	1.6		2.3
40 50	371.1 463.8	52.4 52.2	л. л.	104.9 104.4	.3 .3	1 57.3 1 56.7	6. 6.	209.8 208.9	1.0 1.0	262.2 261.1	1.6 1.6	314.6 313.3	2.3 2.3
56 00		52.0	л.	104.0	.2	156.0	.6	<b>20</b> 8.0	1.0	260.0	1.6	312.0	2.3
L									_			000	

SMITHSONIAN TABLES.

### CO-ORDINATES FOR PROJECTION OF MAPS. SCALE STATES

[Derivation of table explained on pp. liii-lvi.]

			co	-ORDI1	NATI	IS OF	DEVI	ELOPE	D PA	RALLI	L FO	)R —	
ude of Ilei.	Meridional dia tances from even degree parallela.	10' long	itude.	20' long	it <b>ude</b> .	30' long	itude.	40' long	itude.	50' long	itude.	x ^o long	itude.
Latitude parallel.	Meria	x	7	x	y	x	y	x	y	x	7	. <b>x</b>	7
	SHL 594.	see.	<b>111.111</b> .	<b>311316</b> .	<b>311.581.</b>	<b>MM.</b>	<i></i>	<b>11111</b>	sesse.	<b>M</b> M.	<b>3036</b> .	<b>mm</b> .	жж.
56°00′		52.0	1.	104.0	.2	156.0	.6 .6	208.0 207.1	1.0 1.0	260.0 258.9	1.6 1.6	312.0	2.3
10	92.8 185.6	51.8 51.6	I. I.	103.6 103.1	.2 .2	155.3	.6	207.1	1.0	257.8	1.6	310.7 309.3	2.3 2.2
30	278.4	51.3	.1	102.6	.2	154.0	.6	205.3	1.0	256.6	1.6	307.9	2.2
40 50	371.2 464.0	51.1 50.9	I. I.	102.2 101.8	.2 .2	153.3 152.6	6. 6.	204.4 203.5	1.0 1.0	255.5 254.4	1.5 1.5	306.6 305.3	2.2 2.2
57 00 10	92.8	50.6 50.4	1. 1.	101.3 100.8	.2 .2	152.0 151.3	.6 .6	202.6 201.7	1.0 1.0	253.2 252.1	1.5 1.5	303.9 302.5	2.2 2.2
20	185.6	50.2		100.4	.2	1 50.6	.6	200.8	1.0	251.0	1.5	301.1	2.2
30	278.4	50.0	1.	99-9	.2	149.9	6. 6.	199.8	1.0 1.0	249.8		299.8	2.2 2.2
40 50	371.2 464.0	49-7 49-5	I. I.	99-5 99-0	.2 .2	149.2 148.5	.5	199.0 198.0	1.0	240.7	1.5 1.5	290.4	2.2
58 00		49-3	.1	98.6	.2	147.8	.5	197.1	1.0	246.4	1.5	295.7	2.2
10 20	92.8 185.6	49.0	I. I.	98.1 97.6	.2	147.2	•5 •5	196.2 195.3	I.0 I.0	245.2   244.I	1.5 1.5	294.3	2.2 2.2
30	278.5	48.6		97.2	.2	145.8	.5	194.4	1.0	243.0	1.5	291.5	2.2
40 50	371.3 464.1	48.4 48.1	1. 1.	96.7 96.3	.2 .2	145.1 144-4	•5 •5	193.4 192.5	1.0 1.0	241.8 240.6	1.5 1.5	290.2 288.8	2.2 2.1
59 00		47.9	I.	95.8	.2	143.7	•5	191.6	1.0	239.5 238.4	1.5	287.4	2.1
10 20	92.8 185.7	47.7	1. 1.	95-3	.2	143.0	•5 •5	190.7 189.7	1.0 1.0	237.2	1.5 1.5	284.6	2.1 2.1
30	278.5	47.2	1.	.94-4	.2	141.6	• 5	188.8	1.0	236.0	1.5	283.2	2.1
40 50	371.3 464.2	47.0 46.7	г. г.	93-9 93-5	.2 .2	140.9 140.2	•5 •5	187.9 186.9	9. 9.	234.8 233.6	1.5 1.5	281.8 280-4	2.1 2.1
60 00		46.5	1.	93-0	.2	130.5 138.8	•5	186.0	.9	232.5	1.5	279.0	2.I 2.I
10 20	92.8 185.7	46.3	I. I.	92.5 92.1	.2	130.0	·5 ·5	185.0 184.1	9. 9	231.3	I.5 I.4	277.6	2.1
30	278.6	45.8	1.	91.6	.2	137.4	1.5	183.2	.9	229.0	1.4	274.8	2.I
40 50	371.4 464.2	45-6 45-3	I. I.	91.1 90.6	.2 .2	136.7	•5 •5	182.2 181.3	9. 9.	227.8 226.6	I.4 I.4	273-4 271.9	2.I 2.I
<u>6</u> 1 ∞		45.1	.1	90.2	.2	135.3	•5	180.4	.9	225.4	1.4	270.5	2.I
10 20	92.9 185.7	44.8	1. 1.	89.7 89.2	.2	134.6	·5 ·5	179.4	9. 9	224.2 223.I	I.4 I.4	269.1 267.7	2.I 2.I
30	278.6	44-4	.1	88.8	.2	133.1	1.5	177.5	.9	221.9	1.4	266.3	2.0
40 50	371-4 464-3	44.1 43-9	I. I.	88.3 87.8	.2 .2	132.4 131.7	•5 •5	17 <b>6.</b> 6 175.6	.9 .9	220.7 219.6	I.4 I.4	264.8 263.5	2.0 2.0
62 00		43-7	1.	87.3	.2	131.0	•5	174-7	.9	218.4	1.4	262.0	2.0
10 20	92.9 185.7	43-4	л. г.	86.9	.2	130.3	·5 ·5	173.7	.9 .9	217.2	I.4 I.4	260.6 259.1	2.0 2.0
30	278.6	43.0	г. ]	85.9	.2	128.8	1.5	171.8	.9	214.8	1.4	257.7	2.0
40 50	371.5 464.4	42.7 42.5	і. г.	85.4 84.9	.2 .2	128.1 127.4	.5 .5	170.8 169.9	.9 .9		<b>-</b>	256.3 254.8	2.0 2.0
63 00		42.2	.1	84.5	.2	126.7	•5	168.9	.9	211.2		253.4	2.0
10 20	92.9 185.8	42.0	1. 1.	84.0 83.5	.2	126.0 125.2	·5 ·5	168.0 167.0	.9 .9	210.0 208.8	I.4 I.4	251.9 250.5	2.0 2.0
30	278.7	41.5	I.	83.0	.2	124.5	·5 ·5	166.0	.9	207.5	1.3	249.0	1.9
40 50	371.6 464-4	41.3 41.0	1. 1.	82.5 82.0	.2 .2	123.8 123.1	•5 •5	165.0 164.1	.9 .9	206.3 205.1	1.3 1.3	247.6 246.1	1.9 1.9
64 00		40.8	1.	81.6	.2	122.3	•5	163.1	.9	203.9		244.7	1.9
SMITHEORIAN	TABLES.									Digitize	ed by	000	-sie

# CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 300000

			СС	-ORDI	NAT	es of	DEV	ELOPE	D PA	RALLI	SL F	OR —	
Latitude of parallel.	Meridional dia tances from even degree parallela.	10' long	itude.	20' long	itude.	30' long	itude.	40' long	itude.	50' long	itude.	1º lon	gitude.
Har I	Me tar Pe	x	y	x	<b>y</b>	x	y	x	y	x	<b>y</b>	x	<b>y</b>
	<b>mm</b> .	<b>ж</b> ж.	mm.	<b>mm</b> .	<b>m</b> m.	<i>***</i> ***.	тт.	<b>mm</b> .	mm.	mm.	mm.	яя.	<b>mm</b> .
64°00′ 10 20 30 40 50	92.9 185.8 278.7 371.6 464.5	40.8 40.5 40.3 40.0 39.8 39.6	I. I. I. I. I. I.	81.6 81.1 80.6 80.1 79.6 79.1		122.3 121.6 120.9 120.1 119.4 118.7	<b>\$</b> <b>\$</b> <b>\$</b> <b>\$</b> <b>\$</b> <b>\$</b> <b>\$</b> <b>\$</b> <b>\$</b> <b>\$</b>	163.1 162.2 161.2 160.2 159.2 158.2	င်္သာ တွဲ တွဲ တွဲ	203.9 202.7 201.4 200.2 199.0 197.8	1.3 1.3 1.3 1.3 1.3 1.3	244-7 243.2 241.7 240.2 238.8 237.4	1.9 1.9 1.9 1.9 1.9 1.9
65 00 10 20 30 40 50	92.9 185.8 278.7 371.6 464.6	<b>39</b> -3 39.1 38.8 38.6 38.3 38.1	1. 1. 1. 1. 1. 1.	78.6 78.1 77.6 77.2 76.7 7 <b>6</b> .2		117.9 117.2 116.5 115.7 115.0 114.2	****	1 57.2 1 56.2 1 55.3 1 54.3 1 53.3 1 52.3	ڻ ڻ ڻ ڻ ڻ ڻ	196.6 195.3 194.1 192.9 191.6 190.4	I.3 I.3 I.3 I.3 I.3 I.3	235.9 234.4 232.9 231.5 230.0 228.5	1.9 1.9 1.8 1.8 1.8 1.8
66 00 10 20 30 40 50	92.9 185.9 278.8 371.7 464.6	37.8 37.6 37.3 37.1 36.8 36.6	<b>ò ò ò ò ù</b>	75-7 75-2 74-7 74-2 73-7 73-2		113.5 112.8 112.0 111.3 110.6 109.8	.5 .4 .4 .4 .4	151.4 150.4 149.4 148.4 147.4 146.4	င်္လာ လ လ လ လ စာ	189.2 188.0 186.7 185.4 184.2 183.0	I.3 I.3 I.2 I.2 I.2 I.2 I.2	227.0 225.5 224.0 222.5 221.1 219.6	1.8 1.8 1.8 1.8 1.8 1.8 1.8
67 00 10 20 30 40 50	92.9 185.9 278.8 371.8 464.7	36.4 36.1 35.8 35.6 35.4 35.1	<b>ò ò ò ò ò ò</b>	72.7 72.2 71.7 71.2 70.7 70.2	; ; ; ; ; ;	109.0 108.3 107.6 106.8 106.0 105.3	.4 .4 .4 .4 .4 .4 .4	I45.4 I44.4 I43.4 I42.4 I4I.4 I40.4	ဗ် ဗ် ဗ် ဗ် ဗိ ဗိ	181.8 180.5 179.2 178.0 176.8 175.5	I.2 I.2 I.2 I.2 I.2 I.2 I.2	218.1 216.6 215.1 213.6 212.1 210.6	1.8 1.7 1.7 1.7 1.7 1.7
68 00 10 20 30 40 50	93.0 185.9 278.8 371.8 464.8	34.8 34.6 34.4 34.1 33.8 33.6	<b>ö ö ö ö ö</b>	69.7 69.2 68.7 68.2 67.7 67.2		104.6 103.8 103.0 102.3 101.5 100.8	.4 .4 .4 .4 .4	1 39-4 1 38-4 1 37-4 1 36-4 1 35-4 1 34-4	8 •7 •7 •7	174.2 173.0 171.8 170.4 169.2 168.0	1 2 1.2 1.2 1.1 1.1 1.1	209.1 207.6 206.1 204.5 203.0 201.5	1.7 1.7 1.7 1.7 1.7 1.7 1.6
69 00 10 20 30 40 50	93.0 185.9 278.9 371.8 464.8	33.3 33.1 32.8 32.6 32.3 32.1	<b>ㅎ ㅎ ㅎ ㅎ </b> ㅎ	66.7 66.2 65.7 65.2 64.7 64.1		100.0 99.3 98.5 97.7 97.0 96.2	* * * * * *	133.4 132.4 131.3 130.3 129.3 128.3	·7 ·7 ·7 ·7 ·7 ·7	166.7 165.4 164.2 162.9 161.6 160.4	I.I I.I I.I I.I I.I I.I I.I	200.0 198.5 197.0 195.5 194.0 192.4	1.6 1.6 1.6 1.6 1.6 1.6
70 00 10 20 30 40 50	93.0 185.9 278.9 371.9 464.9	31.8 31.6 31.3 31.1 30.8 30.5	<b>6 6 6 6 6</b>	63.6 63.1 62.6 62.1 61.6 61.1	 	95.5 94.7 93.9 93.2 92.4 91.6	* * * * * *	127.3 126.2 125.2 124.2 123.2 122.2	·7 ·7 ·7 ·7 ·7	159.1 157.8 156.6 155.3 154.0 152.7	I.I I.I I.I I.I I.I I.0	190.9 189.4 187.9 186.4 184.8 183.2	1.6 1.6 1.5 1.5 1.5
71 00 10 20 30 40 50	93.0 186.0 278.9 371.9 464.9	30.3 30.0 29.8 29.5 29.3 29.0	<b>6 6 6 6 6</b>	60.6 60.1 59.6 59.0 58.5 58.0	.2 .2 .2 .2 .2 .2 .2 .2	90.9 90.1 89.3 88.6 87.8 87.1	* * * * * *	121.2 120.2 119.1 118.1 117.1 116.1	·7 ·7 ·7 ·7 ·7 ·6 ·6	151.4 150.2 148.9 147.6 146.4 145.1	1.0 1.0 1.0 1.0 1.0 1.0	181.7 180.2 178.7 177.1 175.6 174.1	1.5 1.5 1.5 1.5 1.5 1.4
72 00		28.8	0.	57-5	.2	86.3	•4	115.0	.6	143.8	1.0	172.6	<b>1.4</b>

[Derivation of table explained on pp. liii.-lviii.]

SMITHSONIAN TABLES.

Ĉ

#### CO-ORDINATES FOR PROJECTION OF MAPS. SCALE THIT

[Derivation of table explained on pp. liii-lvi.]

			co	ORDI	NATI	es of	DEV	elope	D PA	RALLI	L F	0 <b>R</b> —	
Latitude of parallel.	Meridional dis tances from even degree parallela.	zo' long	itude.	20' long	itude.	30' long	itude.	40' long	itude.	50' long	itude.	ı° long	jtude.
Ţ	N S S S	x	y	x	7	x	<b>y</b>	x	<b>y</b>	x	y	x	7
	<b>101</b>	mm.	тт.	<i>.</i>	<b>M</b> M.	mm.	<b>10</b> 794.	910 MR.	янян.	stat.	тт.	stesse.	mm.
72°00′		28.8 28.5	.0	57.5	.2	86.3	-4	115.0	.6	143.8	1.0	172.6	1.4
10 20	93.0 186.0	28.2	0. 0.	57.0 56.5	.2	85.5 84.7	•4	114.0	.6 .6	142.5 141.2	1.0 1.0	171.0 169.4	I.4 I.4
30	279.0	28.0	.0	56.0	.2	83.9	•3	111.9	.6	139.9	1.0	167.9	1.4
40 50	372.0 465.0	27.7 27.5	0. 0.	55-5 54-9	.2 .2	83.2 82.4	·3 ·3	110.9	.6 6.	138.6 137.4	1.0 1.0	166.4 164.8	1.4 1.4
73 00		27.2	.0	54-4	.2	81.6	.3	108.8	.6	1 36.0	.9	163.3	1.4
10 20	93.0 186.0	27.0 26.7	.0 .0	53-9 53-4	I. I.	80.8 80.1	·3 ·3	107.8	.6 .6	1 34.8 1 33.4	.9 .9	161.7 160.1	1.4 1.3
30	279.0	26.4	.0	52.9	I.	70.3	•3	105.7	.6	132.2	.9	1 58.6	1.3
40 50	372.0	26.2 25.9	.0. .0	52.3 51.8	I. I.	78.5	·3	104.7 103.6	.6 .6	1 30.8 1 29.6	.9 .9	157.0 155.5	1.3 1.3
						1			.6	128.2			
74 00 IO	920	25.6 25.4	.0 .0	51.3 50.8	I. I.	77.0	·3 ·3	102.6	.0 .6	120.2	.9 .9	153.9 152.3	1.3 1.3
20	93.0 186.0	25.1	.0	50.3	1.	75.4	.3	100.5	.6	125.6	.9	1 50.8	1.3
30 40	279.0	24.9 24.6	.0. 0.	49-7	I. I.	74.6	·3 ·3	99-5 98-4	.6 .6	124.4	.9 .9	149.2 147.7	I.3 I.2
50	465.0	24.4	.0	48.7	.1	73.0	.3	97.4	•5	121.8	.ś	146.1	1.2
75 00		24.1	.0	48.2	I.	72.3	.3	96.4	•5	120.4	.8	144.5	1.2
10 20	93.0 186.0	23.8 23.6	.0. .0	47.7 47.1	1. 1.	71.5	·3 ·3	95.3	·5 ·5	119.2	.8 .8	143.0 141.4	1.2 1.2
30	279.1	23.3	.0	46.6	л.	69.9	·3 ·3	93.2	1.5	116.5	.8	139.8	I.2
40 50	372.I 465.I	23.0 22.8	0. 0.	46.1	1. 1.	69.1 68.3	·3 ·3	92.2 91.1	·5 ·5	115.2 113.8	.8 .8	138.2 136.6	I.2 I.I
76 00		22.5	.0	45.0	л.	67.5	.3	90.0	.5	112.6	.8	135.1	1.1
10	93.0 186.1	22.2	.0	44-5	1.	66.8 65.9	·3 ·3 ·3	89.0 87.9	1.5	111.2 109.9	.8 .8	133.5 131.9	1.1 1.1
20 30	279.1	21.7	0. 0.	44.0	I. I.	65.2	.3	86.9	·5	108.6	8.	130.3	1.1
40	372.1	21.5	.0	42.9	I.	64.4	·3 ·3	85.8	•5 •5	107.3	.8	128.8	1.1
50	465.1	21.2	.0	42.4	1.	63.6	•3	84.8	.5	106.0	•7	127.1	1.1
77 00 10	07.0	20.9	.0. 0.	41.9	I. I.	62.8 62.0	·3 ·3	83.7 82.7	·5 ·5	104.6 103.4	.7   .7	125.6	1.I 1.I
20	93.0 186.1	20.4	.0	41.3 40.8	I.	61.2	·3 ·3	81.6	1.5	102.0	.7	122.4	1.0
30 40	279-1 372.2	20.1 19.9	0. 0.	40.3 39.8	I. I.	60.4 50.6	·3 ·3	80.6	·5 -4	100.7 99.4	.7   .7	120.8	1.0 1.0
50	465.2	19.6	.0	39.2	I.	59.6 58.8	.3	79-5 78.4	4	98.0	.7	117.7	1.0
78 00		194	0.	38.7	.1	58.0	.2	77.4	.4	96.8	.7	116.1	1.0
10 20	93.0 186.1	10.1 18.8	0. 0.	38.2 37.6	1. 1.	57.2 56.5	.2 .2	76.3	•4	95.4 94.1	.7 .7	114.5 112.9	1.0 1.0
30	279.1	18.6	۵. م	37.1	.1	55.7	.2	75·3	4	92.8	.7	111.4	1.0
40 50	372.2 465.2	18.3 18.0	9 9	36.6 36.0	I. I.	54-9 54-1	.2 .2	73.2	-4	91.4 90.1	6. 6.	109.7 108.1	.9 .9
79 00		17.8	.0				.2	71.0		88.8	.6	106.6	
10	93.0 186.1	17.5	.0	35-5 35-0	1. 1.	53·3 52.5	.2	70.0	4	87.4	.6	104.9	.9
20		17.2	.0. .0	34-5	1.	51.7	.2	68.9	-4	86.2 84.8	.6 .6	103.4	.9
30 40	279.2 372.2	17.0 16.7	.0	33-9 33-4	1. 1.	50.9 50.1	.2	67.8 66.8	-4	83.4	.6	100.1	ଡ଼ <i>କ</i> ବର ବ
50	465.2	16.4	.0	32.9	1.	<b>4</b> 9·3	.2	65.7	-4	82.2	.6	98.6	.8
80 00		16.2	.0	32.3	I.	48.5	.2	64.6	•4	80.8	.6	97.0	<b>.</b> 8
SMITHSONIA!	TABLES.									Digit	ized t		081

.

#### TABLE 24.

#### CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TITLE

ABSCISSAS OF DEVELOPED PARALLEL. 4 Meridional dia tances from even degree parallela. * ORDINATES OF Latitude ( parallel. DEVELOPED 5 10 15 20 25' 30' PARALLEL. longitude. longitude. longitude longitude. longitude longitude. Longitude interval. ------SPERIE. -o° ro ഹ്യം 695.8 116.0 231.9 347.9 463.8 579.8 230.4 460.7 691.0 463.8 463.8 579.8 579.8 10 116.0 231.9 347.9 347.8 695.8 116.0 20 695.7 231.9 347.8 579.8 579.8 579.8 30 116.0 231.9 463.8 695.7 mm. 40 921.4 1151.8 116.0 347.8 463.8 695.7 231.9 5 0.0 0.0 ço 115.9 231.9 347.8 463.8 579-7 695.6 ιō 0.0 0.0 15 0.0 0.0 1 00 463.8 115.9 231.9 347.8 695.6 579-7 20 0.0 0.0 230.4 460.7 691.0 231.9 231.8 347.8 579.6 695.6 695.5 10 115.9 463.7 25 0.0 0.0 115.9 463.7 579.6 20 347.8 30 0.0 0.1 231.8 579.6 695.5 30 115.9 347.7 463.6 40 921.4 1151.8 231.8 695.5 115.9 463.6 347.7 579.6 ŝo 231.8 463.6 115.9 347.7 579.5 695.4 3° 20 231.8 579-4 579-4 695.3 695.3 2 00 115.9 463.6 347.7 230.4 460.7 691.0 463.5 463.4 347.6 10 231.8 115.9 115.9 115.8 20 231.7 347.6 579-3 695.2 00 مە 5 463.4 695.0 30 231.7 579.2 347.5 IÕ 0.0 0.0 921.4 1151.8 115.8 695.0 40 231.7 347.5 463.3 579.2 15 0.0 0.0 50 115.8 231.6 463.3 694.9 347.5 579-1 20 0.0 0.1 25 **0.I** 0.1 300 115.8 463.2 579.0 578.9 578.8 231.6 694.8 347-4 . . . . 10 **с** 1 0.2 230.4 460.7 691.1 115.8 463.1 694.7 694.6 10 231.6 347.3 115.8 20 231.5 463.0 347.3 578.7 578.6 463.0 30 115.7 231.5 347.2 694.4 40 921.4 1151.8 462.9 115.7 231.4 347.2 694.3 4° 5° 462.8 ç0 115.7 231.4 347.1 578.5 694.2 578.4 00 115.7 231.4 347.0 462.7 694.1 0.0 0.0 5 578.2 462.6 IO 230.4 460.7 691.1 115.7 231.3 693.9 693.8 347.0 IÕ 0.0 0.0 346.9 346.8 346.7 20 231.3 462.5 578.2 15 0.1 0.1 462.4 693.6 30 115.6 231.2 578.0 20 0.1 0.1 921.4 1151.8 **4**0 115.6 462.3 577.8 693.4 231.1 25 0.1 0.2 346.6 462.Z 577.8 50 115.6 693.3 231.1 3Ō 0.2 0.3 346.6 462.1 **6**93.1 500 115.5 231.0 577.6 230.4 460.7 691.1 692.9 692.8 IO 115.5 231.0 346.5 462.0 577-4 7° 230.9 230.8 230.8 346.4 461.8 6° 577·3 577·1 20 115.5 115.4 115.4 30 346.3 461.7 692.5 346.2 921.5 1151.8 692.3 40 461.6 577.0 576.8 346.1 50 115.4 230.7 5 0.0 ഹ 461.4 692.2 ΙŌ 0.0 0.0 576.6 115.3 346.0 461.3 15 0.I 0.1 600 230.7 692.0 20 0.I 0.2 230.4 460.8 691.1 115.3 115.2 576.4 576.2 691.7 691.5 230.6 345.9 345.8 461.2 10 461.0 25 0.2 230.5 0.3 20 30 0.3 0.4 115.2 230.4 460.9 576.1 691.3 30 345-7 921.5 460.7 691.1 40 115.2 230.4 345-5 575.9 \$O 1151.9 1141 230.3 345-4 460.6 575.7 600.8 80 57 **5**-5 700 115.1 230.2 345-3 460.4 690.6 230.4 460.8 691.1 460.2 575-3 575-0 115.1 230.1 690.4 IO 345.2 230.0 690.1 689.8 20 115.0 345.0 460.0 5 10 0.0 574.8 229.9 115.0 344-9 344-8 30 459-9 0.0 689.6 229.9 229.8 40 921.5 114.9 459-7 574.6 15 0.1 689.3 1151.9 344.6 50 114.9 459-5 574-4 20 0.2 25 0.3 689.0 8 00 114.8 344-5 . . . . . 229.7 459.4 574.2 30 0.4

[Derivation of table explained on pp. hii-lvi.]

SMITHSONIAN TASLES.

### CO-ORDINATES FOR PROJECTION OF MAPS. SCALE

[Derivation of table explained on pp. liii-lvi.]

