Skip to main content

Full text of "Smithsonian geographical tables"

See other formats


This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project 
to make the world's books discoverable online. 

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject 
to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books 
are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover. 

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the 
publisher to a library and finally to you. 

Usage guidelines 

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the 
public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to 
prevent abuse by commercial parties, including placing technical restrictions on automated querying. 

We also ask that you: 

+ Make non-commercial use of the files We designed Google Book Search for use by individuals, and we request that you use these files for 
personal, non-commercial purposes. 

+ Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine 
translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the 
use of public domain materials for these purposes and may be able to help. 

+ Maintain attribution The Google "watermark" you see on each file is essential for informing people about this project and helping them find 
additional materials through Google Book Search. Please do not remove it. 

+ Keep it legal Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just 
because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other 
countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of 
any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner 
anywhere in the world. Copyright infringement liability can be quite severe. 

About Google Book Search 

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers 
discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web 



at |http : //books . google . com/ 







Godfrey Lowell CABOT SCIENCE LIBRARY 



This book is 
FRAGILE 

and circulates only with permission. 

Please handle with care 

and consult a staff member 

before photocopying. 

Thanks for your help in preserving 
Harvard's library collections* 



Digitized bl 




e. 



'e 



Digitized by* 



Digitized by VjOOQIC 



Digitized by VjOOQIC 



Digitized by 



GooqIc 



Digitized by 



GooqIc 



Digitized by 



GooqIc 



Digitized by 



GooqIc 



Digitized by 



GooqIc 



Digitized by 



GooqIc 



SMITHSONIAN INSTITUTION. 

Washington City, November^ 18Q4. 

This work (No. 854), Smithsonian Geographical Ta- 
bles, forms the second part of Volume XXXV, Smithsonian 
Miscellaneous Collections. The "Smithsonian Meteoro- 
logical Tables," issued in 1893, formed the first part of this 
volume, and the third or concluding part, "Smithsonian 
Physical Tables," is in preparation. 



LIBRARY CATALOGUE SLIPS. 



Smithsonian Institution. 

Smithsonian Geographical tables. Prepared by 
R. S. Woodward. City of Washington, published 
by the Smithsonian Institution, 1894. 8*^. cv -j- 
182 pp. 

From Smithsonian Miscellaneous Collections, vol. 35. 
(Number 854.) 



Woodward, R. S. 

Smithsonian Geographical tables. Prepared by 
R. S. Woodward. City of Washington, published 
by the Smithsonian Institution, 1894. 8°. cv -|- 
182 pp. 

From Smithsonian Miscellaneous Collections, vol. 35. 
(Number S54.) 



Smithsonian Geographical tables. Prepared by 
R. S. Woodward. City of Washington, published 
by the Smithsonian Institution, 1894. 8°. cv + 
182 pp. 

From Smithsonian Miscellaneous Collections, vol. 35. 
(Number 854.) 



Digitized by 



GooqIc 



Digitized by 



GooqIc 



cmc-ift^ 



854 



SMITHSONIAN 



GEOGRAPHICAL TABLES 



PREPARED BY 



R. S. WOODWARD 




CITY OF WASHINGTON 
PUBLISHED BY THE SMITHSONIAN INSTITUTION 

Digitized by VjOOQ IC 



n6 // cj^, ^^^S 



\y 




/. 



.L<> "v.-.< X. .'i'xi J 



" .f \^.^ 



TJU Riversiie Prtss^ Cambridge ^ Mau.^ U.S.A. 
Electrotyped and Printed by H. O. Houghton & Ca 



Digitized by 



GooqIc 



ADVERTISEMENT. 



In connection with the system of meteorological observations established by 
the Smithsonian Institution about 1850, a series of meteorological tables was 
compiled by Dr. Arnold Guyot, at the request of Secretary Henry, and was pub- 
lished in 1852 as a volume of the Miscellaneous Collections. 

A second edition was published in 1857, and a third edition, with further 
amendments, in 1859. 

Though primarily designed for meteorological observers reporting to the 
Smithsonian Institution, the tables were so widely used by meteorologists and 
physicists that, after twenty-five years of valuable service, the work was again re- 
vised, and a fourth edition was published in 1884. 

In a few years the demand for the tables exhausted the edition, and it appeared 
to me desirable to recast the work entirely, rather than to undertake its