		AB	SCISSAS	OF DEV	ELOPED	PARALL	EL			
Latitude of parallel.	Meridional di tances from even degree parallela.	5 [°] longitude.	IO' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	I	DINAT DEVELO PARALL	PED
	<b>301371.</b>	<i>mm</i> .	<i>mm</i> .		<b></b>	<i></i>	<b>m</b> m.	Longitude interval.	1	
8°00′		114.8	229.7	344-5	459-4	574.2	689.0	ert	` <b>8</b> °	9°
10	230.4	114.8	229.6	344-4	459-2	574.0	688.7	5ª		
20	460.8	114.7	229.5	344.2	450.0	573-7	688.4			
30	691.2	114.7	229.4	344.I	458.8	573-4	688.1			
40	921.6	114.6	229.3	343.9	458.6	573.2	687.8	-	<b>MM</b> .	<b>NUM</b> ,
50	1152.0	114.6	229.2	343.8	458.4	573.0	687.5	5 10	0.0	0.0
								15	0.0 0.1	0.I 0.I
900		114.5	22 <b>9.</b> I	343.6	458.2	572.7	687.2	20	0.1	0.2
10	230.4 460.8	114.5	220.0	343-4	457-9	572.4	686.9 686.6	25	0.3	0.3
20		1144	228.9 228.7	343-3	457.7	572.2 571.8	686.2	30	0.4	0.5
30 40	691.2 921.6	114-4 114-3	220.7	343.I	457.5		685.9			
40 50	1152.0	114-3	228.5	343.0 342.8	457-3	571.6 571.3	685.6			
~			<i></i>	3400	457-0	3/ 3	~~			
10 00		114.2	228.4	342.6	456.8	571.0	685.3		100	110
10	220.4	114.2	228.3	342.4	456.6	570.8	684.9			
20	230.4 460.8	114.1	228.2	342.3	456.4	570.4	684.K			
30	691.3	1140	228.0	342.1	456.1	570.1	684.I	5	0.0	0.0
40	921.7	114.0	227.9	341.9	455.8	569.8	683.8	10	0.1 0.1	0.1
ŚO	11 52.1	113.9	227.8	341.7	455.6	\$69.5	683.4	15 20	0.1	0.2
							20	25	0.4	0.4
11 00		113.8	227.7	341.5	455-4	560.2	683.0	30	0.5	0.6
10	230.4	113.8	227.5	341.3	455.1	568.8	682.6	<b>1</b>		
20	460.9	113.7	227.4	341.1	454.8	568.6 568.2	682.3 681.8			
30	691.3	113.6	227.3	340.9	454.0	508.2 567.8	681.6 681.4			
40	921.8 1152.2	113.6	227.I 227.0	340.7	454-3	567.6	681.1		I 2 ⁰	130
50	*****	113.5	~~/~	340.5	454.0	30/.0				
1200		1134	226.9	340.3	453.8	567.2	680.6	5	0.0	0.0
10	230.4	1134	226.7	340.1	453-5	566.8	680.2	10	0.1	0.1
20	460.9	113.3	226.6	339.9	453.2	566.5	679.8	15	0.2	0.2
30	691.2	113.2	226.4	339-7	452.9	566.1	679.3	20	0.3	0.3
40	921.8	113.2	226.3	339-4	452.6	565.8	678.9	25	04	0.5
- șo	1152.2	113.1	226.2	339-2	452.3	<b>5</b> 65-4	678.5	30	0.6	0.7
-							6-0-			
1300	••••••	113.0	226.0	339.0	452.0	565.0	678.1			
10	230.5	112.9	225.9	338.8	451.7	564.6	677.6	!	14°	15°
20	460.9	112.8	225.7	338.6	451.4	564.2	677.1		-4	⁻
30	691.4	112.8 112.7	225.0	338.3 338.1	451.1	563-9	676.7 676.2			l
40	921.9	112.7	225.4 225.2		450.8	563.5 563.1	675.7	5	0.0	0.0
50	1152.4		225.2	337-9	450.5	2~2~	~1.2.1	10	0.1	0.1
14 00		112.5	225.1	337.6	450.2	562.7	675.2	15	0.2	0.2
14 00	230.5	112.5	224.9	337.4	449.8	562.3	674.8	20	0.3	0.3
20	461.0	112-4	224.7	337.1	449-5	\$61.8	674.2	25	0.5	0.5
30	691.5	112.3	224.6	336.8	440.1	561.4	673.7	30	0.7	000
40	922.0	112.2	224.4	330.0	448.8	561.0	673.2			
50	1152.4	112.1	224.2	336.4	448.5	560.6	672.7			
									16º	
1500	•••••	112.0	224. I	336.1	448.I	560.2	672.2			
10	230.5	111.9	223.9	335.8	447.8	559-7	671.6			
20	461.0	111.8	223.7	335.6	447-4	559.2 558.8	671.1	5	0.0 0.1	
30	691.5	111.8	223.5	335-3	447.0	550.0	670.6	10	0.2	
40	922.0	111.7	223.3	335.0	446.7	558.4	670.0 660.5	15 20	0.2	
50	1152.6	111.6	223.2	334-7	446.3	557-9	669.5	25	0.6	
		111.5	223.0	334-5	446.0	557-4	668.9	30	0.8	
1600										

## CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TITT

	di e a	ABSCISSAS OF DEVELOPED PARALLEL								
Latitude of parallel.	Meridional di tances from even degree parallels.	5' longitude.	IO' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	I	NDINAT Develo Parali	
	<i>mm</i> .		NENE.	<i></i>	<i>m</i> m.		<i></i>	Longitude interval.		
16°00′		111.5	223.0	334-5	446.0	557-4	668.9	erit.	160	17°
10	230.5	111.4	222.8	334.2	445.6	557.0	668.3	<u>3</u> . <u>.</u>		
20	461.1	111.3	222.6	333.9	445.2	556.5	667.8	'		
30	691.6	111.2	222.4	333.6	444.8	556.0	667.2			MI.ML.
40	922.1	111.1 111.0	222.2 222.0	333-3	444-4	555.6	666.7 666.1	5	0.0	0.0
50	1152.6	111.0	222.0	333.1	444.I	555.1		10	0.1	0.1
17 00		110.9	221.8	332.8	443.7	554.6	665.5	15	0.2	0.2
10	230.6	110.8	221.6	332.5	443-3	554.1	664.0	20 25	0.4 0.6	0.4
20	4 <b>6</b> 1.1	110.7	221.4	332.2	442.9	553.6	664.3	30	0.0	0.0
30	691.6	110.6	221.2	331.9	442.5	553.1	663.7	5		
40	922.2	110.5	221.0	331.6	442.I	552.6	663.1			
50	1152.8	110.4	220.8	331.3	441.7	552.1	662.5			
18 00		110.3	220.6	331.0	441.3	551.6	661.9		180	19°
10 10	230.6	110.2	220.4	330.6	440.8	551.0	661.3	<u> </u>		
20	461.1	110.1	220.2	330.3	440.4	550.6	660.7	5	0.0	0.0
30	691.7	I 10.0	220.0	330.0	440.0	550.0	660.0	10	0.1	0.1
40	922.3	109.9	219.8	329-7	439.6	549-4	659.3	15	0.2	0.2
50	1152.8	109.8	219.6	329.4	439.2	549.0	658.7	20	04	0.4
							6.0.	25	0.6	0.6
1900		109.7	219.4	329.0 328.7	438.7 438.3	548-4 547.8	658.1	30	0.9	0.9
10 20	230.6 461.2	109.6 109.5	219.1 218.9	328.4	437.8	54/.0	657.4 656.8			
30	691.8	109.4	218.7	328.0	437.4	547·3 546.8	656.1			
40	922.4	109.2	218.5	327.7	436.9	546.1	655.4		20 ⁰	210
50	1153.0	109.1	218.2	327.4	436.5	545.6	654.7			
							6			
20 00		109.0 108.9	218.0	327.0	436.0	545.0	654.1	5	0.0	0.0
10 20	230.6 461.2	108.9	217.8	326.7 326.3	435.6 435.1	544-4 543.8	653.3 652.6	10 15	0.I 0.2	0.1
30	691.9	108.7	217.5 217.3	326.0	434.6	543.3	652.0	20	0.4	0.3 0.5
40	922.5	108.5	217.1	325.6	434.2	542.7	651.2	25	0.7	0.7
50	1153.1	108.4	216.8	325.3	433.7	542.1	650.5	30	1.0	1.0
-					_		6.0			
21 00		108.3 108.2	216.6	324.9	433.2	541.5	649.8			
10 20	230.6 461.3	108.2	216.4 216.1	324.5	432.7 432.2	540.9 540.3	649.1 648.4	1	22 ⁰	23°
30	<b>69</b> 2.0	107.9	215.9	324.2 323.8	431.7	539.6	647.6			
40	922.6	107.8	215.6	323.4	431.2		646.9			
50	1153.2	107.7	215.4	323.1	430.8	539.0 538.4	646.1	5	0.0	0.0
								10	0.1	0.1
22 00	••••	107.6	215.1	322.7	430.3	537.8	645.4	15	0.3 0.5	0.3
10	230.7	107.4	214.9	322.3	429.8	537.2	644.6	25	0.7	0.5
20	461.4	107.3	214.6	321.9	429.2 428.8	536.6	643.9	30	1.1	1.1
30	692.0 022.7	107.2 107.1	214.4 214.1	321.6	420.0 428.2	536.0	643.1	۱ ^۲		
40 50	922.7 1153.4	107.1	214.I 213.9	321.2 320.8	427.7	535·3 534-6	042.4 641.6			·
5			379	<b>J</b>		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		I	24 ⁰	
23 00		106.8	213.6	320.4	427.2	534.0	640.8		-4	
10	230.7	106.7	213.3	320.0	426.6	533-3	640.0			<b> </b>
20	461.4	106.5	213.1	319.6	426.1	532.6	639.2	5	0.0	
30	692.1	106.4	212.8	319.2	425.6	532.0	638.4	10	0.1	
40	922.8	106.3	212.5	318.8	425.0	531.3	637.6	15	0.3	
50	1153.6	106.1	212.3	318.4	424.5	530.6	636.8	20	0.5 0.8	
24 00	••••••	106.0	212.0	318.0	424.0	530.0	636.0	25 30	1.1	
·							Digitized		2	

[Derivation of table explained on pp. liii-lvi.]

SMITHSONIAN TABLES.

Digitized by GOOGIC

## CO-ORDINATES FOR PROJECTION OF MAPS. SCALE THE

[Derivation of table explained on pp. liii-lvi.]

of		AB	SCISSAS	EL.						
Latitude c parallel.	Meridional di tances from even degree parallela.	5' longitude.	IO' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	נין	DINAT DEVELO PARALI	PED
	<b>38538</b> .		MM.			mm.	<i></i>	tude val.		
24 ⁰ 00' 10 20	230.7 461.5	106.0 105.9 105.7	212.0 211.7 211.4	318.0 317.6 317.2	424.0 423.4 422.0	530.0 529.3 528.6	636.0 635.2 634.3	Longitude interval.	24°	25°
ନ କ୍ଷ ହ ହ	692.2 923.0 1153.7	105.6 105.4 105.3	211.2 210.9 210.6	316.7 316.3 315.9	422.3 421.8 421.2	527.9 527.2 526.5	633.5 632.6 631.8	5	<b>****</b> . 0.0	
25 00 10	33.7 230.8	105.2 105.0	210.3 210.0	315.5	420.6 420.0	525.8	631.0 630.1	10 15 20	0.1 0.3 0.5 0.8	0.1 0.3 0.5 0.8
20 30	461.5 692.3 923.1	104.9 104.7 104.6	209.7 209.4 209.2	315.0 314.6 314.2	419.5 418.9 418.3	525.0 524.4 523.6	629.2 628.3 627.5	25 30	0.8 1.1	0.8 1.2
40 50	1153.8	104.4	208.9	313.7 313.3	417.7	522.9 522.2	626.6	-		270
26 00 10 20	230.8 461.6	104.3 104.1 104.0	208.6 208.3 208.0	312.9 312.4 312.0	417.2 416.6 416.0	521-4 520.7 520.0	625.7 624.8 623.9	5	 0.0	0.0
30 40 50	692.4 923.2 1154.0	103.8 103.7 103.5	207.7 207.4 207.1	311.5 311.1 310.6	415.4 414.8 414.2	519.2 518.4 517.7	623.0 622.1 621.2	10 15 20	0.1 0.3 0.5 0.8	0.1 0.3 0.5 0.8
27 00 10	230.8	103.4 103.2	206.8 206.5	310.2 309.7	413.6 413.0	517.0 516.2	620.3 619.4	25 30	0.8 1.2	0.8
20 30 40	461.7 692.5 923.3	103.1 102.9 102.8 102.6	206.2 205.8 205.5	309.2 308.8 308.3	412.3 411.7 411.1	515.4 514.6 513.8	618.5 617.5 616.6	-	28°	29 ⁰
50 28 00	1154.2 	102.5 102.3	205.2 204.9 204.6	307.9 307.4 306.9	410.5 409.8	513.1 512.3 511.5	615.7 614.8 613.8	5	<b>0.0</b> 1.0	0.0 0.1
10 20 30 40	461.7 692.6 923.5	102.3 102.1 102.0 101.8	204.0 204.3 204.0 203.6	306.4 305.9	409.2 408.6 407.9 407.3	510.7 509.9 509.1	612.8 611.9 610.9	15 20 25	0.3 0.6 0.9	0.3 0.6 0.9
50	923-3 1154-4	101.7	203.3	305.5 305.0	406.0	508.3	610.0 600.0	30	1.3	1.3
29 00 10 20	230.9 461.8	101.5 101.3 101.2	203.0 202.7 202.3	304.5 304.0 303.5	405-4 404-7	507.5 506.7 505.8	609.0 608.0 607.0 606.0		30°	31°
39 49 • 50	692.7 923.6 1154-5	101.0 100.8 100.7	202.0 201.7 201.4	303.0 302.5 302.0	404.0 403.4 40 <b>2.7</b>	505.0 504.2 503.4	605.0 604.1	5 10	0.0 0.1	0.0 0.1
30 00 10 20	230.9 461.9	100.5 100.3 100.2	201.0 200.7 200.3	301.5 301.0 300.5	402.0 401.4 400.7	502.6 501.7 500.8	603.1 602.0 601.0	15 20 25 30	0.3 0.6 0.9 1.3	0.3 0.6 0.9 1.3
30 40 50	692.8 923.8 1154.7	100.0 99.8 99.6	200.0 199.6 199.3	300.0 299.5 299.0	400.0 399.3 398.6	500.0 499.1 498.2	599-9 598.9 597-9			
31.00 10	231.0	99-5 99-3	199.0 198.6	<b>298.4</b> 297.9	397.9 397.2	497-4 496.5	596.9 595.8		32°	
20 30 40	461.9 692.9 923.9	99.1 99.0 98.8	198.3 197.9 197.6	297.4 296.9 296.3	396.5 395.8 395.1	495.6 494.8 493.9	594.8 593.8 592.7	5 10 15	0.0 0.2 0.3 0.6	
50 32 00	1154.8 	98.6 98.4	197.2 196.9	295.8 295.3	394·4 393·7	493.0 492.2	591.6 590.6	20 25 30	0.6 0.9 1.4	
								gitizeo	G	Scole

SMITHSONIAN TABLES.

.

algitized by COCSTC

.

## CO-ORDINATES FOR PROJECTION OF MAPS. SCALE 10 100.

-18		AB	SCISSAS	OF DEV	eloped	PARALL	EL.	0.0		
Latitude parallel.	Meridional di tances from even degree parallela.	5 longitude.	IO' longitude.	I 5' longitude .	20' longitude.	25' longitude.	30' longitude.	D	EDINAT DEVELO Varall	PED
32°00′ IO 20	231.0 462.0	98.4 98.2 98.1	mm. 196.9 196.5 196.1	295.3 294.8	393-7 393-0	<b>mm.</b> 492.2 491.2	<b>****</b> . 590.6 589.5 588.4	Longitude interval.	32°	33°
2 9 9 9 9 9 9 9	693.0 924.0 1155.0	97.9 97.7 97.5	195.8 195.4 195.1	294.2 293.7 293.1 292.6	392.3 391.6 390.8 390.1	490-4 489-4 488.6 487.6	587.3 586.3 585.2	5 10	жж. 0.0 0.2	
33 00 10 20 30 40 50	231.0 462.1 693.2 924.2 1155.2	97-4 97.2 97.0 96.8 96.6 96.4	194.7 194.3 194.0 193.6 193.2 192.8	292.1 291.5 290.9 290.4 289.8 289.3	389-4 388.6 387.9 387.2 386.4 385.7	486.8 485.8 484.9 484.0 483.0 483.0	584.1 583.0 581.9 580.8 579.7 578.5	15 20 25 30	0.3 0.6 0.9 1.4	0.3 0.6 1.0 1.4
34.00		96.2	192.5	288.7	385.0	481.2	577.4		34 ⁰	35°
10 20 30 40 50	231.1 462.2 693.2 924.3 1155.4	96.0 95:9 95:7 95:5 95:3	192.1 191.7 191.3 190.9 190.6	288.2 287.6 287.0 286.4 285.8	384.2 383.4 382.6 381.9 381.1	480.2 479.3 478.3 477-4 476-4	576.3 575.2 574.0 572.8 571.7	5 10 15 20 25	0.0 0.2 0.4 0.6 1.0	0.0 0.2 0.4 0.6 1.0
35 00 10 20 30	231.1 462.2 693.4	95.1 94.9 94.7 <b>94</b> -5	190.2 189.8 189.4 189.0	285.3 284.7 284.1 283.5	380.4 379.6 378.8 378.0	475-4 474-5 473-5 472-5	570.5 569.4 568.2 567.0	30 	I.4 	I-4
40 50	924.5 1155.6	94-3 94.1	188.6 188.2	282.9 282.4	377 <b>.2</b> 376.5	471.6 470.6	565.9 564.7		36°	37°
36 00 10 20 30 40 50	231.2 462.3 693.5 924.6 1155.8	93-9 93-7 93-5 93-3 93-1 92-9	187.8 187.4 187.0 186.6 186.2 185.8	281.8 281.2 280.6 280.0 279.4 278.8	37 5.7 374.9 374.1 373.3 372.5 371.7	469.6 468.6 467.6 466.6 465.6 464.6	563.5 562.3 561.1 559.9 558.7 557.5	5 10 15 20 25 30	0.0 0.2 0.4 0.6 1.0 1.4	00 0.2 0.4 0.0 1.0 1.5
37 00 10 20 30	231.2 462.4 693.6	92.7 92.5 92.3 92.1	185.4 185.0 184.6 184.2	278.2 277.6 276.9 276.3	370.9 370.1 369.2 368.4	463.6 462.6 461.6 460.5	556.3 555.1 553.9 552.6		38°	39°
40 50	924.8 1156.0	91.9 91.7	183.8 183.4	27 5.7 27 5.1	367.6 366.8	459-5 458-5	551.4 550.2	5 10 15	0.0 0.2 0.4	0.0 0.2 0.4
38 00 10 20 30 40 50	231.2 462.5 693.7 925.0 1156.2	91.5 91.3 91.1 90.9 90.7 90.4	183.0 182.6 182.1 181.7 181.3 180.9	274.5 273.8 273.2 272.6 272.0 271.4	366.0 365.1 364.3 363.5 362.6 361.8	457-4 456-4 455-4 454-4 453-3 452-2	548.9 547.7 546.4 545.2 544.0 542.7	20 25 30	0.7 1.0 1.5	0.7 1.0 1.5
39 00		90.2	180.5	270.7	361.0	451.2	541.4		<b>40</b> 0	
10 20 30 40 50	231.3 462.6 693.8 925.1 1156.4	90.0 89.8 89.6 89.4 89.2	180.1 179.6 179.2 178.8 178.3	270.1 269.4 268.8 268.2 267.5	360.1 359.2 358.4 357.6 356.7	450.2 449.0 448.0 447.0 445.8	540.2 538.9 537.6 536.3 535.0	5 10 15 20 25	0.0 0.2 0.4 0.7 1.0	•
40 00	·····	89.0	177.9	266.9	355.8	444.8	533.8	30	1.5	т

[Derivation of table explained on pp. lili-lvi.]

SMITHSONIAN TABLES.

## CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TOTOL

[Derivation of table explained on pp. hili-lvi.]

-		AB	SCISSAS	OF DEV	ELOPED	PARALLI	el.			
Latitude of parallel.	Meridional dis- tances from even degree parallels.	5 longitude.	IO' longitude.	I 5 longitude.	20' longitude.	25' longitude.	30' longitude.	D	ORDINATES ( DEVELOPED PARALLEL	
	<b>MENE.</b>	<i>.</i>		<i>mm</i> .	<i></i>	<i></i>		Longitude interval.		
40°00'		89.0	177.9	266.9	355.8	444.8	533.8		40°	41 ⁰
10	231.3 462.6	88.7	177.5	266.2	355.0	443-7	532.4	2#		
20		88.5	177.0	265.6	354-I	442.6	531.1			
30	694.0	88.3	176.6	264.9	353.2	441.5	529.8		<i></i>	<i>я</i> нж,
40	925.3 1156.6	88.ī 87.9	176.2	264.2 263.6	352.3	440.4	528.5	5	0.0	0.0
50	113000	♥/•9	175.7	au3.0	351.4	439-3	527.2	10	0.2	0.2
41 00		87.6	175.2	262.9	350.6	438.2	525.8	15	0.4	0.4
10	231.4	87.4	175.3 174.8	262.3	349.7	437.1	524.5	20	0.7	0.7
20	462.7	87.2	174.4	261.6	349.7 348.8	436.0	523.1	25	I.0	1.0
30	694.I	87.0	173.9	260.9	347.9	434.8	521.8	30	1.5	1.5
40	925.4 1156.8	86.8	173.5	260.2	347.0	433-8	520.5			
50	1156.8	86.5	173.0	259.6	346.1	432.6	519.1			
40.00		86.3					e 0		42 ⁰	43°
42 00 10	231-4	86.1	172.6 172.1	258.9 258.2	345.2	431.5	517.8 516.4			
20	462.8	85.8	172.1	250.2	344-3 343-4	430.4 429.2	516.4 515.1		~~	
30	694.2	856	171.2	256.9	342.5	428.1	513.7	5 10	0.0 0.2	0.0 0.2
40	925.6	854	170.8	256.2	341.6	427.0	512.3	15	0.4	0.2
50	11 57.0	85.2	170.3	255.5	340.7	425.8	511.0	20	0.7	0.7
-	<u>,</u>							25	1.0	1.1
43 00	•••••	84.9	169.9	254.8	339.8	424.7	509.6	30 30	1.5	1.5
10	231.4	84.7	169.4	254.I	338.8	423.6	508.3		-	
20	462.9	84.5 84.2	169.0 168.5	253.4	337.9	422.4	506.9			
30 40	694.3 925.8	04.2 84.0	168.0	252.8 252.0	337.0 336.0	421.2 420.0	505.5 504.1		44°	45°
\$0 50	11 57.2	83.8	167.6	251.3	335.1	418.9	502.7		<b>44</b>	45
44 ∞		83.6	167.1	250.6	334.2	417.8	501.3	5	0.0	0.0
10	231.5	83.3	166.6	249.9	333.2	416.6	499-9	10	0.2	0.2
20	463.0	83.1 82.8	166.2	249.2 248.5	332.3	415.4	498.5	15 20	0.4 0.7	0.4 0.7
30 40	694-4 925-9	82.6	165.7 165.2	240.5	331.4 330.4	414.2 413.0	497-0 495.6	25	I.I	1.1
50	925-9 1157-4	82.4	164.7	247.0 247.I	329.5	413.0	495.0	30	1.5	1.5
45 00		82.I	164.3 163.8	246.4	328.5	410.6	492.8			
10	231.5	81.9 81.6	103.8	245.7	327.6	409.4 408.2	491.3 489.9		46°	47°
20 20	463.1 694.6	81.0 81.4	163.3 162.8	245.0	326.6 325.6	400.2 407.0	488.5			
30 40	926.I	81.2	162.3	244.2 243.5	325.0	407.0	487.0			
şõ	11 57.6	80.9	161.9	243.5	323.7	404.6	485.6	5	0.0	0.0
-	31.5					1 1 1 1		10	0.2	0.2
46 00		80.7	161.4	242.I	322.8	403.4	484.I	15 20	0.4 0.7	0.4 0.7
10	231.6	80.4	160.9	241.4	321.8	402.2	482.7	25	I.I	1.1
20	463.1	80.2	160.4	240.6	320.8	401.0	481.2	30	1.5	1.5
30	694.7	80.0	1 59.9	239.9	319.8 318.9	399.8	479.8 478.3	<u> </u>	5	
40	920.3 1157.8	79-7 70-5	159.4 158.9	230.2 238.4		398.6 307.4	476.8			
50	•• >/-0	79-5	- 30.9	£ 30.4	317.9	397-4			48°	
47 00		79.2	1585	237.7	316.9	396.2	<b>4</b> 75-4		45	
10.	231.6	79.0	158.0	236.9	31 5.9	394.9	473.9			
20	463.2	78.7	1 57.5	236.2	314.9	393.6	472.4	5	0.0	
30	694.8	78.5	1 57.0	235.5	314.0	392.4	470.9	10	0.2	
40	926.4	78.2	156.5	234.7	31 3.0	391.2	469.4	15	0.4	
50	1158.0	78.0	I 56.0	234.0	312.0	390.0	467.9	20 25	0.7 1.0	i
48 00		<b>77</b> .7	155.5	233.2	311.0	388.7	466.4	25 30	1.5	
~~~		114	-22.2	~53.~	5-1.0	J. J		5-		

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE THE

	ij g g t	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional di tances from even degree parallela.	5 [°] longitude.	10' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	1	RDINAT Develo Parali	PED
	<i>mm</i> .	# #.	<i>\$1.91</i> .	<i>9</i> 1591.	<i>mm</i> .	<i>311.311</i> .	311.302	Longitude interval.	48°	49°
48°00' 10 20	231.6 463.3	77.7 77.5	155.5 155.0	233.2 232.5	311.0 310.0 308.9	388.7 387.4 386.2	466.4 464.9 463.4	Long	40	49
30	695.0	77.2 77.0	I 54.5 I 54.0	231.7 230.9	307.9	384.9	403.4		MM	
40 50	926.6 1158.2	76.7 76.5	153.5 152.9	230.2 229.4	306.9 305.9	383.6 382.4	460.4 458.8	5	0.0	0.0 0.2
	.		•••					10 15	0.2 0.4	0.2
49 00 IO	231.7	76.2 76.0	152.4 151.9	228.7 227.9	304.9 303.8	381.1 379.8	457·3 455-8	20	0.7	0.7
20	463-4	75-7	151.4	227.I	302.8	378.6	454-3	25 30	1.0 1.5	1.0 1.5
30	695.1	75.4	1 50.9	226.4	301.8	377.2	452.7	30	,	
40	926.8	75.2	1 50.4	225.6	300.8	376.0	451.1			
50	1158-4	749	149-9	224.8	299.8	374-7	449.6		50°	51°
50 00	• • • • • • • • •	74-7	149-4 148-8	224.0	298.7	373-4	448.I		30	3.
10	231.7	74-4		223.3	297.7	372.1	446.5			
20 30	463.5 695.2	74.2 73.9	148.3 147.8	222.5 221.7	296.6 295.6	370.8 369.5	445.0 443-4	5 10	0.0 0.2	0.0 0.2
40	926.9	73.6		220.9	294.6	368.2	441.8	15	0.4	0.4
<u></u> 50	1158.6	73-4	147.3 146.8	220.1	293.5	366.9	440.3	20	0.7	0.7
								25	1.0	I.0
51 00 10	231.8	73.I 72.9	146.2 145.7	219.4 218.6	292.5 291.4	365.6 364.3	438.7	30	I.5	1.5
20	463.5	72.6	145.2	217.8	200.4	363.0	437.2 435.5		i i	
30	695.3	72.3	144.7	217.0	280.3	361.6	434.0			
40	927.1 1158.8	72.1	144.1	216.2	288.3	360.4	432.4		52 ⁰	53°
50	1158-8	71.8	143.6	215.4	287.2	359-0	430.8			
52 00		71.5	143.1	214.6	286.2	357.7	429.2	5	0.0	مە
10	231.8	71.3	142.5	21 3.8	285.1	356.4	427.6	10	0.2	0.2
20 30	463.6	71.0 70.7	142.0 141.5	21 3.0 21 2.2	284.0 283.0	355.0	426.I	15 20	0-4 0.7	0.4
40	695.4 927.2	70.5	I40.9	211.4	281.9	353-7 352-4	424.4 422.8	25	1.0	1.0
50	1159.0	70.2	140.4	210.6	280.8	351.0	421.3	30	1.5	I.5
<u>53</u> 00		69.9	139.9	209.8	279.8	349-7	419.6			
7 10	231.8	69.7		209.0	278.7	348.4	418.0			م م
20	463.7	69.4	139.3 138.8	208.2	277.6	347.0	416.4		54°	55°
30	695.6	69.1 68.8	138.3	207.4 206.6	276.5	345.6	414.8			
40 50	927-4 1159-2	68.6	137.7 137.2	200.0	275-4 274-3	344.2 342.9	413.1 411.5	5	0.0	0.0
_	37-3			51	-, -, -, -, -, -, -, -, -, -, -, -, -, -		j	10	0.2	0.2
54 ∞	•••••	68.3	136.6	204.9	27 3.2	341.6	409.9	15 20	0.4 0.6	04 0.6
10	231.9	68.0 67.8	136.1	204.1	272.2	340.2	408.2	25	1.0	1.0
20 30	463.8 695.7	67.8 67.5	135.5 135.0	203.3 202.4	271.0	338.8	406.6	30	I-4	1-4
40	927.6	67.2	133.0 134.4	202.4	268.8	337-4 336.0	404.9 403.3			
50	1159.4	66.9	133.9	200.8	267.8	334-7	401.6			
55 œ		66.7	122.2	200.0	266.6	222.2	400.0		56°	
55 00	231.9	66.4	133.3 132.8	199.1	265.5	333-3 331-9	308.3			
20	463.9 695.8	66.1	I 32.2	198.3	264.4	330.5	396.6	5	0.0	
30		65.8	131.7	197.5	263.3	329.2	395.0	IÓ	0.2	
40	927.7	65.6	131.1	196.6	202.2	327.8	393-3	15	04	
50	1159.6	65.3	130.5	195.8	261.1	326.4	391.6	20 25	0.6 1.0	
56 00		65.0	130.0	195.0	260.0	325.0	389.9	30	1.0	
			<u> </u>						-	-I-

[Derivation of table explained on pp. lili-lvi.]

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TOTOT

[Derivation of table explained on pp. lili-lvi.]

ď	l dis- ree ree	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude o parallel.	Meridioual di tances from even degree parallels.	5' longitude.	10' longitude.	I 5' longitude.	20' longitude.	25´ longitude.	30' longitude.	I	EDINAT Develo Parali	PED
	MM .	m m.	mm .	<i>mm</i> .		<i>mm</i> .	<i></i>	al.		
56°00′ IO	232.0	65.0 64.7	I 30.0 I 20.4	195.0 194.1	260.0 258.8	325.0 323.6	389.9 388.3	Longitude interval.	56° .	57°
20 30 40	463.9 695.9 927.9	64.4 64.2 63.9	128.9 128.3 127.7	193.3 192.4 191.6	257.7 256.6 255.5	322.2 320.8 319.4	386.6 384.9 383.2		<i>mm</i> .	
50	1159.8	63.6	127.2	190.8	254-4	318.0	381.5	5 10	0.0	0.0
57 00 10	232.0	63.3 63.0	126.6 126.0	189.9 189.1 188.2	253.2 252.1	316.6 315.1	379-9 378.1	15 20 25	0.4 0.6 1.0	0.3 0.6 1.0
20 30 40	464.0 696.0 928.0	62.7 62.5 62.2	125.5 124.9 124.3	187.4 186.5	251.0 249.8 248.7	313.7 312.3 310.8	376.4 374.8 373.0	30	1.4	14
50 5800	1160.0	61.9	123.8	185.ð	247.5	309.4 308.0	371.3		 58°	59°
50 00 IO 20	232.0 464.1	61.6 61.3 61.0	123.2 122.6 122.0	184.8 183.9 183.1	246.4 245.2 244.I	306.0 306.6 305.1	369.6 367.9 365.1	5	0.0	
30 40 50	696.1 928.2 1160.2	60.7 60.4 60.2	121.5 120.9 120.3	182.2 181.4 180.5	242.9 241.8 240.6	303.6 302.2 300.8	364-4 362.7 361.0	10 15	0.2 0.3	0.1 0.3 0.6
<u>59</u> 00		59-9 59-6	119.7	179.6	230.5 238.3	299-4	359.2	20 25 30	0.6 1.0 1.4	0.0 0.9 1.3
10 20 30	232.I 464.2 696.2	59-3	119.2 118.6 118.0	178.7 177.9 177.0	238.3 237.2 236.0	297.9 296.4 295.0	357-5 355-7 354-0			
40 50	928.3 1160.4	59.0 58.7 58.4	117.4 116.8	176.1 175.3	234.8 233.7	293.6 292.1	352.3 350.5		60°	°19
60 00 10	232.1	58.1 57.8	116.3 115.7	174-4 173-5	232.5 231.4	290.6 289.2	348.8 347.0	5 10	0 .0 0.1	0.0 0.1
20 30	464.2 696.4	57·5 57·2	115.1 114.5	172.6 171.7	230.2 229.0	287.7 286.2 284.8	345.2 343-4	15 20	0.3 0.6	0.3 0.6
40 50	928.5 1160.6	57.0 56.7	113.9 113.3	170.8 170.0	227.8 226.6	283.3	341.7 340.0	25 30	0.9 1.3	0.9 1.3
61 00 10 20	232.2	56.4 56.1	112.7 112.1	169.1 168.2 167.3	225.4 224.2 223.1	281.8 280.3 278.8	338.2 336.4 334.6		62°	63°
30 40	464.3 696.4 928.6	55.8 55.5 55.2	111.5 110.9 110.3	166.4 165.5	221.9 220.7	277.4 275.8	332.8 331.0	5	0.0	0.0
50 62 00	1160.8	54-9 54.6	109.8 109.2	164.6 163.7	219.5 218.3	274-4 272.9	329.3 327.5	10 15	0.1 0.3	0.I 0.3
10 20	232.2 464-4	54-3 54-0	108.6 108.0	162.8 161.9	217.1 215.9	271.4 269.9	325.7 323.9	20 25 30	0.6 0.9 1.3	0.5 0.9 1.2
30 40 50	696.6 928.8 1161.0	53·7 53·4 53·1	107.4 106.8 106.2	161.0 160.1 159.2	214.7 213.5 212.3	268.4 266.9 265.4	322.1 320.3 318.5			
63 00		52.8	105.6	1 58.3	211.1	263.9	316.7		64°	
10 20 30	232.2 464-4 696.7	52.5 52.2 51.9	105.0 104.4 103.8	157.4 156.5 155.6	209.9 208.7 207.5	262.4 260.9 259.4	314.9 313.1 311.3	5 10	0.0 0.1	
40 50	928.9 1161.1	51.6 51.3	103.1 102.5	• 1 54.7 1 53.8	206.3 205.1	257.8 256.4	309.4 307.6	15 20 25	0.3 0.5 0.8	
64 ∞		51.0	101.9	1 52.9	203.9	254.8	305 .8	25 30	0.0 I.2	т
<u>'</u>							Diai	tized b	-(

SMITHSONIAN TABLES.

.

Digitized by GOOSIC

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TITUE

	- ⁸ = 8	AB	SCISSAS	OF DEV	ELOPED	PARALL	EL.			
Latitude of parallel.	Meridional di tances from even degree parallela.	5' longitude.	IO' longitude.	I 5' longitude.	20' longitude.	25 longitude.	30' longitude.	l I	DINAT DEVELO ARALL	PED ·
64°00' 10	mm . 232.2	mm. 51.0 50.7	*** **. 101.9 101.3	<i>mm.</i> I 52.9 I 52.0	mm. 203.9 202.6	**** . 254.8	**** . 305.8 304.0	Longitude interval.	64°	65°
20 30 40 50	464.5 696.8 929.0 1161.2	50.4 50.1 49.8 49.4	100.7 100.1 99.5 98.9	1 51.1 1 50.2 1 49.2 1 48.3	201.4 200.2 199.0 197.8	253.3 251.8 250.3 248.8 247.2	302.2 300.4 298.5 296.6	۲ ۲ ۲	жж. 0.0 0.1	
65 00 10 20 30 40	232.3 464.6 696.9 929.1	49.1 48.8 48.5 48.2 47.9	98.3 97.7 97.1 96.4 95.8	147-4 146.5 145.6 144-7 143.7	196.6 195.3 194.1 192.9 191.6	245.7 244.2 242.6 241.1 239.6	294.8 293.0 291.2 289.3 287.5	15 20 25 30	0.3 0.5 0.8 1.2	0.3 0.5 0.8 1.2
50 66 00	1161.4	47.6 47.3	95.2 94.6	142.8 141.9	190.4 189.2	238.0 236.5	285.7 283.8		66°	67°
10 20 30 40 50	232.3 464.6 697.0 929.3 1161.6	47.0 46.7 46.4 46.1 45.8	94.0 93.4 92.7 92.1 91.5	141.0 140.0 139.1 138.2 137.2	188.0 186.7 185.5 184.2 183.0	235.0 233.4 231.8 230.3 228.8	281.9 280.1 278.2 276.4 274.5	5 10 15 20	0.0 0.1 0.3 0.5 0.8	0.0 0.1 0.3 0.5 0.8
67 00 10 20 30	232.4 464.7 697.0	45.4 45.1 44.8 44.5	90.9 90.3 89.6 89.0	136.3 135.4 134.4 133.5	181.8 180.5 179.2 178.0	227.2 225.6 224.0 222.5	272.6 270.8 268.9 267.0	25 30	0.8 I.I	0.8 1.1
40 50	929.4 1161.8	44.2 43.9	88.4 87.7	132.0 131.0	176.8 175.5	221.0 219.4	265.1 263.2		68°	69°
68 00 10 20 30 40 50	232.4 464.8 697.1 929.5 1161.9	43.6 43.2 42.9 42.6 42.3 42.0	87.1 86.5 85.9 85.2 84.6 84.0	1 30.7 1 29.8 1 28.8 1 27.9 1 26.9 1 26.0	174.2 173.0 171.7 170.5 169.2 168.0	217.8 216.2 214.6 213.1 211.6 210.0	261.4 259.5 257.6 255.7 253.9 251.9	5 10 15 20 25 3 0	0.0 0.1 0.3 0.5 0.7 1.1	0.0 0.1 0.3 0.5 0.7 1.0
69 00 10 20 30	232.4 464.8 697.2	41.7 41.4 41.0 40.7	83.4 82.7 82.1 81.5	125.0 124.1 123.2 122.2	166.7 165.4 164.2 162.9	208.4 206.8 205.2 203.6	2 50. I 248. 2 246. 3 244. 4		70 ⁰	71°
40 50	929.6 1162.0	40.4 40.1	80.Š 80.2	121.2 120.3	161.6 160.4	202.0 200.5	242.5 240.6	5 10 15	0.0 0.1 0.2	0.0 0.1 0.2
70 00 10 20 30 40 50	232.4 464.9 697.3 929.7 1162.2	39.8 39-5 39.1 38.8 38.5 38.2	79.6 78.9 78.3 77.0 77.0 76.4	119.3 118.4 117.4 116.5 115.5 114.6	1 59.1 1 57.8 1 56.6 1 5 5.3 1 54.0 1 52.8	198.9 197.3 195.7 194.1 192.6 191.0	238.7 236.8 234.8 232.9 231.1 229.1	20 25 30	0.4 0.7 1.0	0.4 0.7 0.9
71 0 0 10	232.5	37.9 37.6	75.7 75.1	113.6 112.6	I 51.5 I 50.2	189.4 187.8	227.2 225.3		72 ⁰	
20 30 40 50	464.9 697.4 929.8 1162.3	37.2 36.9 36.6 36.3	74-5 73.8 73.2 72.5	111.7 110.7 109.7 108.8	148.9 147.6 146.3 145.0	186.2 184.5 182.9 181.3	223.4 221.4 219.5 217.6	5 10 15 20 25	0.0 0.1 0.2 0.4	
72 00	•••••	35-9	71.9	107.8	143.8	179-7	21 5.6	30	0.9 	- I

[Derivation of table explained on pp. liii-lvi.]

SMITHSONIAN TABLES.

Digitized by GOOGIC

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TITT

[Derivation of table explained on pp. liii-lvi.]

of	l dis- om ree	AB	SCISSAS	OF DEV	ELOPED	PARALL	RL.	OP	DINAT	ES OF
Latitude o parallel.	Meridional di tances from even degree parallels.	5' longitude.	IO' longitude.	I 5' longitude.	20' longitude.	25' longitude.	30' longitude.	I	ARALL	PED
	916396.	<i>mm</i> .	98.98L.	mm.	MIN.	<i>mm</i> .	<i>.</i>	Longitude interval.	72 ⁰	73°
72 ⁰ 00' 10 20	232.5 465.0	35.9 35.6 35.3	71.9 71.2 70.6	107.8 106.9 105.9	143.8 142.5 141.2	179.7 178.1 176.5	215.6 213.7 211.8	Long	/*	73
30 40 50	697.4 929.9 1162.4	35.0 34.6 34.3	70.0 69.3 68.7	104.9 104.0 103.0	1 39.9 1 38.6 1 37.3	174.9 173.2 171.6	209.9 207.9 206.0	5 10	90.0 0.1	жж. 0.0 0.1
73 00 10	232.5	34.0 33.7	68.0 67.4	102.0 101.0	136.0 134.7	170.0 168.4	204.1 202.1	15 20 25	0.2 0.4 0.6	0.2 0.4 0.6
20 30 40	465.0 697.5 930.0	33·4 33.0 32.7	66.7 66.1 65.4	100.1 99.1 98.1	133.4 132.2 130.8	166.8 165.2 163.6	200.2 198.2 196.3	30	0.9	0.9
50 74 00	1162.6	32.4 32.1	64.8 64.1	97.1 96.2	129.5 128.2	161.9 160.3	194.3 192.4		74 [°]	75°
10 20 30 40 50	232.5 465.1 697.6 930.1 1162.6	31.7 31.4 31.1 30.8 30.4	63.5 62.8 62.2 61.5 60.9	95.2 94.2 93.2 92.3 91.3	127.0 125.6 124.3 123.0 121.8	1 58.7 1 57.0 1 55.4 1 53.8 1 52.2	190.4 188.5 186.5 184.6 182.6	5 10 15 20 25	0.0 0.1 0.2 0.4 0.6	0.0 0.1 0.2 0.3
75 00 10 20	232.6 465.1	30. I 29.8 29.4	60.2 59.6 58.9	90.3 89.3 88.4	120.4 119.1 117.8	1 50.6 148.9 147.2	180.7 178.7 176.7	30	0.8	0.5 0.8
30 40 50	697.6 930.2 1162.8	29.1 28.8 28.5	58.3 57.6 56.9	87.4 86.4 85.4	116.5 115.2 113.9	145.6 144.0 142.4	174.8 172.8 170.8		76°	77°
76 00 10 20 30 40 50	232.6 465.1 697.7 930.3 1162.8	28.1 27.8 27.5 27.2 26.8 26.5	56.3 55.6 55.0 54-3 53.7 53.0	84.4 83.4 82.4 81.4 80.5 79.5	112.6 111.2 109.9 108.6 107.3 106.0	140.7 139.0 137.4 135.8 134.2 132.5	168.8 166.9 164.9 162.9 161.0 159.0	5 10 15 20 25 30	0.0 0.1 0.2 0.3 0.5 0.7	0.0 0.1 0.2 0.3 0.5 0.7
77 00 IO 20	232.6 465.2	26.2 25.8 25.5	52.3 51.7 51.0	78.5 77.5 76.5	104.7 103.4 102.0	1 30.8 1 29.2 1 27.6	157.0 155.0 153.1		78°	79°
30 40 50	697.8 930.4 1163.0	25.2 24.8 24.5	50.4 49.7 49.0	75-5 74.6 73.6	100.7 99.4 98.1	125.9 124.2 122.6	151.1 149.1 147.1	5 10	0.0 1.0	0.0 1.0
78 00 10 20 30 40	232.6 465.2 697.8 930.4	24.2 23.9 23.5 23.2 22.9	48.4 47.7 47.1 46.4 45.7	72.6 71.6 70.6 69.6 68.6	96.8 95.4 94.1 92.8 91.4	121.0 119.3 117.6 116.0 114.3	145.1 143.2 141.2 139.2 137.2	15 20 25 30	0.2 0.3 0.4 0.6	0.1 0.3 0.4 0.6
50 79 00	1163.0	22.5 22.2	45.I 44.4	67.6 66.6	90.1 88.8	112.6 111.0	135.2 133.2		80°	
10 20 30 40	232.6 465.2 697.9 930.5	21.9 21.5 21.2 20.9	43.7 43.1 42.4 41.7	65.6 64.6 63.6 62.6	87.5 86.1 84.8 83.5	109.4 107.6 106.0 104.4	131.2 129.2 127.2 125.2	5 10 15	0.0 0.1 0.1	
50 80 00	1163.1	20.5 20.2	41.1 40.4	61.6 60.6	82.1 80.8	102.6 101.0	123.2 121.2	20 25 30	0.2 0.4 0.5	
<u> </u>								nitizēd	-6-	Sach

SMITHSONIAN TABLES.

,

Digitized by GOOSI

TABLE 25. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 10° EXTENT IN LATITUDE AND LONGITUDE.

Middle Latitude of Quadrilateral.	Area in Square Miles.
0°	474653
5	472895
10	467631
15	45 ⁸⁸ 91
20	446728
25	431213
30	412442
35	390533
40	365627
45	337890
50	307 514
55	274714
60	239730
65	202823
70	164279
75	124400
80	83504
85	41924

[Derivation of table explained on pp. 1-lii.]

SMITHSONIAN TABLES.

142

Digitized by Google

. . .

TABLE 26. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 1° EXTENT IN LATITUDE AND LONGITUDE.

Middle latitude	Area in	Middle latitude	Area in	Middle latitude	Area in
of quadrilateral.	square miles.	of quadrilateral.	square miles.	of quadrilateral.	square miles.
0° 00′	47 52-33	26° 00'	4282.50	52° coʻ	2950.58
0 30	47 52-16	26 30	4264.51	52 30	2917.85
I 00	47 51.63	27 00	4246.20	53 co	2884.88
I 30	47 50-7 5	27 30	4227.56	53 30	2851.68
2 00	4749-52	28 00	4208.61	54 00	2818.27
2 30	4747-93	28 30	4189-33	54 30	2784.62
3 00	4746-00	29 00	4169-74	55 00	27 50.76
3 30	4743-71	29 30	4149-83	55 30	2716.67
4 00	4741.07	30 00	4129.60	56 00	2682.37
4 30	4738.08	30 30	4109.06	56 30	2647.85
5 00	4734.74	31 00	4088.21	57 00	2613.13
5 30	4731.04	31 30	4067.05	57 30	2578.19
6 00	4727.00	32 00	4045.57	58 00	2543.05
6 30	4722.61	32 30	4023.79	58 30	2507.70
7 00	4717.86	33 00	4001.69	59 00	2472.16
7 30	4712.76	33 30	3979.30	59 30	2436.42
8 00	4707.32	34 00	3956.59	60 00	2400.48
8 30	4701.52	34 30	3933.59	60 30	2364.34
9 00	4695.38	35 00	3910.28	61 00	2338.02
9 30	4688.89	35 30	3886.67	61 30	2291.51
10 00 10 30 11 00	4682.05 4674.86 4667.32 4659.43	36 00 36 30 37 00	3862.76 3838.56 3814.06 3789.26	62 00 62 30 63 00	2254.82 2217.04 2180.89 2143.66
11 30 12 00 12 30 13 00	4651.20 4642.63 4633.71	37 30 38 00 38 30 39 00	3764.18 3738.80 3713.14	63 30 64 00 64 30 65 00	2106.26 2068.68 2030.94
13 30 14 00 14 30 15 00	4624-44 4614-82 4604-87 4594-57	39 30 40 00 40 30 41 00	3687.18 3660.95 3634.42 3607.62 3580.54	65 30 66 00 66 30 67 00	1993.04 1954.97 1916.75 1878.37
15 30 16 00 16 30 17 00	4583.92 4572.94 4561.61 4549.94	41 30 42 00 42 30 43 00	3553.17 3525.54 3497.62	67 30 68 00 68 30 69 00	1839.84 1801.16 1762.33 1723.36
17 30 18 00 18 30 19 00	4537-93 4525-59 4512.00 4499.87 4486.51	43 30 44 00 44 30 45 00	3469.44 3440.98 3412.26 3383.27	69 30 70 00 70 30 71 00	1684.24 1645.00 1605.62 1566.10
19 30	4400.51	45 30	3354.01	71 30	1 526.46
20 00	4472.81	46 00	3324.49	72 00	1486.70
20 30	4458.78	46 30	3294.71	72 30	1446.81
21 00	4444.41	47 00	3264.68	73 00	1406.81
21 30	4429.71	47 30	3234-39	73 30	1366.69
22 00	4414.67	48 00	3203.84	74 00	1326.46
22 30	4399.30	48 30	3173.04	74 30	1286.12
-23 00	4383.60	49 00	3141.99	75 00	1245.68
23 30	4367-57	49 30	3110.69	75 30	1205.13
24 00	4351.21	50 00	3079.15	76 00	1164.49
24 30	4334-52	50 30	3047.37	76 30	1123.75
25 00	4317-51	51 00	3015.34	77 00	1082.91
25 30	4300.17	51 30	2983.08	77 30	1041.99

[Derivation of table explained on pp. 1-lii.]

SMITHSONIAN TABLES.

Digitized by GOOGLE

TABLE 26. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 1° EXTENT IN LATITUDE AND LONGITUDE.

.

Middle latitude		Middle latitude	Area in	Middle latitude	Area in
of quadrilateral.		of quadrilateral.	square miles.	of quadrilateral.	square miles.
78° 00'	1000.99	82° 00'	670.27	86° 00'	336.02
78 30	959.90	82 30	628.64	86 30	294.08
79 00	918.73	83 00	586.97	87 00	252.11
79 30	877.49	83 30	545.24	87 30	210.12
80 00	836.18	84 00	503-47	88 cc	168.12
80 30	794-79	84 30	461.66	88 30	126.10
81 00	753-34	85 00	419.81	89 cc	84.07
81 30	711-83	85 30	377-93	89 30	42.04

[Derivation of table explained on pp. 1-lii.]

SMITHEONIAN TABLES.

145

· · . .

TABLE 27. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 30' EXTENT IN LATITUDE AND LONGITUDE.

٠

Middle latitude of quadrilateral.		Middle latitude of quadrilateral.		Middle latitude of quadrilateral.	Area in square miles.
	-	13° 00′	1158.44	26° 00'	
	1188.08		1157.29	20 00 26 15	1070.64 1068.40
0 15	1188.05	13 15 13 30	1156.12		1006.14
0 30	1188.00				1063.86
° 45		13 45	1154.93	26 45	
1 00	1187.92	14 00	1153.72	27 00	1061.56
1 15	1187.82	14 15	1152.48	27 15	1059.24
1 30	1187.70	14 30	1151.23	27 30	1056.90
I 45	1187.56	I4 45	1149.95	27 45	1054.54
2 00	1187.39	15 00	1148.65	28 00	1052.16
2 15	1187.20	15 15	1147.33	28 15	1049.76
2 30	1186.99	15 30	1145.99	28 30	1047.34
2 45	1186.76	15 45	1144.63	28 45	1044.90
3 00	1186.51	16 00	1143.25	29 00	1042-44
3 00 3 15	1186.24	16 15	1141.84	29 15	1039.97
3 30	1185.95	16 30	1140.41	29 30	1037.47
3 45	1185.62	16 45	1138.96	29 45	1034-95
4 00	1185.28	17 00	1137.50	30 00	1032-41
4 15	1184.02	17 15	1136.00	30 15	1029.85
4 30	1184.53	17 30	1134.49	30 30	1027.27
4 45	1184.13	17 45	1132.96	30 45	1024.68
5 00	1183.70	18 00	1131.41	31 00	1022.06
5 15	1183.24	18 15	1129.83	31 15	1019-43
530	1182.77	18 30	1128.24	31 30	1016.77
5 45	1182.28	18 45	1126.62	31 45	1014-10
6 00	1181.76	19 00	1124.98	32 00	
6 15	1181.22	19 15	1123.32	32 00 32 15	1011.40
6 30	1180.66	19 30	1121.64	32 30	1005.96
6 45	1180.08	19 45	1119.93	32 45	1003.20
7 00	1179.48	20 00	1118.21	33 00	1000-43
7 00 7 15	1178.85	20 15	1116.47	33 00 33 15	997.64
7 30	1178.20	20 30	1114.71	33 30	994.83
7 45	1177.53	20 45	1112.92	33 45	992.00
8 00 8 15	1176.84	21 00	1111.11 1109.28	34 00	989.16 986.29
	1176.13	21 15		34 15	900.29
	1175.39	21 30 21 45	1107.44	34 30	983.41 980.50
8 45	1174.63	21 45	1105.57	34 45	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
900	1173.86	22 00	1103.68	35 00	977.58
9 15	1173.06	22 15	1101.77	35 15	974.64
930	1172.23	22 30	1099.84	35 30	971.68
9 45	1171.39	22 45	1097.88	35 45	968.70
10 00	1170.52	23 00	1095.91	36 00	965.70
10 15	1160.63	23 15	1093.92	36 15	962.68
10 30	1168.73	23 30	1091.90	36 30	959-65
10 45	1167.80	23 45	1089.87	36 45	956.60
11 00	1166.84	24 00	1087.81	37 00	953.52
11 15	1165.86	24 15	1085.74	37 15	950-43
11 30	1164.86	24 30	1083.64	37 30	947.32
11 45	1163.85	24 45	1081.52	37 45	944.21
12 00	1162.81	25 00	1079.39	38 00	941.05
12 15	1161.75	25 15	1077.23	38 15	937.88
12 30	1160.67	25 30	1075.05	38 30	934.71
12 45	1159.56	25 45	1072.85	38 45	931.51
L					

[Derivation of table explained on pp. 1-lii.]

SMITHSONIAN TABLES.

Digitized by GOOGLE

TABLE 27.

.

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 30' EXTENT IN LATITUDE AND LONGITUDE.

.

Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.		Middle latitude of quadrilateral.	
39° 00′	928.29	52° 00'	737.65	65° 00'	507.74
39 15	925.06	52 15	733-57	65 15	503.01
39 30	921.80	52 30	729.47	65 30	498.26
39 45	918.53	52 45	725.36	65 45	493.5I
40 00	915.25	53 00	721.23	66 00	488.75
40 15	911.94	53 15	717.08	66 5	483.97
40 30	908.61	53 30	712.93	66 30	479.19
40 45	905.27	53 45	708.76	66 45	474-40
4I OO	901.91	54 00	704.57	67 00	469.60
41 15	898.54	54 15	700.38	67 15	464.78
41 30	895.14	54 30	696.16	67 30	459.96
41 45	891.73	54 45	691.94	67 45	455-13
	999		68	68 00	150.00
42 00	888.30	55 00	687.70		450.29
42 15	884-85 881-20	55 15	683.44		445-45
42 30	881.39	55 30	679.17	68 30	440.59
42 45	877.91	55 45	674.89	68 45	435.72
42 00	874.41	56 00	670.60	69 00	430.84
43 00	870.90	56 11	666.29		
43 15		56 15		69 15	425.96
43 30	867.37	56 30	661.97	69 30	421.06 416.16
43 45	863.82	56 45	. 657.64	69 45	410-10
44 00	860.25	57 00	612.20	70 00	477.96
	856.67	. .	653.29		411.25 406.34
44 15	812.07	57 15	648.93	70 15	
44 30	853.07	57 30	644-55	70 30	401.41
44 45	849.46	57 45	640.17	70 45	396-47
45 00	845.82	58 00	635.77	71 00	201.52
	842.18	58 15	631.36	71 15	391.53 386.58
45 15	838.51	20 13	626.93		381.62
45 30	834.83	58 30 58 45	622.49	71 30	376.65
45 45	სეფანე	58 45	022.49	71 45	3/0.05
46 00	831.13	59 00	618.05	72 00	371.68
46 15	827.42	59 15	613.59	72 15	366.70
46 30	823.68		609.11	72 30	361.71
	819.94		604.62		356.71
46 45	019-94	59 45	004.02	72 45	330/1
47 00	816.18	60 00	600.13	73 00	351.71
47 15	812.40	60 15	595.62	73 15	246.60
47 30	808.60	60 30		73 30	341.68
47 45	804.79	60 45	591.09 586.56	73 45	336.65
נדיד			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,	
48 00	800.97	61 00	582.0I	74 00	331.62
48 15	797.13	61 15		74 15	326.58
48 30	793.27	61 30	577-45 572.88	74 30	321.53
48 45	789.39	61 45	568.30	74 45	316.48
49 00	785.50	62 00	563.71	75 00	311.42
49 15	781.60	62 15	559.11	75 15	306.36
49 30	777.68	62 30	554.49	75 30	301.28
49 45	773-74	62 45	549.86	75 45	296.21
50 00	769.79 765.83	63 00	545.23	76 00	201.12
50 15	765.83	63 15	540.58	76 15	286.04
50 30	761.85	63 30	535.92	76 30	280.94
50 45	7 57.85	63 45	531.25	76 45	275.84
no		¢			
51 00	753.84	64 00	526.57	77 00	270.73
51 15	749.82	64 15	521.88	77 15	265.62
51 30	745.78	64 30	517.17	77 30	260.50
51 45	741.72	64 45	512.46	77 45	255.38
		l			Lional

[Derivation of table explained on pp. l-lii.]

TABLE 27. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 30' EXTENT IN LATITUDE AND LONGITUDE.

Middle latitude of quadrilateral. 78° cor 78 15 78 30 78 45 79 co 79 15 79 30 79 45	square miles. 250.25 245.12 239.98 234.83 229.68 224.53 219.37 214.21	• 82° 00' 82 15 82 30 82 45 83 00 83 15 83 30 83 45	square miles. 167.57 162.37 157.16 151.95 146.74 141.53 136.31 131.09	86° 00′ 86 15 86 30 86 45 87 00 87 15 87 30 87 45	
80 00	209.05	84 00	125.87	88 00	42.03
80 15	203.88	84 15	120.64	88 15	36.78
80 30	198.70	84 30	115.42	88 30	31.53
80 45	193.52	84 45	110.18	88 45	26.27
81 00	188.34	85 00	104-95	89 00	21.02
81 15	183.15	85 15	99-72	89 15	15.76
81 30	177.96	85 30	94-48	89 30	10.51
81 45	172.77	85 45	89-25	89 45	5.26

[Derivation of table explained on pp. I-lii.]

SMITHSONIAN TABLES.

148

.

•

TABLE 28. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 15' EXTENT IN LATITUDE AND LONGITUDE.

Middle latitude	Area in	Middle latitude	Area in	Middle latitude	Area in
of quadrilateral.	square miles.	of quadrilateral.	square miles.	of quadrilateral.	square miles.
0° 07' 30'' 0 15 00 0 22 30 0 30 00	297.02 297.02 297.02 297.02 297.01	6° 37' 30'' 6 45 00 6 52 30 7 00 00	295.09 295.02 294.95 294.87	13° 07' 30'' 13 15 00 13 22 30 13 30 00	289.47 289.33 289.18 289.03
0 37 30	297.01	7 07 30	294.79	I 3 37 30	288.88
0 45 00	297.00	7 15 00	294.71	I 3 45 00	288.73
0 52 30	296.99	7 22 30	294.63	I 3 52 30	288.58
1 00 00	296.98	7 30 00	294.55	I 4 00 00	288.43
I 07 30	296.97	7 37 30	294.47	14 07 30	288.28
I 15 00	296.96	7 45 00	294.39	14 15 00	288.12
I 22 30	296.94	7 52 30	294.30	14 22 30	287.96
I 30 00	296.93	8 00 00	294.21	14 30 00	287.81
I 37 30	296.91	8 07 30	294.12	14 37 30	287.65
I 45 00	296.89	8 15 00	294.03	14 45 00	287.49
I 52 30	296.87	8 22 30	293.94	14 52 30	287.33
2 00 00	296.85	8 30 00	293.85	15 00 00	287.17
2 07 30	296.82	8 37 30	293.7 5	15 07 30	287.00
2 15 00	296.80	8 45 00	293.66	15 15 00	286.83
2 22 30	296.77	8 52 30	293.56	15 22 30	286.67
2 30 00	296.75	9 00 00	293.47	15 30 00	286.50
2 37 30	296.72	9 07 30	293.37	15 37 30	286.33
2 45 00	296.69	9 15 00	293.27	15 45 00	286.16
2 52 30	296.66	9 22 30	293.16	15 52 30	285.99
3 00 00	296.63	9 30 00	293.06	16 00 00	285.82
3 07 30	296.60	9 37 30	292.95	16 07 30	285.64
3 15 00	296.56	9 45 00	292.85	16 15 00	285.46
3 22 30	296.53	9 52 30	292.74	16 22 30	285.28
3 30 00	296.49	10 00 00	292.63	16 30 00	285.10
3 37 30	296.45	10 07 30	292.52	16 37 30	284.92
3 45 00	296.41	10 15 00	292.41	16 45 00	284.74
3 52 30	296.36	10 22 30	292.30	16 52 30	284.56
4 00 00	296.32	10 30 00	292.19	17 00 00	284.38
4 07 30	296.28	IO 37 30	292.07	17 07 30	284-19
4 15 00	296.23	IO 45 00	291.95	17 15 00	284-00
4 22 30	296.18	IO 52 30	291.83	17 22 30	283.81
4 30 00	296.13	II 00 00	291.71	17 30 00	283.62
4 37 30	296.08	11 07 30	291.59	17 37 30	283-43
4 45 00	296.03	11 15 00	291.47	17 45 00	283-24
4 52 30	295.98	11 22 30	291.34	17 52 30	283-05
5 00 00	295.93	11 30 00	291.22	18 00 00	282-86
5 07 30	295.87	11 37 30	291.09	18 07 30	282.66
5 15 00	295.81	11 45 00	290.96	18 15 00	282.46
5 22 30	295.75	11 52 30	290.83	18 22 30	282.26
5 30 00	295.69	12 00 00	290.70	18 30 00	282.06
5 37 30	295.63	12 07 30	290.57	18 37 30	281.86
5 45 00	295.57	12 15 00	290.44	18 45 00	281.66
5 52 30	295.51	12 22 30	290.30	18 52 30	281.45
6 00 00	295.44	12 30 00	290.17	19 00 00	281.25
6 07 30	295.37	12 37 30	290.03	19 07 30	281.04
6 15 00	295.31	12 45 00	289.89	19 15 00	280.83
6 22 30	295.24	12 52 30	289.75	19 22 30	280.62
6 30 00	295.17	13 00 00	289.61	19 30 00	280.41

[Derivation of table explained on pp. 1-lii.]

SMITHSONIAN TABLES.

Digitized by GOOGTC

.

TABLE 28.

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 15' EXTENT IN LATITUDE AND LONGITUDE.

[Derivation of table explained on pp. 1-lii.]

TABLE 28. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 15' EXTENT IN LATITUDE AND LONGITUDE.

[Derivation of table explained on pp. 1-iii.]

TABLE 28.

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 15' EXTENT IN LATITUDE AND LONGITUDE.

.

[Derivation of table explained on pp. 1-lii.]

[Derivation of table explained on pp. 1-lii.]									
Middle latitude of quadrilateral.		Middle latitude of quadrilateral.		Middle latitude of quadrilateral.	Area in square miles.				
58° 37′ 30″	1 56.18	65° 07' 30''	126.34	71 [°] 37′ 30″	94.78				
58 45 00	1 5 5.62	65 15 00	125.75	71 45 00	94.16				
58 52 30	1 5 5.07	65 22 30	125.16	71 52 30	93.54				
59 00 00	1 5 4. 5 1	65 30 00	124.57	72 00 00	92.92				
59 07 30	1 53.96	65 37 30	123.97	72 07 30	92.30				
59 15 00	1 53.40	65 45 00	123.38	72 15 00	91.68				
59 22 30	1 52.84	65 52 30	122.78	72 22 30	91.05				
59 30 00	1 52.28	66 00 00	122.19	72 30 00	90.43				
59 37 30	151.72	66 07 30	121.59	72 37 30	89.80				
59 45 00	151.16	66 15 00	120.99	72 45 00	89.18				
59 52 30	150.60	66 22 30	120.40	72 52 30	88.55				
60 00 00	150.03	66 30 00	119.80	73 00 00	87.93				
60 07 30	149-47	66 37 30	119.20	73 07 30	87.30				
60 15 00	148.91	66 45 00	118.60	73 15 00	86.67				
60 22 30	148.34	66 52 30	118.00	73 22 30	86.05				
60 30 00	147.77	67 00 00	117.40	73 30 00	85.42				
60 37 30	147.21	67 07 30	116.80	73 37 30	84.79				
60 45 00	146.64	67 15 00	116.20	73 45 00	84.16				
60 52 30	146.07	67 22 30	115.59	73 52 30	83.53				
61 00 00	145.50	67 30 00	114.99	74 00 00	82.91				
61 07 30	144.93	67 37 30	114.39	74 07 30	82.28				
61 15 00	144.36	67 45 00	113.78	74 15 00	81.65				
61 22 30	143.79	67 52 30	113.18	74 22 30	81.01				
61 30 00	143.22	68 00 00	112.57	74 30 00	80.38				
61 37 30	142.65	68 07 30	111.97	74 37 30	79-75				
61 45 00	142.08	68 15 00	111.36	74 45 00	79-12				
61 52 30	141.50	68 22 30	110.76	74 5 ² 30	78-49				
62 00 00	140.93	68 30 00	110.15	75 00 00	77-86				
62 07 30	140.35	68 37 30	109.54	75 07 30	77.22				
62 15 00	139.78	68 45 00	108.93	75 15 00	76.59				
62 22 30	139.20	68 52 30	108.32	75 22 30	75.95				
62 30 00	138.62	69 00 00	107.71	75 30 00	75.32				
62 37 30	138.04	69 07 30	107.10	75 37 30	74-69				
62 45 00	137.47	69 15 00	106.49	75 45 00	74-05				
62 52 30	136.89	69 22 30	105.88	75 5 ² 30	73-42				
63 00 00	136.31	69 30 00	105.27	76 00 00	72-78				
63 07 30	135.73	69 37 30	104.65	76 07 30	72.14				
63 15 00	135.15	69 45 00	104.04	76 15 00	71.51				
63 22 30	134.56	69 52 30	103.43	76 22 30	70.87				
63 30 00	133.98	70 00 00	102.81	76 30 00	70.24				
63 37 30	133.40	70 07 30	102.20	76 37 30	69.60				
63 45 00	132.81	70 15 00	101.59	76 45 00	68.96				
63 5 ² 30	132.23	70 22 30	100.97	76 52 30	(8.32				
64 00 00	131.64	70 30 00	100.35	77 00 00	67.68				
64 07 30	131.06	70 37 30	99-74	77 07 30	67.04				
64 15 00	130.47	70 45 00	99-12	77 15 00	66.41				
64 22 30	129.88	70 52 30	98.50	77 22 30	65.77				
64 30 00	129.29	71 00 00	97-88	77 30 00	65.13				
64 37 30	128.70	71 07 30	97.26	77 37 30	64.49				
64 45 00	128.12	71 15 00	96.65	77 45 00	63.85				
64 52 30	127.53	71 22 30	96.03	77 52 30	63.20				
65 00 00	126.94	71 30 00	95.41	78 00 00	62.56				
64 45 00 64 52 30	128.12 127.53 126.94	71 15 00 71 22 30	96.65 96.03	77 45 00 77 52 30	63.85 63.20				

TABLE 28. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 15' EXTENT IN LATITUDE AND LONGITUDE.

.

Middle latitude Are of quadrilateral. square	a in miles. Middle latitude of quadrilateral		Middle latitude of quadrilateral.	Area in square miles.
78° 07' 30" 61. 78 15 00 61. 78 22 30 60. 78 30 00 60.	28 82 15 00 64 82 22 30	41.24 40.59 39-94 39-29	86° 07' 30" 86 15 00 86 22 30 86 30 00	20.35 19.69 19.04 18.38
78 37 30 59 78 45 00 58 78 52 30 58 79 00 00 57	82 45 00 .06 82 52 30	38.64 37.99 37.34 36.69	86 37 30 86 45 00 86 52 30 87 00 00	17.72 17.07 16.41 15.76
79 07 30 56. 79 15 00 56. 79 22 30 55. 79 30 00 54.	.13 83 15 00 49 83 22 30	36.03 35-38 34-73 34-08	87 07 30 87 15 00 87 22 30 87 30 00	15.10 14-44 13.79 13.13
79 37 30 54 79 45 00 53 79 52 30 52	20 83 37 30 55 83 45 00	33-42 32.77 32.12 31.47	87 37 30 87 45 00 87 52 30 88 00 00	12.48 11.82 11.16 10.51
80 07 30 51. 80 15 00 50.	.62 84 07 30 97 84 15 00 32 84 22 30	30.81 30.16 29.51 28.86	88 07 30 88 15 00 88 22 30 88 30 00	9-85 9-20 8.54 7.88
80 37 30 49 80 45 00 48 80 52 30 47 81 00 00 47	03 84 37 30 38 84 45 00 73 84 52 30	28.20 2.54 26.89 26.24	88 37 30 88 45 00 88 52 30 89 00 00	7.22 6.57 5.91 5.26
81 07 30 46 81 15 00 45 81 22 30 45	44 85 07 30 79 85 15 00	25.58 24.93 24.27 23.62	89 07 30 89 15 00 89 22 30 89 30 00	4.60 3.94 3.28 2.63
81 37 30 43. 81 45 00 43. 81 52 30 42. 82 00 00 41.	84 85 37 30 19 85 45 00 54 85 52 30	22.97 22.31 21.66 21.00	89 37 30 89 45 00 89 52 30	1.97 1.31 0.66

[Derivation of table explained on pp. 1-lii.]

SMITHSONIAN TABLES.

154

Digitized by Google

٩.

•

•

•

TABLE 29. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 10' EXTENT IN LATITUDE AND LONGITUDE.

1					
Middle latitude	Area in	Middle latitude	Area in	Middle latitude	
of quadrilateral.	square miles.	of quadrilateral.	square miles.	of quadrilateral.	
0° 05'	I 32.0I	8° 45'	130.51	17° 25'	126.11
0 15	I 32.0I	8 55	130.46	17 35	126.00
0 25	I 32.0I	9 05	130.40	17 45	125.88
o 35	132.00	9 15	130.34	17 55	125.77
0 45	132.00	9 25	1 30.28	18 05	125.65
0 55	131.99	9 35	1 30.22	18 15	125.54
I 05	131.99	9 45	130.15	18 25	125.42
I 15	131.98	9 55	130.09	18 35	125.30
1 25	131.97	10 05	1 30.02	18 45	125.18
1 35	131.96	10 15	1 29.96	18 55	125.06
- 55 I 45 I 55	131.95 131.94	10 25 10 35	129.89 129.82	19 05	I 24.94 I 24.8I
2 05	131.93	10 45	129.76	19 25	124.69
2 15	131.91	10 55	129.68	19 35	124.56
2 25	131.90	11 05	129.61	19 45	124-44
2 35	131.88	11 15	129.54	19 55	124.31
2 45	131.86	II 25	129.47	20 05	124.18
2 55	131.84	II 35	129.39	20 15	124.05
3 05	131.82	11 45	129.32	20 25	123.92
3 15	131.80	11 55	1 29.24	20 35	123.79
3 25	131.78 131.76	12 05 12 15	129.16 129.08	20 45 20 55	123.66
3 25 3 35 3 45 3 55	131.74 131.71	I2 25 I2 35	129.00 129.00 128.92	20 55 21 05 21 15	123.52 123.39 123.25
4 05	131.68	12 45	1 28.84	21 25	123.12
4 15	131.66	12 55	128.76	21 35	122.98
4 25	131.63	13 05	128.67	21 45	122.84
4 35	131.60	13 15	1 28.59	21 55	122 70
4 45	131.57	13 25	128.50	22 05	122.56
4 55	131.54	13 35	128.41	22 I5	122.42
5 05	131.50	13 45	128.33	22 25	122.28
5 15	131.47	13 55	128.24	22 35	122.13
5 25	131.44	14 05	128.14	22 45	121.99
5 35	131.40	14 15	128.05		121.84
5 25 5 35 5 45 5 55	131.36 131.33	I4 25 I4 35	127.96 127.87	22 55 23 05 23 15	121.64 121.69 121.55
6 05	131.29	I4 45	127.77	23 25	121.35
6 15	131.25	14 55	127.67	23 35	121.25
6 25	131.21	15 05	127.58	23 45	121.10
635	131.16	15 15	127.48	23 55	120.94
6 45	131.12	15 25	127.38	24 05	120.79
6 55	131.07	15 35	127.28	24 IS	120.64
7 05	131.03	15 45	127.18	24 25	1 20.48
7 15	130.98	15 55	127.08	24 35	1 20.33
7 25	130.93	16 05	1 26.98	24 45	120.17
7 35	130.88	16 15	1 26.87	24 55	120.01
7 45	1 30.84	16 25	126.77	25 05	119.85
7 55	1 30.79	16 35	126.66	25 I5	119.69
8 05	130.73	16 45	126.55	25 25	119.53
8 15	130.68	16 55	126.44	25 35	119.37
8 25	130.63	17 05	126.33	25 45	119.21
8 35	130.57	17 15	126.22	25 55	119.04

[Derivation of table explained on pp. I-lii.]

Digitized by GOOGIC

TABLE 294

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 10' EXTENT IN LATITUDE AND LONGITUDE.

Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.		Middle latitude of quadrilateral.	Area in square miles.
26° 05	118.87	34° 45'	108.94	43° 25	96.50
26 15	. 118.71	34 55	108.73	43 35	96.24
26 25	118.54	35 05	108.51	43 45	95.98
26 35	118.37	35 15	108.29	43 55	95.71
26 45	1 18.21	35 25	108.07	44 05	95.45
26 55	118.04	35 35	107.85	44 15	95.19
27 05	117.87	35 45	107.63	44 25	94.92
27 15	117.69	35 55	107.41	44 35	94.65
27 25	117.52	36 05	107.19	44 45	94.38
	117.35	36 15	106.96		
27 35		36.13	100.90	44 55	94.11
27 45	117.17	36 25	106.74	45 05	93.84
27 55	116.99	36 35	106.51	45 15	93.58
28 05	116.82	36 45	106.29	45 25	93.30
28 15	116.64	36 55	106.06	45 35	93.03
28 25	116.46	37 05	105.83	45 45	92.76
28 35	116.28	37 15	105.60	45 55	92.48
28 45	116.10	37 25	105.37	46 05	92.21
28 55	115.92	37 35	105.14	46 15	91.94
29 05	115.73		104.91	46 25	91.66
		37 45	104.68	40 25	
29 15	115.55	37 55	104.00	40 35	91.38
29 25	115.37 115.18	38 05 38 15	104.44	46 45	91.10
29 35	115.18	38 15	104.21	46 55	90.82
29 45	114.99	38 25	103.97	47 05	90.55
29 55	114.81	38 25 38 35	103.74	47 15	90.27
30 05	114.62	38 45	103.50	17 25	89.99
	•		103.26	47 25	89.70
30 15	114-43	38 55		47 35	80.10
30 25	I14.24	39 05	103.02	47 45	89.42
30 35	114.04	39 15	102.78	47 55	89.14
30 45	113.85	39 25	102.54	48 05	88.85
30 55	113.66	39 35	102.30	48 15	88.57
31 05	113.47	39 45	102.06	48 25	88.28
31 15	113.27	39 55	101.82	48 35	88.00
33		39 33			
3I 25	113.07	40 05	101.57	48 45	87.71
31 35	112.88	40 15	101.33	48 55	87.42
31 45	112.68	40 25	101.33 101.08	49 05	87.13
31 55	112.48	40 35	100.83	49 15	86.84
32 05	112.28	10.15	100.59	40.25	86.55
	112.20 112.08	40 45		49 25	86.26
32 15		40 55	100.34	49 35	
32 25	111.87	41 05	100.09	49 45	85.97
32 35	111.67	41 15	99-84	49 55	85.68
32 45	111.47	41 25	99.59	50 05	85.39
32 55	111.26	41 35		50 15	85.00
33 05	111.06	41 45	99-33 99-08	50 25	84.80
33 15	110.85	41 55	<u>9</u> 8.83	50 35	84.50
22.25	110.64	42 05	98.57	50 4F	84.21
33 25			98.32	50 45	
33 35	110.43	42 15	90.54	50 55	83.91 83.61
33 45 33 55	I 10.22 I 10.01	42 25 42 35	98.06 97.80	51 05 51 15	83.61 83.31
33 33		33		J 3	
34 05	109.80	42 45	97.55	51 25	83.01
34 15	109.59	42 55	97.2 9	51 35	82.71
34 ² 5	109.37	43 05	97.03	51 45	82.41
34 35	109.16	43 15	96.77	5I 55	82.11
		1			Coorto
				Bigitized by	

[Derivation of table explained on pp. 1-lii.]

TABLE 29. AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 10' EXTENT IN LATITUDE AND LONGITUDE.

.

Middle latitude	Area in	Middle latitude	Area in	Middle latitude	Area in
of quadrilateral.	square miles.	of quadrilateral.	square miles.	of quadrilateral.	square miles.
52° 05'	81.81	60° 45'	65-17	69° 25	46.97
52 15	81.51	60 55	64-84	69 35	46.60
52 25	81.20	61 05	64-50	69 45	46.24
52 35	80.90	61 15	64-16	69 55	45.88
52 45	80.60	61 25	63.82	70 05	45.51
52 55	80.29	61 35	63.48	70 15	45.15
53 05	79.98	61 45	63.14	70 25	44.78
53 15	79.68	61 55	62.80	70 35	44.42
53 25	79-37	62 05	62.46	70 45	44-05
53 35	79-06	62 15	62.12	70 55	43-69
53 45	78-75	62 25	61.78	71 05	43-32
53 55	78-44	62 35	61.44	71 15	42-95
54 05	78.13	62 45	61.10	71 25	42.58
54 15	77.82	62 55	60.75	71 35	42.22
54 25	77.51	63 05	60.41	71 45	41.85
54 35	77.19	63 15	60.06	71 55	41.48
54 45	76.88	63 25	59-72	72 05	41.11
54 55	76.57	63 35	59-37	72 15	40.74
55 05	76.25	63 45	59-03	72 25	40.37
55 15	75-94	63 55	58.68	72 35	40.00
55 25	75.62	64 05	58.33	72 45	39.63
55 35	75.30	64 15	57.99	72 55	39.26
55 45	74-99	64 25	57.64	73 05	38.89
55 55	74-67	64 35	57.29	73 15	38.52
56 05	74-35	64 45	56.94	73 25	38.15
56 15	74-03	64 55	56.59	73 35	37.78
56 25	73-71	65 05	56.24	73 45	37.41
56 35	73-39	65 15	55.89	73 55	37.03
56 45	73.07	65 25	55-54	74 05	36.66
56 55	72.75	65 35	55-19	74 15	36.29
57 05	72.43	65 45	54-83	74 25	35.91
57 15	72.10	65 55	54-48	74 35	35.54
57 25	71.78	66 05	54.13	74 45	35-17
57 35	71.46	66 15	53.78	74 55	34-79
57 45	71.13	66 25	53.42	75 05	34-42
57 55	70.80	66 35	53.06	75 15	34-04
58 05	70.48	66 45	52.71	75 25	33.66
58 15	70.15	66 55	52.35	75 35	33-29
58 25	69.82	67 05	52.00	75 45	32.91
5 ⁸ 35	69.49	67 15	51.64	75 55	32.53
58 45	69.17	67 25	51.28	76 05	32.16
58 55	68.84	67 35	50.93	76 15	31.78
59 05	68.51	67 45	50.57	76 25	31.40
59 15	68.18	67 55	50.21	76 35	31.03
59 25	67.84	68 05	49.85	76 45	30.65
59 35	67.51	68 15	49.49	76 55	30.27
59 45	67.18	68 25	49.13	77 05	29.89
59 55	66.85	68 35	48.77	77 15	29.51
60 05	66.51	68 45	48.41	77 25	29.13
60 15	66.18	68 55	48.05	77 35	28.76
60 25	65.84	69 05	47.69	77 45	28.37
60 35	65.51	69 15	47.33	77 55	27.99

[Derivation of table explained on pp. 1-lii.]

SMITHSONIAN TABLES.

TABLE 29.

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 10' EXTENT IN LATITUDE AND LONGITUDE.

Middle latitude of quadrilateral.		Middle latitude of quadrilateral.		Middle latitude of quadrilateral.	Area in square miles.
78° 05'	27.62	82° 05'	18.43	86° 05'	9-14
78 15	27.24	82 15	18.04	86 15	8-75
78 25	26.85	82 25	17.65	86 25	8-36
78 35	26.47	82 35	17.27	86 35	7-97
78 45	26.09	82 45	16.88	86 45	7.59
78 55	25.71	82 55	16.50	86 55	7.20
79 05	25.33	83 05	16.11	87 05	6.81
79 15	24.95	83 15	15.73	87 15	6.42
79 25 79 35 79 45	24.57 24.18 23.80 23.42	83 25 83 35 83 45	15.34 14.95 14.57 14.18	87 25 87 35 87 45	6.03 5.64 5.25 4.86
80 05	23.04	84 05	13.79	88 o5	4-47
80 15	22.65	84 15	13.40	88 15	4-09
80 25	22.27	84 25	13.02	88 25	3.70
80 35	21.89	84 35	12.63	88 35	3.31
80 45	21.50	84 45	12.24	88 45	2.92
80 55	21.12	84 55	11.86	88 55	2.53
81 05	20.73	85 05	11.47	89 05	2.14
81 15 81 25 81 35 81 45	20.35 19.97 19.58 19.20	85 15 85 25 85 35 85 45	11.08 10.69 10.30 9.92	89 15 89 25 89 35	1.75 1.36 0.97 0.58
				89 35 89 45 89 55	0.97 0.58 0.19

[Derivation of table explained on pp. l-lii.]

SMITHSONIAN TABLES.

159

Digitized by Google

DETERMINATION OF HEIGHTS BY THE BAROMETER. Formula of Babinet.

$$Z = C \frac{B_{\circ} - B}{B_{\circ} + B}$$

$$C \text{ (in feet)} = 52494 \left[1 + \frac{t_{\circ} + t - 64}{900} \right] - \text{English Measures}$$

$$C \text{ (in metres)} = 16000 \left[1 + \frac{2(t_{\circ} + t)}{1000} \right] - \text{Metric Measures.}$$

In which Z = Difference of height of two stations in feet or metres.

 B_{o} , B = Barometric readings at the lower and upper stations respectively, corrected for all sources of instrumental error.

 t_{o} , t = Air temperatures at the lower and upper stations respectively.

Values of C.

METRIC MEASURES.

ENGLISH MEASURES.								
$\frac{1}{2}(t_0+t).$	log C.	с.						
F.		Feet.						
10°	4.69834	49928						
15	.70339	50511						
20	.70837	51094						
25	.71330	51677						
30	.71818	52261						
35	4.72300	52844						
40	.72777	53428						
45	.73248	54011						
50 SO	.73715	54595						
55	-74177	55178						
55								
60	4-74633	55761						
65	.75085	56344						
70	.75532	56927						
75	•7 597 5	57511						
80	.76413	58094						
85	4.76847	58677						
90	.77276	59260						
95	.77702	59 ⁸ 44						
100	.78123	60427						

ENGLISH MEASURES.

± (t₀+t).	log C.	С.
C. 10° 8 6 4 2	4.18639 .19000 .19357 .19712 .20063	Metres. 15360 15488 15616 15744 15872
0	4.20412	16000
+2	.20758	16128
4	.21101	16256
6	.21442	16384
8	.21780	16512
10	4.22115	16640
12	.22448	16768
14	.22778	16896
16	.23106	17024
18	.23431	17152
20	4-23754	17280
22	.24075	17408
24	.24393	17536
26	.24709	17664
28	.25022	17792
30	4-25334	17920
32	.25643	18048
34	.25950	18176
36	.26255	18304

TABLE 31.

MEAN REFRACTION.

Apparent altitude.	Refrac	ction.	Apparent altitude.	Refrac	tion.	Apparent altitude.	Refrac	tion.	Apparent altitude.	Refrac	tion.	Apparent altitude.	Refrac	tion.
0 0 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 20 30 40 2 10 20 20 10 20 2 10 20	34 54.1 32 49.2 30 52.3 29 3.5 27 227 227 21 55.6 21 55.6 20 51.9 18 58.0 18 8.6 17 23.7 16 4.5 17 23.7	" 124.9 16.9 108.8 100.8 92.9 85.2 77.9 71.1 64.7 59.0 53.9 49.4 45.6 42.3		• 7 19.7 7 10.5 7 10.5 53.3 6 45.1 6 22.3 6 22.3 6 22.3 6 22.3 6 22.3 6 22.3 6 25.4 6 1.8 5 55.4 5 55.4 5 55.4 5 37.6	" 9.3 8.8 8.4 8.2 7.9 7.6 7.3 7.1 6.8 6.6 6.4 6.1 6.0 5.7	 i4 0 i4 0 20 40 15 0 20 40 16 0 20 40 16 0 20 40 17 0 20 40 18 0 20 	347.4 342.1 337.0 332.1 327.4 322.9 318.6 314.5 310.5 36.6 3 259.3 259.3 255.8 2 55.8 2 55.8	 // 5.3 5.1 4.9 4.7 4.5 4.3 4.1 4.0 3.9 3.7 3.6 3.5 3.3 	0 / 28 0 20 20 20 20 20 30 20 40 31 0 20 40 31 0 20 40 31 0 20 20 40 20 20 40 20 20 20 20 20 20 20 20 20 2	1 48.2 1 46.7 1 45.3 1 45.3 1 42.4 1 41.0 1 39.7 1 38.4 1 37.1 1 35.8 1 34.5 1 33.3 1 33.3 1 32.1 1 30.9	// I.5 I.4 I.5 I.4 I.3 I.3 I.3 I.3 I.3 I.3 I.2 I.2 I.2	° 2 3 4 5 6 7 8 9 5 5 3 5 5 5	" 64.0 61.8 59.7 55.7 53.8 51.9 50.2 48.4 46.7 45.1 43.5 41.9 40.4 38.9	" 2.2 2.1 2.0 2.0 1.9 1.7 1.8 1.7 1.6 1.6 1.6 1.5 1.5
R Q	16 0.9 15 23.4 14 47.8 14 47.8 13 15.0 12 48.3 12 23.7 11 38.3 12 23.7 11 38.3 10 58.6 10 39.6 10 21.2 10 3.3 9 40.5 9 30.9 9 16.0	39.8 37-5 35-6 33-3 30-9 28.7 26.7 24.6 23.0 21.8 20.6 19.7 19.0 18.4 17.9 16.8 15.6 14.1	30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 10 10 10 10 10 10 10 10 10 10 10	$\begin{array}{c} 5 32.0 \\ 5 5 26.5 \\ 5 16.2 \\ 5 16.4 \\ 5 16.4 \\ 5 16.4 \\ 5 16.4 \\ 5 16.4 \\ 5 16.4 \\ 4 57.2 \\ 4 57.2 \\ 4 57.2 \\ 4 57.2 \\ 4 440.2 \\ 4 36.3 \\ 4 32.4 \\ 4 40.2 \\ 4 36.3 \\ 4 25.0 \\ 4 $	5.6 5.5 5.2 5.1 5.0 4.8 4.7 4.4 4.1 3.9 3.7 7 3.6 4.4 4.4 3.9 3.7 7 3.6 4.4 4.4	40 19 0 20 40 20 0 20 40 21 0 20 40 22 0 20 40 23 0 23 0 24 0	2 49.3 2 46.1 2 43.1 2 43.1 2 43.2 2 37.3 2 34.5 2 29.3 2 20.3 2 20.3 2 20.3 2 20.3 2 20.3 2 20.3 2 20.3 2 20.4 2 20.4 2 20.4 2 20.4 2 20.5 2 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5	3.2 3.2 3.0 2.9 2.9 2.8 2.6 2.6 2.5 2.5 2.4 2.3 2.2 2.2 2.2 2.2 2.1 2.0 1.9	40 33 0 40 34 0 20 40 35 0 20 40 35 0 20 40 37 0 20 40 37 0 20 40 37 0 20 40 37 0 20 40 37 0 20 40 37 0 20 40 37 0 20 40 37 0 20 40 35 0 20 40 35 0 20 40 34 0 20 40 35 0 20 35 0 20 35 0 20 40 35 0 20 35 20 40 35 0 20 40 35 0 20 40 35 0 20 40 35 0 20 40 35 0 20 35 0 20 20 35 0 20 20 35 0 20 20 35 0 20 20 35 20 20 20 20 20 20 20 20 20 20 20 20 20	1 29.8 1 28.7 1 26.5 1 26.5 1 25.4 1 24.3 1 22.3 1 22.3 1 22.3 1 22.3 1 22.3 1 20.3 1 19.3 1 16.5 1 15.5 1 14.7 1 3.8	I.I I.I I.I I.I I.I I.I I.O I.O I.O I.O	578 58 6 6 8 6 8 6 8 5 8 6 8 7 7 7 7 7	30.9 37.5 36.1 34.7 33.3 32.0 30.7 29.4 28.2 26.9 25.7 24.5 23.3 22.2 21.0 19.9 18.8 17.7 16.6	I.4 I.4 I.4 I.3 I.3 I.3 I.3 I.3 I.2 I.2 I.2 I.2 I.2 I.1 I.2 I.1 I.1 I.1 I.1 I.1 I.1
34500 0 2 3450 7	9 1.9 8 48.4 8 35.6 8 23.3 8 11.6 8 0.3 7 49.5 7 39.2 7 29.2 7 19.7	14.1 13.5 12.8 13.3 11.7 11.3 10.8 10.3 10.0 9-5	30 40 50 13 0 20 30 50 14 0	4 14.6 4 11.3 4 8.1 4 4.9 4 1.8 3 58.8 3 55.9 3 53.0 3 53.0 3 47-4	3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.8 2.8	20 40 25 0 20 40 20 40 27 0 20 27 0 20 40 20 20 20 20 20 20 20 20 20 20 20 20 20	2 7.0 2 5.1 2 3.2 2 1.4 1 59.6 1 57.8 1 56.1 1 54.4 1 52.8 1 51.2 1 49.7 1 48.2	1.9 1.9 1.8 1.8 1.8 1.7 1.7 1.6 1.6 1.5 1.5	20 4:3 39 0 40 40 0 20 40 41 0 20 40 41 0 20 40 41 0 20 40 41 0	1 12.9 1 12.0 1 11.2 1 10.3 1 9.5 1 8.7 1 7.9 1 7.1 1 6.3 1 5.5 1 4.7 1 4.0	0.9 0.8 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	74 75 76 77 78 79 80 81 82 80 90	16.6 15.5 14.5 13.4 12.3 11.2 10.2 9.1 8.1 4.1 0.0	1.1 1.0 1.1 1.1 1.1 1.0 1.1 1.0 4.0 4.1

SMITHSONIAN TABLES.

.

•

TABLE 32.

FOR CONVERSION OF ARC INTO TIME.

0	h. m.	o	h. m.	0	h. m.	0	h. m.	o	h. m.	٥	h. m.		m. s.	"	S .
0	004	60 61	4 0	120 121	8 o 8 4	1 80 181	12 O 12 4	240 241	-	300 301		0	00	0	0.000
2	04	62	4 4 4 8 4 12	122	84 88 812	182 183	12 4 12 8 12 12	242	16 4 16 8 16 12	302	20 4 20 8 20 12	2	04	2	0.133
3 4 5	0 1 2 0 1 6	63 64 65	4 16	123 124	8 16	184	12 16	243 244	16 16	303 304 305	20 12 20 16	3	0 12 0 16	3	0.200 0.267
5 6	0 20 0 24	65 66	4 20 4 24	125 126	8 20 8 24	185 186	I 2 20 I 2 24	245 246	16 20 16 24	305 306	20 20 20 24	5	0 20 0 24	5 6	0.333 0.400
7	0 28	67	4 28	127	8 28	187	12 28	247	16 28	307	20 28	7	0 28	7	0.467
9	0 32 0 36	68 69	4 32 4 36	128 129	8 32 8 36	188 189	1232 1236	248 249	16 32 16 36	308 309	20 32 20 30	8	0 32 0 36	8	0.533 0.600
10	0 40	70	4 40	130	8 40	190	1240	250	1640	310	20 40	10	0 40	10	0.007
11 12	0 44 0 48	71 72	4 44 4 48	131 132	8 44 8 48	191 192	12 44 12 48	251 252	16 44 16 48	311 312	20 44 20 48	II I2	0 44 0 48	I 1 I 2	0.733
13	0 52	73	4 52	133	8 52	193	12 52	253	16 52	313	20 52	13	0 52	13	0.867
14 15	056 I 0	74 75	4 56 5 0	134 135	8 56 9 0	194 195	12 56 13 0	²⁵⁴ 255	16 56 17 0	314 315	20 56 21 0	14 15	0 56 1 0	14 15	0.933 1.000
16	I 4 I 8	76	5 4	136	94	196	13 4 13 8	256	17 4 17 8	316	21 4 21 8	16 17	I 4 I 8	16	1.067
17 18	I I2	77 78	512	137 138	912	197 198	1312	257 258	17 12	317 318	21 12	18	I I 2	17 18	1.133 1.200
19 20	1 16 1 20	79 80	<u>5 16</u> 5 20	139 140	9 16 9 20	199 200	1316 1320	259 260	17 16 17 20	319 320	21 16 21 20	 20	1 16 1 20	 20	1.267 1.333
21	I 24	- 81	5 24	141	9 24	201	13 24	261	17 24	321	21 24	21	1 24	21	1.400
22	1 28	82 83	5 28	142	9 28	202	1328	262 263	17 28	322	21 28 21 32	22	128 132	22	1.467
23 24	1 32 1 36	84	5 32 5 36	143 144	9 32 9 36	203 204	13 32 13 36	264	17 32 17 36	323 324	21 36	23 24	1 36	23 24	1.533 1.600
25 26	1 40 1 44	85 86	5 40 5 44	145 146	9 40 9 44	205 206	1340 1344	265 266	17 40 17 44	325 326	21 40 21 44	25 26	I 40 I 44	25 26	1.667 1.733
27	1 48	87	5 48	147	948	207	1348	267	17 48	327	21 48	27	148	27	1.800
28 29	1 52 1 56	88 89	5 52 5 56	148 149	9 52 9 56	208 209	13 52 13 56	268 269	17 52 17 56	328 329	21 52 21 56	28 20	1 52 1 56	28 29	1.867 1.933
30	2 0	90	60	150	10 0	210	14 0	270	18 0	330	22 0	30	2 0	30	2.000
31	2 4 2 8	91 92	64 68	151 152	10 4 10 8	211 212	14 4 14 8	27 I 27 2	18 4 18 8	331	22 4 22 8	31	2 4 2 8	31	2.067 2.133
32	2 I 2	93	612	1 53	10 12	213	14 12	273	18 12	332 333	22 1 2	32 33	2 I 2	32 33	2.200
34 35	2 16 2 20	94 95	6 16 6 20	154 155	10 16 10 20	²¹⁴ 215	14 16 14 20	274 275	18 16 18 20	334 335	22 16 22 20	34 35	216 220	34 35	2.267 2.333
36	2 24	96	6 24	156	10 24	216	14 24	276	18 24	336	22 24	36	2 24	36	2.400
37 38	2 28 2 32	97 98	6 28 6 32	1 57 1 58	10 28 10 32	217 218	14 28 14 32	277 278	18 28 18 32	337 338	22 28 22 32	37 38	2 28 2 32	37 38	2.467 2.533
_39	2 36	<u> </u>	<u> 6 36</u>	1 59	10 36	219	14 36	279	18 36	_339	22 36	39	2 36	39	2.600
40 41	2 40	100 101	<u>640</u> 644	160 161	10 40 10 44	220 221	14 40 14 44	280 281	18 40 18 44	340 341	22 40 22 44	<u>40</u> 41	2 40 2 44	40 41	2.667 2.733
42	2 48	102	648	162	10 48	222	14 48	282	18 48	342	22 48	42	2 48	42	2.800
43 44	2 52 2 56	103 104	6 52 6 56	163 164	10 52 10 56	223 224	14 52 14 56	283 284	18 52 18 56	343 344	22 52 22 56	43	2 52 2 56	43 44	2.867 2.933
45	30	105 106	70 74	165 166	11 O 11 4	225 226	15 0	285 286	19 0 19 4	345	23 0	44 45 46	30	45 46	3.000 3.067
46 47	3 4 3 8	107	78	167	11 8	227	158	287	19 8	346 347	23 8	47	34 38	47	3.133
48	312 316	108 109	7 12 7 16	168 169	11 12 11 16	228 229	1512 1516	288 289	1912 1916	348 349	23 12 23 16	48 49	312 316	48 49	3.200 3.267
<u>49</u> 50	3 20	110	7 20	170	11 20	230	15 20	290	19 20	350	23 20	50	3 20	50	3.333
51	3 24 3 28	111	7 24 7 28		11 24 11 28	231 232	1524 1528	291 292	19 24 19 28	351	23 24 23 28	51	3 24 3 28	51	3.400 3.467
52 53 54 55	3 32	113	7 32	173	11 32	233	15 32	293	19 32	352 353	23 32	52 53	3 32 3 32 3 36	53	3.533
54 55	3 36 3 40	114 115	7 36 7 40	174 175	11 36 11 40	²³⁴ 235	1536 1540	294 295	19 36 19 40	354 35 5	23 36 23 40	54 55	3 36 3 40	54 5 5	3.600
56	3 44	116	7 44	176	11 44	236		296	1944	356	23 44	56	3 44 3 48	56	3.733
56 57 58 59	348 352	117 118	7 48 7 52	177 178	11 48 11 52	237 238	15 52	297 298	19 48 19 52	357 358	23 48 23 52	57 58	3 4ð 3 52	57 58	3.800 3.867
59	3 52 3 56	119	7 56	179	11 56	239	15 56	299	<u>19 56</u>	_359	23 56	59	3 5 ² 3 56	59	3.933
60	4 0	120	<u> 8 o</u>	180	12 0	240	<u>16</u>	300	20 0	360	<u>24 0</u>	60	4 0	60	4.000
		l												<u> </u>	

FOR CONVERSION OF TIME INTO ARC.

Hours of Time into Arc.										
Arc.	Time.	Arc.	Time.	Arc.	Time.	Arc.	Time.	Arc.	Time.	Arc.
0	hrs.	0	hrs.	•	krs.	•	hrs.	0	hrs.	0
15 30 45 60	5 6 7 8	75 90 105 120	9 10 11 12	135 150 165 180	13 14 15 16	195 210 225 240	17 18 19 20	255 270 285 300	21 22 23 24	315 330 345 360
Minut	es of T	rime int	o Arc.			Seco	onds of	Time i	nto Arc.	
o /	m.	• •	m.	0 /	s.	,	s.		8.	, ,,
0 15 0 30 0 45 I 0	21 22 23 24	5 15 5 30 5 45 6 0	41 42 43 44	10 15 10 30 10 45 11 0	1 2 3 4	0 15 0 30 0 45 1 0	21 22 23 24	5 15 5 30 5 45 6 0	41 42 43 44	10 15 10 30 10 45 11 0
I 15 I 30 I 45 2 0 2 15	25 26 27 28 29	6 15 6 30 6 45 7 0 7 15	45 46 47 48 49	11 15 11 30 11 45 12 0 12 15	5 6 7 8 9	I 15 I 30 I 45 2 0 2 15	25 26 27 28 29	615 630 645 70 715	45 46 47 48 49	11 15 11 30 11 45 12 0 12 15
2 30 2 45 3 0 3 15 3 30	30 31 32 33 34	7 30 7 45 8 0 8 15 8 30	50 51 52 53 54	12 30 12 45 13 0 13 15 13 30	10 11 12 13 14	2 30 2 45 3 0 3 15 3 30	30 31 32 33 34	7 30 7 45 8 0 8 15 8 30	50 51 52 53 54	12 30 12 45 13 0 13 15 13 30
3 45 4 0 4 15 4 30 4 45	35 36 37 38 39	8 45 9 0 9 15 9 30 9 45	55 56 57 58 59	13 45 14 0 14 15 14 30 14 45	15 16 17 18 19	3 45 4 0 4 15 4 30 4 45	35 36 37 38 39	8 45 9 0 9 15 9 30 9 45	55 56 57 58 59	13 45 14 0 14 15 14 30 14 45
50	40	10 0	60	15 0	20	50	40	10 0	60	15 0
		Hundr	edths c	of a Sec	ond of	Time i	nto Arc	•		
Sec-	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
5. 0.00 .10 .20 .30 .40 0.50 .60 .70 .80		" 0.15 1.65 3.15 4.65 6.15 7.65 9.15 10.65 12.15	 	<pre>% 0.45 1.95 3.45 4.95 6.45 7.95 9.45 10.95 12.45</pre>	" 0.60 2.10 3.60 5.10 6.60 8.10 9.60 11.10 12.60	<pre>% 0.75 2.25 3.75 5.25 6.75 8.25 9.75 11.25 12.75</pre>	 , 0.90 2.40 3.90 5.40 6.90 8.40 9.90 11.40 12.90 	" 1.05 2.55 4.05 5.55 7.05 8.55 10.05 11.55 13.05	" 1.20 2.70 4.20 5.70 7.20 8.70 10.20 11.70 13.20	" 1.35 2.85 4.35 5.85 7.35 8.85 10.35 11.85 13.35
	o 15 300 45 60 015 030 045 10 115 130 145 230 245 300 315 330 345 430 445 50 .20 .30 .40 .50 .60	\circ $\lambda_{rr.}$ 15 5 30 6 45 7 60 8 Minutes of 7 \circ m . \circ m . \circ m . \circ r $redths$ $re redths r< redths r< redths r< r<< r< $	\circ Årr. \circ 15 5 75 30 6 90 45 7 105 60 8 120 Minutes of Time int \circ m. \circ 0 15 21 515 0 21 515 0 22 530 0 23 545 1 0 24 6 1 15 25 6 15 1 0 24 6 0 1 15 25 6 15 1 0 24 6 0 1 15 25 6 15 2 0 30 7 30 2 15 29 7 15 2 30 30 7 45 3 31 31 8 15 33 345 35 8 45 4 0 36	Arc. Time. Arc. Time. \circ Års. \circ Års. 15 5 75 9 30 6 90 10 455 7 105 11 60 8 120 12 Minutes of Time into Arc. \circ m. \circ $'$ \circ m. \circ $'$ m. \circ $'$ m. \circ $'$ \circ 21 515 41 \circ 22 530 42 \circ 45 27 645 47 20 28 7 48 51 215 29 715 49 230 30 730 50 245 31 745 51 3 <t< th=""><th>Arc. Time. Arc. Time. Arc. \circ Årr. \circ Årr. \circ \circ Årr. \circ Årr. \circ 15 5 75 9 135 30 6 90 10 150 45 7 105 11 165 60 8 120 12 180 Minutes of Time into Arc. \circ m. \circ m. \circ \prime 0 f 6 7 m \circ \prime 0 f 6 41 10 15 0 21 515 41 10 15 0 22 530 42 10 30 145 27 645 47 1145 20 20 28 7 48 12 0 215 <td< th=""><th>Arc. Time. Arc. Time. Arc. Time. \circ Års. \circ Års. \circ Års. 15 5 75 9 135 13 30 6 90 10 150 14 455 8 120 12 180 16 Minutes of Time into Arc. m. \circ ' s. s. \circ ' m. \circ ' m. \circ ' s. \circ ' m. \circ ' m. \circ ' s. \circ ' m. \circ ' m. \circ ' s. \circ 15 21 515 41 1015 1 \circ 30 22 530 42 1030 2 \circ 44 10 44 110 4 14 15 25 615 45 1115 5 130 26 630 46 130 6 145 27 645 47 1145 7 20 28</th><th>Arc. Time. Arc. Time. Arc. Time. Arc. Time. Arc. 0 Årr. 0 Årr. 0 Årr. 0 Årr. 0 15 5 75 9 135 13 195 220 45 7 105 11 165 15 225 240 Minutes of Time into Arc. Secon 8 27 103 1 0 15 21 0 15 22 30 20 30 2 0 30 15 11 15<th>Arc. Time. Arc. Time. Arc. Time. Arc. Time. \circ Årr. \circ Årr. \circ Årr. \circ Årr. \circ Årr. 15 5 75 9 135 13 195 17 30 6 90 10 150 14 210 18 45 7 105 11 165 16 225 19 19 60 8 120 12 180 16 240 20 Minutes of Time into Arc. Seconds of \circ m. \circ m. \circ s. $'$ s. \circ 10 21 515 41 10 15 1 0 15 21 \circ 24 6 44 10 4 1<0 24 24 24 27 20 28 7 48 120 8 20 28 28 29 215 29 215 29 215 29 215</th><th>Arc. Time. Arc. α α<</th><th>Arc. Time. Arc. Time. Arc.<</th></th></td<></th></t<>	Arc. Time. Arc. Time. Arc. \circ Årr. \circ Årr. \circ \circ Årr. \circ Årr. \circ 15 5 75 9 135 30 6 90 10 150 45 7 105 11 165 60 8 120 12 180 Minutes of Time into Arc. \circ m. \circ m. \circ \prime 0 f 6 7 m \circ \prime 0 f 6 41 10 15 0 21 515 41 10 15 0 22 530 42 10 30 145 27 645 47 1145 20 20 28 7 48 12 0 215 <td< th=""><th>Arc. Time. Arc. Time. Arc. Time. \circ Års. \circ Års. \circ Års. 15 5 75 9 135 13 30 6 90 10 150 14 455 8 120 12 180 16 Minutes of Time into Arc. m. \circ ' s. s. \circ ' m. \circ ' m. \circ ' s. \circ ' m. \circ ' m. \circ ' s. \circ ' m. \circ ' m. \circ ' s. \circ 15 21 515 41 1015 1 \circ 30 22 530 42 1030 2 \circ 44 10 44 110 4 14 15 25 615 45 1115 5 130 26 630 46 130 6 145 27 645 47 1145 7 20 28</th><th>Arc. Time. Arc. Time. Arc. Time. Arc. Time. Arc. 0 Årr. 0 Årr. 0 Årr. 0 Årr. 0 15 5 75 9 135 13 195 220 45 7 105 11 165 15 225 240 Minutes of Time into Arc. Secon 8 27 103 1 0 15 21 0 15 22 30 20 30 2 0 30 15 11 15<th>Arc. Time. Arc. Time. Arc. Time. Arc. Time. \circ Årr. \circ Årr. \circ Årr. \circ Årr. \circ Årr. 15 5 75 9 135 13 195 17 30 6 90 10 150 14 210 18 45 7 105 11 165 16 225 19 19 60 8 120 12 180 16 240 20 Minutes of Time into Arc. Seconds of \circ m. \circ m. \circ s. $'$ s. \circ 10 21 515 41 10 15 1 0 15 21 \circ 24 6 44 10 4 1<0 24 24 24 27 20 28 7 48 120 8 20 28 28 29 215 29 215 29 215 29 215</th><th>Arc. Time. Arc. α α<</th><th>Arc. Time. Arc. Time. Arc.<</th></th></td<>	Arc. Time. Arc. Time. Arc. Time. \circ Års. \circ Års. \circ Års. 15 5 75 9 135 13 30 6 90 10 150 14 455 8 120 12 180 16 Minutes of Time into Arc. m. \circ ' s. s. \circ ' m. \circ ' m. \circ ' s. \circ ' m. \circ ' m. \circ ' s. \circ ' m. \circ ' m. \circ ' s. \circ 15 21 515 41 1015 1 \circ 30 22 530 42 1030 2 \circ 44 10 44 110 4 14 15 25 615 45 1115 5 130 26 630 46 130 6 145 27 645 47 1145 7 20 28	Arc. Time. Arc. Time. Arc. Time. Arc. Time. Arc. 0 Årr. 0 Årr. 0 Årr. 0 Årr. 0 15 5 75 9 135 13 195 220 45 7 105 11 165 15 225 240 Minutes of Time into Arc. Secon 8 27 103 1 0 15 21 0 15 22 30 20 30 2 0 30 15 11 15 <th>Arc. Time. Arc. Time. Arc. Time. Arc. Time. \circ Årr. \circ Årr. \circ Årr. \circ Årr. \circ Årr. 15 5 75 9 135 13 195 17 30 6 90 10 150 14 210 18 45 7 105 11 165 16 225 19 19 60 8 120 12 180 16 240 20 Minutes of Time into Arc. Seconds of \circ m. \circ m. \circ s. $'$ s. \circ 10 21 515 41 10 15 1 0 15 21 \circ 24 6 44 10 4 1<0 24 24 24 27 20 28 7 48 120 8 20 28 28 29 215 29 215 29 215 29 215</th> <th>Arc. Time. Arc. α α<</th> <th>Arc. Time. Arc. Time. Arc.<</th>	Arc. Time. Arc. Time. Arc. Time. Arc. Time. \circ Årr. \circ Årr. \circ Årr. \circ Årr. \circ Årr. 15 5 75 9 135 13 195 17 30 6 90 10 150 14 210 18 45 7 105 11 165 16 225 19 19 60 8 120 12 180 16 240 20 Minutes of Time into Arc. Seconds of \circ m. \circ m. \circ s. $'$ s. \circ 10 21 515 41 10 15 1 0 15 21 \circ 24 6 44 10 4 1<0 24 24 24 27 20 28 7 48 120 8 20 28 28 29 215 29 215 29 215 29 215	Arc. Time. Arc. α <	Arc. Time. Arc.<

TABLE 34.

CONVERSION OF MEAN TIME INTO SIDEREAL TIME.

8	m O	m I	m 2	m 3	1				
0	h m s 0 0 0	h m s 6 5 1 5	h m s 12 10 29	h m s 18 15 44	0.00	m s 0 0	0.50	m s 3 3	
I 2	0 6 5 0 12 10	6 11 20 6 17 25	12 16 34 12 22 40	18 21 49 18 27 54	0.01 0.02	04 07	0.51 0.52	36 310	
3	0 18 16 0 24 21	6 23 30 6 29 36	12 28 45 12 34 50	18 33 59 18 40 5	0.03 0.04	011 .	0.53 0.54	3 I4 3 I7	
3456	03026 03631	6 35 41 6 41 46	12 40 55 12 47 1	18 46 10 18 52 15	0.05 0.06	015 018 022	0.55 0.56	321	
78	0 42 37 0 48 42	6 47 51 6 53 56	12 53 6 12 59 11	18 58 20 19 4 26	0.07	026 029	0.57 0.58	3 25 3 28 3 32	
<u>9</u> 10	0 54 47 I 0 52	7 0 2 7 6 7	<u>13 5 16</u> 13 11 21	19 10 31 19 16 36	00.0 01.0	0 <u>33</u> 0 <u>37</u>	0.59	<u>3 35</u> <u>3 39</u>	
11	I 6 58	7 12 12	13 17 27	19 22 41	0.11	0 40	0.61	<u> </u>	
12 I 3	1 13 3 1 19 8	7 18 17 7 24 23	13 23 32 13 29 37	19 28 47 19 34 52	0.12	0 44 0 47	0.62 0.63	350	
14 15 16	I 25 I3 I 31 I9	7 30 28 7 36 33 7 42 38	13 35 42 13 41 48	19 40 57 19 47 2	0.14 0.15 0.16	0 51 0 55 0 58	0.64 0.65	3 54 3 57	
16 17 18	I 37 24 I 43 29	7 42 38 7 48 44	13 47 53 13 53 58	19 53 7 19 59 13	0.17	12	0.66 0.67	4 I 4 5 4 8	
18 19	I 49 34 I 55 40	7 54 49 8 0 54	14 0 3 14 6 9	20 5 18 20 1 1 2 3	0.18 0.19	16 19	0.68 0.69	4 12	
20 2I	2 I 45 2 7 50	8 6 59 8 13 5	14 12 14 14 18 19	20 17 28 20 23 34	0.20	<u> </u>	0.70	4 16	
22	2 13 55	8 19 10 8 25 15	14 24 24	20 29 39	0.22	I 20	0.72	4 2 3	
23 24	2 20 1 2 26 6	8 31 20	14 30 30 14 36 35	20 35 44 20 41 49	0.23 0.24	I 24 I 28	0.73 0.74	4 27 4 30	
25 20	2 32 11 2 38 16	8 43 31	I4 42 40 I4 48 45	20 47 55 20 54 0	0.25 0.26	I 3I I 35	0.75 0.76	4 34 4 38	
27 28	2 44 22 2 50 27	8 49 36 8 55 41	14 54 51 15 0 56	21 0 5 21 6 10	0.27 0.28	I 39 I 42	0.77 0.78	4 41 4 45	
29 30	2 56 32 3 2 37	<u>9 1 47</u> 9 7 5 ²	<u>15 7 1</u> 15 13 6	21 12 16	0.29	<u> 1 46 </u>	0.79 0.50	<u>4 49</u> 4 5 ²	
31 32	3 8 43 3 14 48	9 13 57 9 20 2	15 19 12 15 25 17	21 24 26 21 30 31	0.3I 0.32	I 53 I 57	0.81	4 56 4 59	
33	3 20 53 3 26 58	9 26 8	15 31 22 15 37 27	21 36 37 21 42 42	0.33 0.34	2 1	0.82 0.83 0.84	53 57	
33 34 35 36 37 38 39	3 33 3	9 38 18	15 43 33	21 48 47	0.35 0.36	28	0.85 0.86	5 10	
37	3 39 9 3 45 14	9 44 23 9 50 28	15 49 38 15 55 43 16 1 48	21 54 52 22 0 58	0.30 0.37 0.38	211 215	0.87	5 14 5 18	
	3 51 19 <u>3 57 24</u>	9 56 34 10 2 39	16 7 54	22 7 3 22 13 8	0.39	2 19 2 22	0.88 0.89	5 2I 5 25	
40 41	<u>4 3 30</u> 4 9 35	10 8 44 10 14 49	16 13 59 16 20 4	22 19 13 22 25 19	0.40 0.41	2 26 2 30	0.90 0.91	<u>5 29</u> 5 32	
42 43	4 15 40 4 21 45	10 20 55 10 27 0	16 26 9 16 32 14	22 31 24 22 37 29	0.42 0.43	2 33 2 37	0.92 0.93	5 32 5 36 5 40	
44	4 27 51 4 33 56	10 33 5 10 39 10	16 38 20 16 44 25	22 43 34 22 49 39	0.44	2 41	0.94	5 43 5 47	
45 46 47	4 40 I 4 46 6	10 45 16	16 50 30 16 56 35	22 55 45 23 1 50	0-45 0-46 0-47	2 44 2 48 2 52	0.90 0.97	5 5 I	
47 48	4 52 12	10 57 26	17 2 41	23 7 55	0.48	2 55	0.98	5 51 5 54 5 58 6 2	
<u>50</u>	5 4 22	<u>11 3 31</u> <u>11 9 37</u>	<u>17 8 46</u> <u>17 14 51</u>	23 14 0 23 20 6	0.49 0.50	<u>2 59</u> <u>3 3</u>	0.99 1.00	6 5	
51 52	5 10 27 5 16 33	11 15 42 11 21 47	17 20 56 17 27 2	23 26 11 23 32 16		mple : Let		n mean	
53 54	5 16 33 5 22 38 5 28 43	11 27 52 11 33 58	17 33 7 17 39 12	23 38 21 23 44 27		be 14 ^h 57 ^m table give			
55 56	5 34 48 5 40 54	11 40 3 11 46 8	17 45 17 17 51 23	23 50 32 23 56 37		or 14 ^h 54 ^m	5I" 2" 2	7 ° 0-44	
57 58	5 46 59 5 53 4	11 52 13 11 58 19	17 57 28	24 2 42 24 8 48			•	7-44	
59 60	<u>5 59 9</u>	I2 4 24 I2 IO 29	18 3 33 18 9 38 18 15 44	24 14 53 24 20 58	The sum $-14^{h} 57^{m} 32^{s} .56 + 2^{m} 27^{s} .44 == 15^{h} 0^{m} 0^{s}$ is the required sidereal time.				
	6 5 1 5			aq 20 30					

SMITHSONIAN TABLES.

۱

TABLE 35.

CONVERSION OF SIDEREAL TIME INTO MEAN TIME.

8	m O	m I	m 2	<u>т</u> 3								
0	h m s 0 0 0	h m s 6 6 1 5	h m s 12 12 29	h m s 18 18 44	8 0.00	m s 0 0	8 0.50	m s 3 3				
I 2	0 6 6 0 12 12	6 12 21 6 18 27	12 18 35 12 24 42	18 24 50 18 30 56	0.01 0.02	04 07	0.51	37 310				
3	0 18 19	.6 24 33	12 30 48	18 37 2	0.02	011	0.52 0.53	314				
4	0 24 25	6 30 40	12 36 54	1843 9	0.04	015	0.54	3 18				
56	0 30 31	6 36 46	1243 0	18 49 15	0.05	0 18	0.55	3 21				
0	0 36 37 0 42 44	6 42 52 6 48 58	12 49 7 12 55 13	18 55 21 19 1 27	0.06 0.07	0 22 0 26	0.56	3 25				
7 8	0 48 50	6 55 4	13 1 19	19 7 34	0.07	0 29	0.57 0.58	3 29 3 32				
9	0 54 56	7 1 11	13 7 25	19 13 40	0.09	o 33	0.59	_3 36				
IO	I I 2	7 7 17	13 13 31	19 19 46	0.10	0 37	0.60	3 40				
11	179	7 13 23	13 19 38	19 25 52	0.11	0 40	0.61	3 43				
12	I 13 15	7 19 29	132544	19 31 59	0.12	0 44 0 48	0.62 0.63	3 47				
13 14	I 19 21 I 25 27	7 25 36 7 31 42	13 31 50 13 37 56	19385 194411	0.13 0.14	040	0.03	3 51 3 54				
15 16	I 3I 34	7 37 48	1344 3	19 50 17	0.15	0 55	0.65	3 54 3 58				
	1 37 40	7 43 54	13 50 9	19 56 23	0.16	0 59	0.60	4 2				
17 18	I 43 46	7501 7567	13 56 15	20 2 30 20 8 36	0.17 0.18	I 2 I 6	0.67 0.68	45				
10 19	I 49 52 I 55 59	7 56 7 8 2 13	14 2 21 14 8 28	20 8 36 20 14 42	0.18	1 10	0.00	49 413				
20	2 2 5	8 8 19	14 14 34	20 20 48	0.20	I 13	0.70	4 16				
21	2 8 11	8 14 26	14 20 40	20 26 55	0.21	1 17	0.71	4 20				
22	2 14 17	8 20 32	14 26 46	20 33 1	0.22	I 21	0.72	4 24				
23	2 20 24	8 26 38	14 32 53	20 39 7	0.23	I 24 I 28	0.73	4 27				
24	2 26 30 2 32 36	8 32 44 8 38 51	14 38 59 14 45 5	20 45 13 20 51 20	0.24 0.25	I 28 I 32	0.74 0.75	4 3I 4 35				
25 26	2 38 42	8 44 57	14 51 11	20 57 26	0.26	I 35	0.76	4 35 4 38				
27 28	2 44 49	8 51 3	14 57 18	21 3 32	0.27	I 39	0.77	4 4 2				
	2 50 55	8 57 9 9 3 16	15 3 24	21 9 38	0.28	1 43 1 46	0.78	4 46				
<u>29</u> <u>3</u> 0	$\frac{257}{337}$	<u>9 3 16</u> 9 9 22	<u>15 9 30</u> 15 15 36	21 15 45	0.29	I 50	0.79	<u>4 49</u> <u>4 53</u>				
31	<u>337</u> 3914	9 15 28	15 21 43	21 27 57	0.31	I 54	0.81	4 57				
32	3 15 20	9 21 34	15 27 49	21 34 3	0.32	I 57	0.82	50				
33	3 21 26	9 27 41	15 33 55	21 40 10	0.33	2 I	0.83	54 58				
34	3 27 32	9 33 47	1540 I 1546 8	21 46 16	0.34 0.35	2 5 2 8	0.84 0.85	58 511				
35 36	3 33 38 3 39 45	9 39 53 9 45 59	15468 155214	21 52 22 21 58 28	0.36	2 1 2	0.86	515				
37	3 45 5I	9 52 5	15 58 20	22 4 35	0.37	2 16	0.87	5 19				
37 38	3 51 57	9 58 12	16 4 26	22 10 41	0.38	2 19	0.88	5 22				
	3 58 3	10 4 18	16 10 33	22 16 47	0.39	2 23	0.89	5 26				
40	4 4 10	10 10 24 10 16 30	16 16 39	22 22 53	0.40 0.41	2 30	0.90 0.91	<u> </u>				
4I 42	4 10 16 4 16 22	10 10 30	16 22 45 16 28 51	22 29 0 22 35 6	0.41	2 34 2 34	0.92	5 35				
43	4 22 28	10 28 43	16 34 57	22 41 12	0.43	2 37	0.93	5 4 I				
44	4 28 35	10 34 49	1641 4	22 47 18	0.44	2 4I 2 45	0.94	5 44 5 48				
45 46	4 34 4I	10 40 55	16 47 10 16 53 16	22 53 24 22 50 21	0.45 0.46	2 45 2 48	0.95 0.96	5 48 5 52				
40	4 40 47 4 46 53	10472 10538	16 59 22	22 59 31 23 5 37	0.47	2 52	0.97	5 55				
47 48	4 53 0	10 59 14	17 5 29	23 11 43	0.48	2 56	0.98	5 5 9				
49	4 59 6	11 5 20	17 11 35	23 17 49	0.49	2 59	0.99	$\frac{63}{66}$				
<u> </u>	5 5 12	11 11 27	17 17 41	23 23 56	0.50	33	1.00	00				
51	5 11 18	11 17 33	17 23 47 17 29 54	23 30 2 23 36 8								
52 53	5 17 25 5 23 31	11 23 39 11 29 45	17360	23 42 14	Example: Given 15 ^h 0 ^m 0 ^s .							
54	5 29 37	11 35 52	17 42 6	23 48 21	The table gives							
55	5 35 43	11 41 58	17 48 12	23 54 27	first for 14 ^b 57 ^m 18 ^a 2 ^m 27 ^a then for 2 42 0.44							
50	5 41 50	11 48 4 11 54 10	17 54 19 18 0 25	24 033 24 639	then for 242 0.44 15 0 0 227.44							
54 555 57 58 59	5 47 50 5 54 2	12 0 17	18 6 31	24 12 46		e differenc	¢					
59	554 2 6 0 8	12 6 23	18 12 37	24 18 52		2 ^m - 2 ^m 27 ^e .						
60	6 6 1 5	12 12 29	18 18 44	24 24 58	us ine	required r	ncan time	•				
			l									

SMITHSONIAN TABLES.

.

Digitized by Google

TABLE 36. LENGTH OF ONE DECREE OF THE MERIDIAN AT DIFFERENT LATITUDES.

Latitude.	Metres.	Statute Miles.	Geographic Miles. 1' of the Eq.	Latitude.	Metres.	Statute Miles.	Geographic Miles. I' of the Eq.
0 ° 1	110568.5 110568.8	68.703 68.704	59-594 59-594	45 ° 46	111132.1 111151.9	69.054 69.067	59.898 59.908
2	110569.8	68.705	59-595	47 48	111171.6	69.079	59-919
3	110571.5	68.706	59.596		111191.3	69.091	59.929
4	110573.9	68.707	59-597	49	111210.9	69.103	59.940
5	110577.0	68.709	59.598 59.600	50	111230.5	69.115	59.951
6	110577.0 110580.7	68.711	59.600	51	111249.9	69.127	59.961
78	110585.1	68.714	59.603	52	111269.2	69.139	59-972
	110590.2	68.717	59.606	53	111288.3	69.151	59.982
9	110595.9	68.721	59.609	54	111307.3	69.163	59.992
10	110602.3	68.725	59.612	55	111326.0	69.175 69.186	60.002
11	110609.3	68.729	59.616	56	111344.5	69.186	60.012
12	110617.0	68.734	59.620	57 58	111362.7	69.198	60.022
13	110625.3	68.739	59.625	58	111380.7	69.209	60.032
14	110634.2	68.745	59.629	59	111398.4	69.220	60.041
15	110643.7	68.751	59.634	60	111415.7	69.230	60.051
16	110652.8	68.757	59.640	61	111432.7	69.241	60.000
	110653.8 110664-5	68.757 68.763	59.646	62	111449-4	69.251	60.060
17 18	11067 5.7	68.770	59.652	63	111465.7	69.261	60.077
19	110687.5	68.778	59.658	64	111481.5	69.271	60.086
- 9			57 - 5-				
20	110699.9	68.786	59.665	65	111497.0	69.281	60.094
21	110712.8	68.794	59.672	66	111512.0	69.290	60.102
22	110726.2	68.802	\$9.679	67 68	111526.5	69.299	60.110
23	110740.1	68.810	59.686		111540.5	69.308	60.118
24	110754.4	68.819	59.694	69	111554.1	69.316	60.125
25	110769.2	68.829	59.702	70	111567.1	69.324	60.132
26	110784.5	68.838	59.710	71	111579.7	69.332	60.139
27	110800.2	68.848	59.719	72	111591.6	69.340	60.145
27 28	110816.3	68.858	59.727	73	111603.0	69.347	60.151
29	110832.8	68.868	59.736	74	111613.9	69.354	60.157
30	110849.7	68.879	59-745	75	111624.1	69.360	60.163
31	110866.0	68.889	59-755	76	111633.8	69.366	60.168
32	110884.4	68.900	59.764		111642.8	69.372	60.173
33	110902.3	68.911	59-774	77 78	111651.2	69.377	60.177
33 34	110920.4	68.923	59.784	79	111659.0	69.382	60.182
35	110938.8	68.934	50.704	80	111666.2	69.386	60.186
36	110930.0	68.946	59-794 59-804	81	111672.6	69.390	60.180
30	11095/.4	68.957	59.814	82	111678.0	69.394	60.192
37 38	110995.3	68.969	59.824	83	111683.6	69.397	60.195
39	111014.5	68.981	59.834	84	111688.1	69.400	60.197
		-					
40	111033.9	68.993	59-845	85	111691.9	69.402	60.199
41 41	111053.4	69.005	59.855 59.866	86	111695.0	69.404	60.201
42	111073.0	69.017	59.866	87 88	111697.4	69.405	60.202
43	111092.6	69.029	59.876		111699.2	69.407	60.203
44	1111[2.4	69.042	59.887	89	111700.2	69.407	60.204
45	111132.1	69.054	59.898	90	111700.6	69.407	60.204

[Derivation of table explained on pp. zlvi-zlviii.]

SHITHSONIAN TABLES.

166

TABLE 37.

.

.

LENGTH OF ONE DEGREE OF THE PARALLEL AT DIFFERENT LATITUDES.

.

[Derivation of table explained on p. xliz.]

Latitude.	Metr es .	Statute Miles.	Geographic Miles. 1' of the Eq.	Latitude.	Metres.	Statute Miles.	Geographic Miles. 1' of the Eq.
0 °	111321.9	69.171	60.000	45°	78850.0	48.995	42.498
I	111305.2	69.162	\$0.00I	46	77466.5	48.135	41.753
2	111254.6	69.130	59.964	47	76059-2	47.261	40.994
3	111170.4	69.078	59.918	47 48	74628.5	46.372	40.223
4	111052.6	69.005	59.855	49	73174.9	45.469	39.44Ō
5	110901.2	68.911	59-773	50	71698.9	44-552 43.621	38.644
6	110716.2	68.796	59.673	51	70200.8	43.021	37.837
78	110497.7	68.660	59.556	52	68681.1	42.676	37.018
	110245.8	68.503	59.420	53	67140.3	41.719	36.187
9	109960.5	68.320	59.266	54	65578.8	40.749	35.346
10	109641.9	68.128	59.095	55	63997.1	39.766	34-493
11	100200.1	67.909	58.905	56	62395.7	38.771	33.630
12	108905.2	67.670	58.697	57 58	60775.1	37.764	32.757 31.873
13	108487.3	67.411	58.472	58	59 ¹ 35.7	36.745	
14	108036.8	67.131	58.229	59	57478.1	35.715	30-979
15	107 5 53.1	66.830	57.969	60	55802.8	34.674	30.076
16		66.510	57.690	61	54110.2	33.622	20.164
17	107037.0 106488.5	66.160	57.395	62	52400.9	32.560	28.243
18	105907.7	65.808	57.395 57.082	63	50675.4	31.488	27.313
19	105294.7	65.427	56.751	64	48934-3	30.406	26.374
20	104649.8	65.026	56.404	65	47178.0	29.315	25.428
21	103973.2	64.606	56.039	66	45407.1	28.215	24.473
22	103265.0	64.166	55.657	67 68	43622.2	27.100	23.511
23	102525.4	63.706	55.259		41823.8	25.988	22.542
24	101754.6	63.227	54-843	69	40012.4	24.862	21.566
25	100953.0	62.729	54.411	70	38188.6	23.729	20.583
26	100120.6	62.212	53.963	71	36353.0	22.589	19.593
27 28	9 9257.8	61. 676	53.498	72	34 506.2	21.441	10.593 18.598
	98364.8	61.121	53.016	73	34506.2 32648.6	20.287	17.597
29	97441.9	60.548	52.519	74	30780.9	19.126	16.590
30	96489.3	59.956	52.006	75	28903.6	17.960	15.578
31	95507.3		51.476	76	27017.4	16.788	14.562
32	94496.2	59·345 58.717	50.931		25122.8	15.611	13.541
33	93456.3	58.071	50.371	77 78	23220.4	14.428	12.515 11.486
34	92387.9	57-407	49-795	79	21310.8	13.2 42	11.486
35	91291.3	56.726	49.204	80	19394.6	12.051	10.453
36	91291.3 90166.8	56.027	48.598	81	17472.4	10.857	
37	80014.8	55.311	47.977	82	15544-7	9.659	9.417 8.378
37 38	87835.6	54.578	47.341	83	15544.7 13612.2	0.659 8.458	7.337 6.293
39	86629.6	54.578 53.829	46.691	84	11675.5	7.255	6.293
40	85397.0	53.063	46.027	85	9735.1	6.049	5.247
41 I	84138.4	52.281	45.349	86	7791.7	4.841	4.200
42	82854.0	51.483	44.050	87 88	5845.9 3898.3	3.632	3.151
43	81 544.2	50.669	43.950			2.422	2.101
44	80209.4	49.840	43.231	89	1949-4	1.211	1.051
45	78850.0	48.995	42.498	90	0.0	0.000	0.000

SHITHSONIAN TABLES.

~

167

TABLE 38.

INTERCONVERSION OF NAUTICAL AND STATUTE MILES.

Nautical Miles.	Statute Miles.	Statute Miles.	Nautical Miles.
1	1.1516	1	0.8684
2	2.3031	2	1.7368
3	3-4547	3	2.6052
4	4.6062	4	3.4736
5	5-7 578	5	4-3420
6	6.9093	6	5-2104
7	8.0609	7	6.0788
8	9.2124	8	6.0472
9	10.3640	9	7.8155

z nautical mile * = 6080.27 feet.

SMITHSONIAN TABLES.

* As defined by the United States Coast and Geodetic Survey.

TABLE 39. Continental méasures of length with their metric and English Equivalents.

Measure.	Metric Equivalent.	English Equivalent.
El, Netherlands Fathom, Swedish = 6 feet Foot, Austrian,* old French * Russian Rheinlandisch or Rhenish (Prussia, Denmark, Norway)* Swedish * Spanish * = 1 vara *Klafter, Wiener (Vienna) *Line, old French = 141 foot Mile, Austrian post * = 24000 feet German sea Swedish = 36000 feet Norwegian = 36000 feet Norwegian = 36000 feet Netherlands (mijl) Prussian (law of 1868) Danish Palm, Netherlands *Ruthe, Prussian, Norwegian Sagene, Russian *Toise, old French = 6 feet Wara, Spanish Mexican Werst, or versta, Russian = 500 sagene	I.89648 " 0.22558 cm. 7.58594 km. I.852 " I0.69 " II.2986 " I " 7.500 " 7.5324 " 0.I metre. 3.7662 "	3.2808 feet. 5.8445 " 1.0370 " 1.0657 " 1 " 1.0297 " 0.9741 " 0.9140 " 6.2221 " 0.0888 inch. 4.714 statute miles. 1.1508 " " 6.642 " " 0.6642 " " 0.6642 " " 0.6642 " " 0.6642 " " 0.6642 " " 0.6642 " " 0.3281 feet. 12.356 " 12.356 " 12.356 " 7 " 6.3943 " 2.7424 " 2.7293 " 3500 "

The asterisk (*) indicates that the measure is obsolete or seldom used.

TABLE 40.

ACCELERATION (g) OF GRAVITY ON SURFACE OF EARTH AND DERIVED FUNCTIONS.

E = 9.77989 + 0.05221 sin² ↓ = 9.80599 - 0.02610 cos 2\$ metres.* \$ = geographical latitude.

•	8	log g	log 1/25	log √¥€	£†
	Metres.				Metres.
o ^o	9-7798	0.99033	8.70864-10	0.64568	0.99090
5	.7803	035	862	569	095
10	.7814	C4O	857	572	106
15	.7834	049	848	576	127
20	.7859	06 0	837	582	152
25	.7893	075	822	589	186
30	.7929	091	806	597	222
35	.7969	109	788	. 606	264
40	.8014	129	768	616	309
45	.8060	149 .	748	626	355
. 50	.8105	169	728	636	4 0 I
55	. 8150	189	708	64 6	447
60	.8191	207	690	655	488
65	.8227	223	674	663	525
70	.8261	238	659	670	559
75	.8286	249	648	676	· 584
8 0	.8306	258	639	680	` 6oş
85	.8317	263	634	683	616
90	.8322	265	632	684	621

SMITHSONIAN TABLES.

• From The Solar Parallax and its Related Constants, by Wm. Harkness, Professor of Mathematics, U. S. N.; Washington: Government Printing Office, 1891.

† This is length of seconds pendulum.

.

169

TABLE 41. LINEAR EXPANSIONS OF PRINCIPAL METALS, IN MICRONS PER METRE (OR MILLIONTHS PER UNIT LENGTH).

Aluminum 20 II.I Brass 19 I0.5 Copper 17 94 Glass 9 50 Gold 17 94 Glass 9 50 Gold 17 94 Glass 15 8.3 Iron, cast 11 6.1 Iron, wrought 28 15.5 Platinum 9 50 Platinum-iridium ¹ 8.7 4.8 Silver 19 10.5 Steel, hard 12 6.7 Steel, soft 11 6.1 Tin 19 10.5 Zinc 29 16.1		Na	me	e 0	fn	net	al.							_	Expansion per degree C.	Expansion per degree F.
Copper. I7 94 Glass 9 50 Gold II 61 Iron, cast II 61 Iron, wrought II 67 Lead III 67 Platinum-iridium ¹ III 8.7 Silver I1 61 Silver I2 6.7 Steel, hard III 61 Tin II 61 II III 61 III 61 11 Silver I9 I0.5 Steel, soft II 61 II 11 61		•	•	•		•	•	•			•			•		
Iron, wrought III 6.7 Lead III 6.7 Platinum III 9 Silver III 6.7 Steel, hard III 6.7 Tin III 6.7 January IIII 6.7 January IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Copper	:	:	•	:	:	:	:	:	:	:	:	:	:	17	94
Iron, wrought III 6.7 Lead III 6.7 Platinum III 9 Silver III 6.7 Steel, hard III 6.7 Tin III 6.7 January IIII 6.7 January IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Gold	:	:	:	:	:	:	:	:	:	:	:	:	:	15	5.0 8.3
Platinum	Iron, wrought .	:	:	:	:	:	:	:	:	:	:	:	:	:	12	6.7
Silver Ig Io.5 Steel, hard I 6.7 Steel, soft II 6.1 Tin II 19 Io.5 III 6.1 Tin III 6.1	Platinum		:	:	:	:	:	:	:	:	:	:	:	:		5.0
Steel, soft II 6.1 Tin	Silver	•	:	:	:	:	:	:	:	:	:	:	:	:	19	10.5
	Steel, soft	:	:	:	:	:	:	:	:	:	:	:	:	:	11	6.1
		:	:	:	:	:	:	:	:	:	:	:	:	:	19 29	

SMITHSONIAN TABLES.

¹ Of International Prototype Metres.

.

TABLE 42. FRACTIONAL CHANGE IN A NUMBER CORRESPONDING TO A CHANGE IN ITS LOCARITHM.

Computed from the formula,

$$\frac{\Delta N}{N} = \frac{\Delta \log N}{\mu}$$

= modulus of common logarithms == 0.43429448.

For $\Delta \log N$ = 1 unit in	$\frac{\Delta N}{N}$	For $\Delta \log N$ = 4 units in	$\frac{\Delta N}{N}$ (in round numbers)
4th place	रागेरा	4th place	1000
5th"	सारीम	5th "	10000
6th"	सारीमर	6th "	100000
7th"	सारीमर	7th "	100000

SMITHSONIAN TABLES.

CONSTANTS.

Numerical Constants.	Number.	Legarithm.		
Base of natural (Napierian) logarithms,	$= \epsilon = 2.7182818$	0.4342945		
Log <i>e</i> , modulus of common logarithms,	= μ = 0.4342945	9.6377843 — 10		
Circumference of circle in degrees,	= 360	2.5563025		
" " in minutes,	= 21600	4-3344538		
""" in seconds,	= 1296000	6.1126050		
Circumference of circle, diameter unity,	= = : 3.14159265	0-4971499		
Number. Logarithm.				
2 4 = 6.2831853 0.7981799	$1/\pi^2 = 0.1013212$	9.0057003 — 10		
$\frac{\pi}{3}$ = 1.0471976 0.0200286	$\sqrt{\frac{1}{\pi}} = 1.7724539$	0.2485749		
$\frac{1}{2} = 0.3183099$ 9.5028501 — 10	$\frac{1}{\sqrt{\frac{1}{\pi}}} = 0.5641896$	9.7514251 — 10		
1 = 9.8696044 0.9942997	$\sqrt{2} = 1.4142136$	0.1 50 5 1 50		
1 - 9.0090044 0.9942997	√ <u>3</u> = 1.7320508	0.2385607		
The arc of a circle equal to its radius is				
in degrees, $\rho^{\circ} = 180/\pi$	= 57.29578	0 1.7581226		
in minutes, $\rho' = 60 \rho^{\circ}$	= 3437.7468	3.5362739		
in seconds, $\rho'' = 60 \rho'$	= 206264.8"	5.3144251		
For a circle of unit radius, the	•			
arc of $I^{\circ} = I/\rho^{\circ}$	= 0.0174533	8.2418774 — 10		
arc of I' $= 1/\rho'$	= 0.0002909	6.4637261 - 10		
arc (or sine) of $I'' = I/\rho''$	= 0.00000485	4.6855749-10		
Geodetical Constants.				
Dimensions of the earth (Clarke's spheroid, 18	66) and derived quantiti			
Equatorial semi-axis in feet,	= a = 20926062.	7.3206875		
in miles.	= a = 3963.3	3.5980536		
Polar semi-axis in fcet.	= b = 20855121.	7.3192127		
in miles.	= b = 3949.8	3.5965788		
	5515			
$(\text{Eccentricity})^2 = \frac{a^2 - b^2}{a^2}$	<i>е</i> = 0.00676866	7.8305030 - 10		
Flattening = $\frac{a-b}{a}$	= f = 1/294.9784	7.5302098 — 10		
Perimeter of meridian ellipse,	= 24859.76 m	lles.		
Circumference of equator,	= 24901.96	"		
Area of earth's surface,	= 196940400 sq	uare miles.		
Mean density of the earth (HARKNESS)	$= 5.576 \pm 0.016.$			
Surface density " " "	$= 2.56 \pm 0.16.$			
Acceleration of gravity (HARKNESS):	•			
g (cm. per second) = 980.60 (1 - 0.002662	cos 20) for latitude o a	nd sea level.		
g, at equator = 977.99 ; g, at Washington =				
g_{1} at optimized = g_{2} , g_{3} at g_{3} , g_{3				
Length of the seconds pendulum (HARKNESS):				
$l = 39.012540 + 0.208268 \sin^2 \phi \text{ inches} = 0.999910 + 0.005290 \sin^2 \phi \text{ metres.}$				
		- T		

CONSTANTS. - Continued.

Astronomical Constants (HARKNESS).
Sidereal year = 365.256 357 8 mean solar days.
Sidereal day = 23^{4} 56 ^w 4. ¹ 100 mean solar time.
Mean solar day = 24^{4} 3 ^{ss} 56.4546 sidereal time.
Mean distance of the earth from the sun = 92800000 miles.
·
Physical Constants.
Velocity of light (HARKNESS) = 186 337 miles per second = 299 878 km. per second.
Velocity of sound through dry air = $1090 \sqrt{1 + 0.00367 t^2}$ C. feet per second.
Weight of distilled water, free from air, barometer 30 inches : Weight in grammes.
Weight in grains. Weight in grammes. Volume. 62° F. 4° C. 62° F. 4° C.
1 cubic inch (determination of 1890) 252.286 252.568 16.3479 16.3662
1 cubic centimetre (1890) 15.3953 15.4125 0.9976 0.9987 1 cubic foot (1890) at 62° F. 62.2786 lbs.
A standard atmosphere is the pressure of a vertical column of pure mercury whose height is 760 mm. and temperature o ^o C., under standard gravity at latitude 45 ^o and at sea level.
I standard atmosphere = 1033 grammes per sq. cm. = 14.7 pounds per sq. inch. Pressure of mercurial column I inch high = 34.5 grammes per sq. cm. = 0.491 pounds per sq. inch.
Weight of dry air (containing 0.0004 of its weight of carbonic acid):
I cubic centimetre at temperature 32° F. and pressure 760 mm. and under the standard value of gravity weighs 0.001 293 05 gramme.
Density of mercury at 0° C. (compared with water of maximum density under atmos- pheric pressure) = 13.5956.
Freezing point of mercury = $-38.^{\circ}5$ C. (REGNAULT, 1862.)
Coefficient of expansion of air (at const. pressure of 760***) for 1° C. (DO.): 0.003 670.
Coefficient of expansion of mercury for Centigrade temperatures (BROCH):
$\Delta = \Delta_0 (1 - 0.000 \ 181 \ 792 \ t - 0.000 \ 000 \ 000 \ 175 \ t^2000 \ 000 \ 000 \ 035 \ 116 \ t^2).$
Coefficient of linear expansion of brass for 1° C, $\beta = 0.0000174$ to 0.0000190.
Coefficient of cubical expansion of glass for 1° C., $\gamma = 0.000$ 021 to 0.000 028. Ordinary glass (RECKNAGEL): at 10° C., $\gamma = 0.000$ 0255; at 100°, $\gamma = 0.000$ 0276.
Specific heat of dry air compared with an equal weight of water :
at constant pressure, $K_{P} = 0.2374$ (from o ^o to 100 ^o C., REGNAULT). at constant volume, $K_{V} = 0.1689$.
Ratio of the two specific heats of air (RONTGEN): $K_{\phi}/K_{v} = 1.4053$.
Thermal conductivity of air (GRAETZ): $k = 0.0000484$ (1 + 0.001 85 t°, C.) gramme.
[The quastity of heat that passes in unit time through unit area of a plate of unit thickness, when its opposite faces differ in temperature by one degree.]
Latent heat of liquefaction of ice (BUNSEN) = 80.025 mass degrees, C.
Latent heat of vaporization of water = $606.5 - 0.695 t^{\circ} C$.
Absolute zero of temperature (THOMSON, Heat, Encyc. Brit.) : - 273.º0 C. = - 459.º4 F.
Mechanical equivalent of heat :* 1 pound-degree, F. (the British thermal unit) = about 778 foot-pounds.
I pound-degree, C. = 1400 foot-pounds.
I calorie or kilogramme-degree, $C = 3087$ foot-pounds = 426.8 kilogram- metres = 4187 joules (for $g = 981$ cm.).

• Based on Prof. Rowland's determinations. (Proc. Am. Acad. Arts and Sci., 2880.)

SYNOPTIC CONVERSION OF ENGLISH AND METRIC UNITS. English to Metric.

Units of length.	Netric	equivalents.	Logarithms.
I inch.	2.54000	centimetres.	0.404 835
I foot.	0.304801	metre.	9-484 016 - 10
I yard.	0.914402		9.961 137 - 10
I mile.	1.60935	kilometres.	0.206 650
Units of area.			
	6		0.44
I square inch.	6.45163	square centimetres.	0.809 669
I square foot.	929.034		2.968 032
I square yard.	0.836131	square metre.	9-922 274 - 10
I acre.	0.404687	hectares.	9.607 120 10
1 square mile.	2.59000	square kilometres.	0.413 300
	259.000	hectares.	2.413 300
Units of volume.			
I cubic inch.	16.3872	cubic centimetres.	Later
			1.214 504
I cubic foot.	0.028317	cubic metres or steres. cubic metres or steres.	8.452 047 - IO
I cubic yard.	0.764559	cubic metres or steres.	9-883 411 10
Units of capacity.			
	nches	a all real literan	0.000
I gallon (U. S.) = 23I cubic i	11CH CS .	3.78 544 litres.	0.578 116
I quart (U. S.).		0.94636 litres.	9.976 056 — 10
I Imperial gallon (British).	2	4.54683 litres.	0.657 709
277.463 cubic inches (189	uj. bio inches	as agon literes	
I bushel $(U. S.) = 2I 50.42$ cu	Dic inches.	35.2393 litres.	1.547 027
I bushel (British).		36.3477 litres.	1.560 477
links of more			
Units of mass.			
1 grain.	64.7990	milligrammes.	1.811 568
I pound avoirdupois.	0-453593	kilogrammes.	9.656 666 — 10
I ounce avoirdupois.	28.3496	grammes.	1-452 546
I ounce troy.	31.1035	grammes.	1.492 810
I ton (2240 lbs.).	1.01605	tonnes.	0.006 914
1 ton (2000 lbs.).	0.907186	tonnes.	9.957 696 — 10
Units of velocity.			
		180 motres not see	to has non to
I foot per sec. (0.6818 miles p I mile per hr. (1.4667 feet pe	er nr.) = 0.30	400 metres per sec. = 1.09	73 km. per hr.
- mie per m. (ridoo) ieer pe		/	<u>, , , , , , , , , , , , , , , , , , , </u>
Units of force.			
I poundal.		13825.5 dynes.	4.140 682
Weight of I grain (for $p = 0$	81 cm.).	63.57 dynes.	1.803 237
Weight of I pound av. (for g	= 981 cm.).	4.45 × 10 ⁶ dynes.	5.648 335
	<i>y</i> ==, <i>i</i>		J+- JJJ
Units of stress—in gr	vitation measure.		
I pound per square inch $= 70$.307 gramme	s per sq. centimetre.	1.846 997
I pound per square foot = 4	.8824 kilogran	nmes per sq. metre.	0.688 634
		• • • • • •	ਾਹ
Units of work—in abea	lute measure.		
I foot-poundal.		421 403 ergs.	5.624 698
.			
— in grav	itation measure.		
I foot-pound (for $g = 981$ cm.	.) = 1356.3 ×	10 ⁴ ergs = 0.138255 kilogr	am-metres.
	4 A.J		
Units of activity (rate o		A	
I foot-pound per minute (for A I horse-power (33 000 foot-po	r = 981 cm.) = ounds per min.	= 0.022605 watts.) = 746 wa s = 1.01387 fo	orce de cheval.
Units of heat.			
	_ ^ ^	2 small calories or gramme	degrees C
1 pound-degree, F. 1 pound-degree, C.		pound-degrees, F.	-ucgrees, c.
r poundactices co	14	- home roliced to	
			Caart

SYNOPTIC CONVERSION OF ENGLISH AND METRIC UNITS.

Metric to English.

	En	glish equivalents.	Logarithms.
Units of length.		•	
1 metre (10 ⁶ microns).	39.3700	inches.	1.595 165
	3.28083 1.09361	feet.	0.515984
I kilometre.	0.62137	yards. miles.	0.038 863
Units of area.	0.02137	mmes.	9.793 350 — 10
I square centimetre.		aguara inches	
I square metre.	0.15500 10.7639	square inches. square feet.	9.190 331 — 10 1.031 968
	1.19599	•	0.077 726
I hectare.	2.47104	acres.	0.392 880
I square kilometre.	0.38610	square miles.	9.586 701 - 10
Units of volume.	5	•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
I cubic centimetre.	0.0610224	cubic inches.	8.785 496 10
I cubic metre or stère.	35.3145	cubic feet.	1.547 953
£4 66 64	I.30794	cubic yards.	0.116 589
Units of capacity.	V-174		
I litre (61.023 cubic inches).	0.26417	gallons (U. S.).	9.421 884 10
4	1.05668	quarts (U. S.).	0.023 944
65	0.21993	Imp. gallons (British).	
1 hectolitre.	2.83774	bushels (U. S.).	0.452 973
"	2.75121	bushels (British).	0-439 523
Units of mass.	-		
I gramme.	15.4324	grains.	1.188 433
1 kilogramme.	2.20462	pounds avoirdupois.	0.343 334
"	35-2739	ounces avoirdupois.	1.547 454
"	32.1 507	ounces troy.	1.507 190
I tonne.	0.98421	tons (2240 lbs.).	9-993 086 — 10
66	1.10231	tons (2000 lbs.).	0.042 304
Units of velocity-			
I metre per second.	3.2808	feet per second.	0.515984
	2.2369	miles per hour.	0.349653
1 km. per hr. (0.2778 m. per sec.).	0.62137	miles per hour.	9-793 350 - 10
Units of force. I dyne (weight of (981) ⁻¹ grammes,	for $g = 981$	cm.) = 7.2330 × 10 ⁻⁶ p	oundals.
Units of stress — in gravitation mea	sure.		
I gramme per square centimetre.		pounds per sq. inch.	
I kilogramme per square metre.	0.204817 1	oounds per sq. foot.	
I standard atmosphere.	14.7 F	ounds per sq. inch. (S	ee def. p. 172.)
Units of work — in absolute measure	.		
I erg.		10 ⁻⁶ foot poundals.	
I megalerg = 10^6 ergs; I joule = 10^6		-	
— in gravitation measu			
I kilogramme-metre (for $g = 981$ cm	n.) = 981 X	$10^{5} \text{ ergs} = 7.2330 \text{ foot-p}$	ounds.
Units of activity (rate of doing I watt = I joule per sec. (= 44.2385 kilogramme-metre per sec., for I force de cheval = 75 kilogramme-	foot-pounds g = 981 cm.		
Units of heat. I calorie or kilogramme-degree = 3. I small calorie or therm, or gramme			

SMITHSONIAN TABLES.

DIMENSIONS OF PHYSICAL QUANTITIES.

Quantity.	Dimensions	Quantit			Dimensions.
Area.	[L2]	Moment	um.		[L M T-1]
Volume.	[L ⁸]	Moment	of Ine	rtia.	[M L ²]
Mass.	[M]	Force.			[L M T→]
Density.	[M L-8]	Stress (per unit a	rea).	[L-1 M T-2]
Velocity.	[L T-1]	Work of	Energy	y.	[L ² M T ⁻²]
Acceleration.	[L T-1]	Rate of	Workin	g (Power)). [L ² M T ⁸]
Angle.	[0]	Heat.		• • •	[L ² M T ⁻²]
Angular Velocity.	[T-1]	Therma	l Condu	ictivity.	[L-1 M T-1]
					Dimensions in
	lectrostatics	ia -		Symbol.	electrostatic system.
Quantity of Electrici	ty.			e	[L [‡] M [‡] T ⁻¹]
Surface Density: q				σ	[L-• M• T-1]
Difference of Pote				E	[L [‡] M [‡] T ¹]
to move a quantity of	electricity; (work done)	÷ (quan-		
tity moved). Electric Force, or 1	Flectro_m	otive In+	aneitu.	F	[L [→] M ¹ T ^{−1}]
(quantity) ÷ (distance		01146 141	ensity:	r	[
Capacity of an accum	-	<i>E</i> .		C or q	[L]
Specific Inductive				k	[0]
	•	•			Dimensions in
in i	Magnetics.				electro-magnetic system.
Quantity of Magnetiss	n, or Strengt	h of Pole.		116	[L ¹ M ¹ T ⁻¹]
Strength or Intens	•			S	[L-+ M+ T1]
$(quantity) \div (distance)$	²). [¯]				
Magnetic Force.				Ð	[L-+ M+ T-1]
Magnetic Moment	: (quantity) >	\times (length).		ml	[L [#] M ⁺ T ⁻¹]
Intensity of Magne unit volume.	etization:	magnetic mo	oment per	Ι	[L-+ M+ T-1]
Magnetic Potentia of magnetism; (work)				ν or Ω	[L ¹ M ¹ T ⁻¹]
Magnetic Inductiv				μ	[0]
-	-		•	Dimension	
in Electro-n	nagnetics.		Symbol.	electro-mag system	netic practical unit.
Intensity of Current.			i	[L ⁱ M ⁱ T	⁻¹] Ampère.
Quantity of Electricit	y conveyed b	y current:	e	[L] Mj]	Coulomb.
(intensity) \times (time).		1. /		er a set m-	-97 37-1-
Potential, or differen			E	[LI MI T-	⁻²] Volt.
done) ÷ (quantity of work is done).	electricity up				
Electric Force: the	mechanical	force act-	E	[L ¹ M ¹ T	-3]
ing on electro-magne				-	-
(mechanical force) \div (
Resistance of a cond	-		R	[L T-1]	Ohm.
Capacity: quantity of per unit potential-differ			q	[L ⁻¹ T ²]	Farad.
Specific Conducti	-	-		[L-3 T]	
current passing across				1	
action of unit electric f					
Specific Resistan	ce: the reci	iprocal of	r	[L² T-1]	
specific conductivity.				•	Coord
				Dig	jitized by GOOS

L = length; M = mass; T = time.

.

.

INDEX.

_

PAGE
Acceleration, dimensions of 175
of gravity, formula for
table of values of
Air, cubical expansion, specific heat, thermal
conductivity, and weight of
Airy, Sir George, treatise cited
Albrecht, Dr. Th., treatise citedlxxx
Algebraic formulasxiii-xv
Alignment curvelvi
Aluminum, linear expansion of
Ampère, dimensions of
Angles, equivalents in arcsxviii
sum of, in spheroidal trianglelvii
Angular velocity, dimensions of175
Annulus, circular, area ofxxx
Antilogarithms, explanation of use ofxcix
4-place table of
Appendix
Arcs, equivalents in anglesxvii
of meridians and parallelsxlvi-l
table of lengths of meridional78-80
table of lengths of parallel81-83
table of time equivalents
Are
Area, of circlexxx
table of values of23
of surface of earthl-lii
Areas, of continentslxv
of oceanslxv
of plane and curved surfacesxxix-xxxi
of zones and quadrilaterals of the
earth's surfacel-lii
tables of values of 142-159
of regular polygonsxxx
Arithmetic means, progression, and series xiii
Astronomical constants
co-ordinateslxvii
latitudexliv
timelxxii
Astronomylxvii-lxxxii
references to works onlxxxii
Atmosphere, mass of earth'slxvi
standard pressure of172
weight of unit of volume of 172
Average error, definition oflxxxiv
Azimuth, astronomical and geodeticlvii
computation of differences oflviii-lxi
determination oflxxix

	PAGE
Babinet, barometric formula of	160
Barometer, heights by	160
Binomial series	xiv
Brass, linear expansion of	
Brünnow, F, treatise cited	lxxxii
Bushel, Winchester	
equivalent in litres	2

Cable lengthxxxviii
Calorie, value of
Capacity, measures of, Britishxxxviii
Metricxli
Centarexli
Chauvenet, Wm., treatise citedlxxxii
Circumference, of circle xxviii
table of values of23
of earthxlix, 171
of ellipsexxix
C. G. S. system of unitsxlii
Clarke, General A. R., spheroid ofxliii
treatise citedlxvi
Coefficient, of cubical expansion of air and
mercury
of linear expansion of metals170
of refraction
Compression, of earth
Computation, of differences of latitude, lon-
gitude, and azimuth
of mean and probable errorsxcv Conductivity, thermal, of air172
Cone, surface of
volume ofxxii
Constants, astronomical
geodetical
numerical
of earth's spheroid
Continental measures (table of British and
Metric equivalents)
Continents, areas oflxv
average heights oflxv
Conversion, of arcs into angles and angles
into arcs
of British and Metric units2, 3, 173, 174
Co-ordinates, astronomicallxvii
for projection of mapsliii-lvi
table of, scale 1/250000
table of, scale 1/125000
Digitized by Google

| Earth (continued).

table of, scale 1/126720102-109
table of, scale 1/63360110-121
table of, scale 1/200000 122-131
table of, scale 1/80000132-141
of generating ellipse of earth's spheroid xliv
Copper, linear expansion of
Cord (of wood), volume ofxxxix
Correction, for astronomical refraction, table
of mean values of161
to observed angle for eccentric position
of instrumentlxiii
to reduce measured base to sea levellxiv
Cosines, table of natural
use of table explainedc
Cotangents, table of natural
use of table explainedc
Coulomb, dimensions of175
Cubature, of volumesxxxii
Cubes, table of
Cube roots, table of
Cylinder, surface ofxxxi
volume of
Day, sidereal and solarlxxii, 172
Degrees, number of, in unit radiusxviii
of terrestrial meridianxlvi, 166
of terrestrial parallelxlix, 167
of terrestrial parallelxlix, 167 Density, mean, of earthlxv
of terrestrial parallelxlix, 167 Density, mean, of earthlxv mean, of superficial strata of earthlxv
of terrestrial parallelxlix, 167 Density, mean, of earthlxv mean, of superficial strata of earthlxv of mercury172
of terrestrial parallelxlix, 167 Density, mean, of earthlxv mean, of superficial strata of earthlxv of mercury172 Departures (and latitudes), table of32-47
of terrestrial parallelxlix, 167 Density, mean, of earthlxv mean, of superficial strata of earthlxv of mercury172 Departures (and latitudes), table of32-47 mode of use of table explainedc
of terrestrial parallelxlix, 167 Density, mean, of earthlxv mean, of superficial strata of earthlxv of mercury172 Departures (and latitudes), table of32-47 mode of use of table explainedc Depths, average, of oceanslxv
of terrestrial parallelxlix, 167 Density, mean, of earthlxv mean, of superficial strata of earthlxv of mercury172 Departures (and latitudes), table of32-47 mode of use of table explainedc Depths, average, of oceanslxv Determination, of azimuthlxxix
of terrestrial parallelxlix, 167 Density, mean, of earthlxv mean, of superficial strata of earthlxv of mercury172 Departures (and latitudes), table of32-47 mode of use of table explainedc Depths, average, of oceanslxv Determination, of azimuthlxxix of heights, by barometer160
of terrestrial parallelxlix, 167 Density, mean, of earthlxv mean, of superficial strata of earthlxv of mercury172 Departures (and latitudes), table of32-47 mode of use of table explainedc Depths, average, of oceanslxv Determination, of azimuthlxxix of heights, by barometer160 by trigonometric levelinglxi
of terrestrial parallelxlix, 167 Density, mean, of earthlxv mean, of superficial strata of earthlxv of mercury172 Departures (and latitudes), table of32-47 mode of use of table explainedc Depths, average, of oceanslxv Determination, of azimuthlxxix of heights, by barometer160
of terrestrial parallelxlix, 167 Density, mean, of earthlxv mean, of superficial strata of earthlxv of mercury172 Departures (and latitudes), table of32-47 mode of use of table explainedc Depths, average, of oceanslxv Determination, of azimuthlxxix of heights, by barometer160 by trigonometric levelinglxi of latitudelxvii of timelxxii
of terrestrial parallelxlix, 167 Density, mean, of earthlxv mean, of superficial strata of earthlxv of mercury172 Departures (and latitudes), table of32-47 mode of use of table explainedc Depths, average, of oceanslxv Determination, of azimuthlxxix of heights, by barometer160 by trigonometric levelinglxi of latitudelxvii
of terrestrial parallelxlix, 167 Density, mean, of earthlxv mean, of superficial strata of earthlxv of mercury
of terrestrial parallelxlix, 167 Density, mean, of earthlxv mean, of superficial strata of earthlxv of mercury
of terrestrial parallelxlix, 167 Density, mean, of earthlxv mean, of superficial strata of earthlxv of mercury
of terrestrial parallelxlix, 167 Density, mean, of earthlxv mean, of superficial strata of earthlxv of mercury
of terrestrial parallelxlix, 167 Density, mean, of earthlxv mean, of superficial strata of earthlxv of mercury
of terrestrial parallelxlix, 167 Density, mean, of earthlxv mean, of superficial strata of earthlxv of mercury
of terrestrial parallelxlix, 167 Density, mean, of earthlxv mean, of superficial strata of earthlxv of mercury
of terrestrial parallelxlix, 167 Density, mean, of earthlxv mean, of superficial strata of earthlxv of mercury
of terrestrial parallelxlix, 167 Density, mean, of earthlxv mean, of superficial strata of earthlxv of mercury
of terrestrial parallelxlix, 167 Density, mean, of earthlxv mean, of superficial strata of earthlxv of mercury
of terrestrial parallelxlix, 167 Density, mean, of earthlxv mean, of superficial strata of earthlxv of mercury
of terrestrial parallelxlix, 167 Density, mean, of earthlxv mean, of superficial strata of earthlxv of mercury

Earth, compression ofxliii, 171

energy (of rotation) oflxvi
equatorial perimeter ofxliii, 171
flattening ofxliii, 171
mass oflxvi
meridian perimeter ofxlix, 171
moments of inertia oflxvi
shape ofxliii
surface area oflii
volume oflxv
Eccentricity, of ellipsexliii
of earth's spheroid
El, value of
Electric quantities, dimensions of
Electro-magnetic quantities, dimensions of . 175
Ellipse, area of
equations toxliv
length of perimeter ofxxix
Ellipsoid, volume of (see Spheroid)xxxiii
Ellipticity, of earthxliii, 171
Energy, dimensions of 175
of rotation of earthlxvi
Equations, of ellipsexliv
of Prototype Kilogrammes
of Prototype metres
Error, in ratio of English yard to Metre xxxvii
Errors, probable, mean, averagelxxxiv, lxxxviii
table of, for interpolated quantitieslxxxvi
theory of
Everett, J. D., treatise cited
Excess, spherical or spheroidallviii
Expansion, cubical, for air and mercury 172
linear, of principal metals
Farad, dimensions of
Fathom, length of xxxviii
Swedish
Flattening, of earthxliii, 171
Foot, Austrian
Britishxxxvii
French, Rhenish, Spanish, Swedish168
Force, dimensions of
Formulas, algebraic
for differentiationxxi
for differentiationxxi for integrationxxiii
for differentiationxxi for integrationxxiii for solution of plane trianglesxxiii
for differentiationxxi for integrationxxiii

trigonometric	cv
Freezing point of mercury	12
Functions, trigonometric, of one angle	
of two anglesx	vi
special values of	
values in seriesxv	

Digitized by Google

. 178

Co-ordinates (continued).

Gallon, British and winexxxviii
Gauss's formulas for spherical trianglesxxi
Geocentric latitude
Geodesy
references to works on
Geodetic azimuthlvii
Geodetic differences of latitude, longitude,
and azimuthlviii
Geodetic linelvii
Geodetical constants
Geographical latitude
Geographical positions, computation of lviii-lxi
Geoid, definition of
Geometric means, progressionxiii
Glass, linear expansion of
Gold, linear expansion of
Gravity, acceleration of, formula for171
table of values of
Gunter's chain, length ofxxxviii
•
Harkness, Prof. Wm., memoir cited
lxv, 169, 171, 172
Heat, dimensions of
Heat, dimensions of
Heat, dimensions of175 latent, of liquefaction of ice172 of vaporization of water172
Heat, dimensions of
Heat, dimensions of175 latent, of liquefaction of ice172 of vaporization of water172
Heat, dimensions of175 latent, of liquefaction of ice172 of vaporization of water172 mechanical equivalent of172
Heat, dimensions of175 latent, of liquefaction of ice172 of vaporization of water172 mechanical equivalent of172 Hectare
Heat, dimensions of175 latent, of liquefaction of ice172 of vaporization of water172 mechanical equivalent of172 Hectare
Heat, dimensions of

tables for	165
Iron, linear expansion of	. 170
Joule, value of	. 174
·····	/4

Kilogramme, Prototype	x x x iv
equations of	
relation to pound	
Kinetic energy, dimensions of	
of rotation of earth	
Klafter, Wiener, in terms of foot	
metre	

Latitude, astronomical, geocentric, and re-
ducedxliv
determination oflxxvi
Latitudes and departures, table of
mode of use of table explained
Lead, linear expansion of
Least squares, method oflxxxv
references to works on
Legendre's theorem for solution of sphe-
roidal triangleslvi
Length, of arc of meridianxlv
of arc of parallelxlix
of equator of earth
of meridian circumference of earth171
of perimeter of ellipsexxiz
of Prototype Metres Nos. 21 and 27x
of seconds pendulum, formula for171
table of values of
Leveling, trigonometriclx
Line (French), value of
Lines, lengths of
on a spheroidlv
Linear measures, Britishxxxvi
Metricxl
tables for interconversion of 2, 3, 173, 174
Litre
Logarithms, anti-, 4-place table of26, 27
explanation of use ofxcia
4-place table of common24, 2
of natural numbers, table of4-22
relations of different
relations of differentxi
relations of differentxi series forxiv
series for xiv
series forxiv Maclaurin's series
series forxiv Maclaurin's seriesxxi example ofxxii
series forxiv Maclaurin's seriesxxi example ofxxii
series for

Measures (continued).	Polygons, regular, areas ofxxx
of surface, Britishxxxviii	lengths of lines of
Metricxli	Potential (electric), dimensions of
tables for interconversion of 2, 3, 173, 174	Pothenot's problemlxiv
Mechanical equivalent of heat172	Pound, imperial, avoirdupoisxxxiv
Mechanical units, dimensions of	Power, dimensions of
Mensurationxxviii-xxxiii	Pressure, of atmosphere
Mercury, density and cubical expansion of 172	Prism, volume of
Meridian, arcs of terrestrialxlvi	Probable error, definition oflxxxiv
table of lengths of	computation ofxcv
circumference of earthxlix, 171	Projection of mapsliii, cii
Method of least squareslxxxvi	Prototype Kilogrammes and Metres xxxiv
Metre, Prototypexxxiv	equations of
equations of Nos. 21 and 27	
relation to British yardxxxvi, xli	
Metric systemxl	Quadrilaterals, of earth's surface, areas ofl
Mile, Austrian168	tables of areas of 142-159
British (statute)xxxvii	Quantity, of electricity, dimensions of 175
Danish, German sea, Netherlands, Nor-	
wegian, Prussian, Swedish168	
Nautical	Radii, of curvaturexlv
Modulus of common logarithmsxv	Radius of curvature, of meridian, table of
Moivre's formulaxvi	logarithms of48-56
Moment of inertia of mass, dimensions of 175	of section normal to meridian, table of
Moments of inertia of earthlxvi	logarithms of
Momentum, dimensions of	of section oblique to meridian, table of
	logarithms of
	Radius vector of earth's surface
Napierian base (of logarithms)xiv, 171	Rate of working (power), dimensions of 175
Napierian logarithmsxiv	Ratio, of pound to kilogrammexxxvi
Napier's analogiesxx	of specific heats of air172
Natural logarithmsxiv	of yard to metrexxxvi
Nautical mile, table of equivalents in statute	Reciprocals, of natural numbers, table of 4-22
miles	Reduced latitude
Numerical constants171	Reduction to sea level of measured base line. lxiv
	References, to works on astronomylxxxii
	to works on geodesylxvi
Ohm, dimensions of175	to works on the theory of errorsxcviii
	Refraction, astronomical, table of161
	example of computation of
Palm, length of, Englishxxxviii	coefficients of terrestriallxiii
Netherlands	Right ascensionlxxii
Parallel, arcs of terrestrialxlix	Rode, Danish
table of lengths of81-83	Ruthe, Prussian, Norwegian168
Pendulum, length of seconds	
table of lengths of	Sama Dunian
Perch (of masonry) volume ofxxxix Perimeter, of circlexxviii	•
•	Sea level (see <i>Geoid</i>), reduction of measured
of ellipse	base line tolxiv
of regular polygonxxviii, xxx	Sea surface, area of lxv
Physical constants	Secondary triangulation, differences of lati-
Physical geodesy, salient facts oflxv	tude, longitude, and azimuth inlx
Physical quantities, dimensions of175	Series, binomialxiv
Platinum, linear expansion of	logarithmicxiv
Platinum iridium, linear expansion of170 Polycopic projection of maps	of Maclaurin and Taylorxxii
Polyconic projection of mapsliii	trigonometricxvii
graphical process or, explained	Sidereal day and year, length of172

Quadrilaterals, of earth's surface, areas of1 tables of areas of	Polygons, regular, areas ofxxxii lengths of lines ofxxvii Potential (electric), dimensions of175 Pothenot's problemlxiv Pound, imperial, avoirdupoisxxxiv Power, dimensions of
tables of areas of	Quadrilaterals, of earth's surface areas of
Quantity, of electricity, dimensions of	tables of areas of
Radii, of curvature xlv Radius of curvature, of meridian, table of logarithms of	Quantity of electricity dimensions of
Radius of curvature, of meridian, table of logarithms of	Quantity, or electricity, dimensions of
Radius of curvature, of meridian, table of logarithms of	
logarithms of	
of section normal to meridian, table of logarithms of	Radius of curvature, of meridian, table of
of section normal to meridian, table of logarithms of	logarithms of
logarithms of 57-65 of section oblique to meridian, table of logarithms of logarithms of 66, 67 Radius vector of earth's surface .1 Rate of working (power), dimensions of 175 Ratio, of pound to kilogramme xxxvi of specific heats of air 172 of yard to metre xxxvi Reciprocals, of natural numbers, table of 4-22 Reduced latitude .1iv References, to works on astronomy lxxxii to works on geodesy .1xvi to works on the theory of errors .xcviii Refaction, astronomical, table of .161 example of computation of .civ coefficients of terrestrial .lxiii Rode, Danish .168 Sagene, Russian .168 Sea level (see <i>Geoid</i>), reduction of measured base line to	
of section oblique to meridian, table of logarithms of	
logarithms of	of anotion oblique to meridian table of
Radius vector of earth's surface 1 Rate of working (power), dimensions of 175 Ratio, of pound to kilogramme 177 of specific heats of air 172 of yard to metre 172 Reciprocals, of natural numbers, table of 4-22 Reduced latitude 12 Reduced latitude 12 Reduced latitude 12 References, to works on geodesy 12 Refraction, astronomical, table of 161 example of computation of 161 right asc	
Rate of working (power), dimensions of175 Ratio, of pound to kilogrammexxxvi of specific heats of air	logarithms of
Ratio, of pound to kilogramme	Radius vector of earth's surface
Ratio, of pound to kilogramme	Rate of working (power), dimensions of 175
of specific heats of air	Ratio, of pound to kilogramme
of yard to metre	
Reciprocals, of natural numbers, table of4-22 Reduced latitude	
Reduced latitude xliv Reduction to sea level of measured base line. lxiv References, to works on astronomy lxxii to works on geodesy lxvi to works on the theory of errors lxvi Refraction, astronomical, table of 161 example of computation of civ coefficients of terrestrial lxiii Rode, Danish 168 Ruthe, Prussian, Norwegian 168 Sagene, Russian 168 Sea level (see Geoid), reduction of measured base line to lxiv	
Reduction to sea level of measured base line.lxiv References, to works on astronomylxxii to works on geodesylxvi to works on the theory of errorsxcviii Refraction, astronomical, table ofi61 example of computation ofiv coefficients of terrestriallxiii Right ascensionlxiii Rode, Danish	Reciprocais, or natural numbers, table of 4-22
References, to works on astronomylxxii to works on geodesylxvi to works on the theory of errorsxcviii Refraction, astronomical, table of161 example of computation of	
References, to works on astronomylxxii to works on geodesylxvi to works on the theory of errorsxcviii Refraction, astronomical, table of161 example of computation of	
to works on geodesylxvi to works on the theory of errorsxcviii Refraction, astronomical, table of161 example of computation of	References, to works on astronomylxxxii
to works on the theory of errorsxcviii Refraction, astronomical, table of161 example of computation of	
Refraction, astronomical, table of161 example of computation of	
example of computation of	Definition entropy on the theory of errorsXCVIII
coefficients of terrestriallxiii Right ascensionlxxii Rode, Danishlxii Ruthe, Prussian, Norwegian	
Right ascensionlxxii Rode, Danish	example of computation of
Rode, Danish	
Rode, Danish	Right ascensionlxxii
Ruthe, Prussian, Norwegian	
Sea level (see <i>Geoid</i>), reduction of measured base line tolxiv	
Sea level (see <i>Geoid</i>), reduction of measured base line tolxiv	
base line tolxiv	Sagene, Russian168
base line tolxiv	Sea level (see Geoid), reduction of measured
	Sea surface, area of lxv

Digitized by Google

Sidereal timelxxii table for conversion to mean time165
Signs, of trigonometric functionsxv
Silver, linear expansion of170
Sines, table of natural
explanation of use ofc
Solar timelxxii
table for conversion of mean solar
to sidereal164
Solution, of plane trianglesxviii
of spherical trianglesxx
of spheroidal triangleslvii
Span, length ofxxxviii
Specific heat of air 172
Sphere, equal in surface with earthlii
equal in volume with earthlii
surface ofxxxi
volume ofxxxii
Spherical excess (see Spheroidal excess) lviii
Spheroid, representing the earthxliii
surface ofxxi
volume ofxxxiii
volume of earth'slxv
Spheroidal excesslviii
example of computation of
Spheroidal trianglelvii
Square roots, table of4-22
Squares, table of4-22
Standards, of length and massxxxiv
Steel, linear expansion of
Stère
Stress, dimensions of
units of
Sums, of arithmetic and geometric progres-
sion, and special seriesxiii
Surfaces (see Areas)
Surface measures, British
Metric
tables for interconversion of 2, 3, 173, 174
Surface, of continentslxv
of earth's spheroidlii
of oceanslxv
of sphere and spheroid
Surveyor's chain, length of
Surveyor's chain, length or
Table for conversion of arc into time162
conversion of mean into sidereal time
conversion of sidereal into sidereal time165
conversion of time into arc
determination of heights by barometer160
interconversion of British and Metric
units
interconversion of nautical and statute
miles
Table of acceleration of gravity and derived
quantities

cxii	Table of (continued).
165	antilogarithms, 4-place
.xv	areas of quadrilaterals of earth's surface
170	of 10° extent in latitude and longi-
29	tude
c	1° extent in latitude and longi-
cxii	tude
	30' extent in latitude and longi-
164	tude146–148
viii	15' extent in latitude and longi-
XX	tude 1 50–1 54
lvii	10' extent in latitude and longi-
viii	tude156–159
[72	areas of regular polygonsxxx
.lii	circumference and area of circle23
.lii	constants, astronomical172
xxi	geodetical171
xii	numerical
viii	for interconversion of English and
liii	Metric units2, 3, 173, 174
xxi	Continental measures of length168
ciii	co-ordinates for projection of maps
lxv	scale 1/25000084–91
vüi	scale 1/12500092-101
.ci	scale 1/126720102-109
vii	scale 1/63360110-121
-22	scale 1/200000122–131
-22	scale 1/80000 132-141
xiv	departures and latitudes32-47
170	dimensions of physical quantities175
xli	errors of interpolated values from nu-
175	merical tableslxxxvi
74	expansions (linear) of principal metals 170
	formulas for solution of plane trianglesxix
xiii	fractional change in number due to
xix	change in its logarithm170
viii	latitudes and departures
xli	lengths of arcs of meridian
74	of arcs of parallel81-83
xv	of 1° of meridian166
. lii	of 1° of parallel167
lxv	linear expansions of metals
xxi	logarithms, 4-place24, 25
viii	anti-, 4-place
	of factors for computing spheroidal
	excess
162	of factors for computing differences
164	of latitude, longitude, and azi-
165	muth
163	of meridian radius of curvature48-55
160	of radius of curvature of normal
	section
174	of radius of curvature of oblique
	sections
168	mean astronomical refraction
	measures and weights —
169	British, of capacityxxxix
	Digitized by Google

INDEX.

Table of (continued).
British, of lengthxxxviii
British, of surfacexxxviii
British, of weightxxxix
Metricxli
tables for interconversion of
2, 3, 173, 174
natural cosines
natural tangents
natural taligents
radii of curvature, logarithms of, for
meridian section48-55
for normal section
for oblique section
reciprocals, squares, cubes, square roots,
cube roots, and logarithms of natural
numbers
refraction, mean astronomical161
signs of trigonometrical functionsxv
values for computing areas and dimen-
sions of regular polygonsxxx
for computing perimeter of ellipse xxix
of $\log \frac{1}{2}(1-2m)$ and $\log (1-m)$
used in trigonometric leveling lxii
weights and measures (see Table of
measures and weights)2, 3, 173, 174
measures and weights)2, 3, 173, 174
Table, traverse (see Traverse table)32-47
Tangents, natural, table of
use of table explainedc
Taschenbuch, Des Ingenieursxcix
Taylor's seriesxxii
Temperature, absolute zero of172
of freezing mercury
Theory of errorslxxxiii-xcviii
references to works onxcviii
Thermal conductivity, dimensions of175
of air
Three-point problemlxiv
Time, determination oflxxiv
equivalents in arc, table of
example of use of table
interconversion of sidercal and solar,
tables for
Tin, linear expansion of
This mean expansion of
Toise, value in feet and metres
Ton, long and shortxxxix
Tonne
Tonneau
Trapezoid, area ofxxix
Traverse table
explanation of use ofc
Triangles, plane, solution ofxviii

Triangles (continued). spherical, solution of
Units, British System
Vara, Mexican and Spanish
Weight, of distilled water
Yard, imperial
Zachariae, G., treatise cited

•

182

,

.

.

.

•

•

•

. 、

•

.

•

•

•

.

.

.

.

.

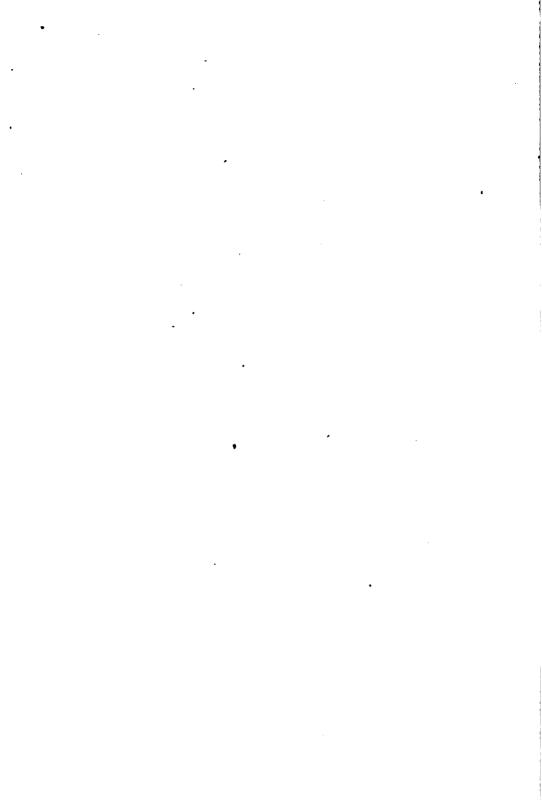
•

.

•

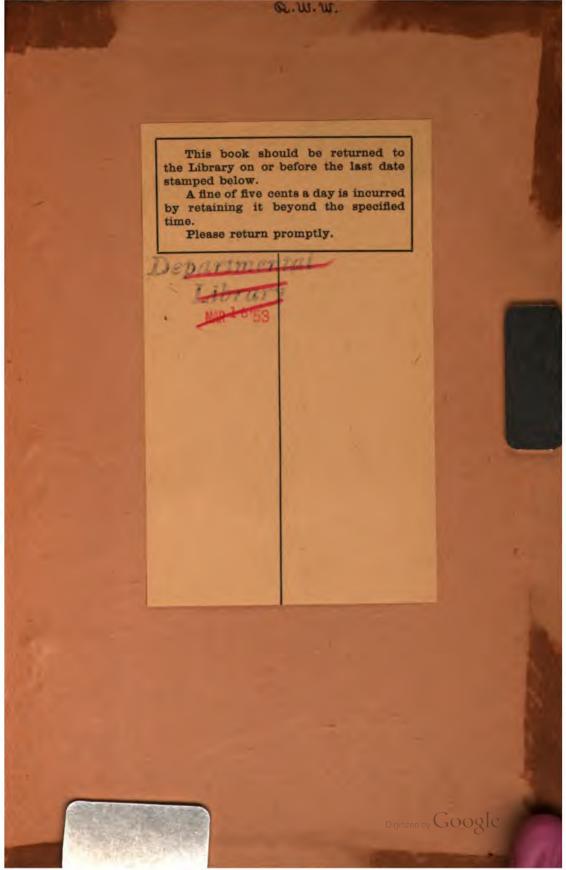
.

.


`

•

.


.

;

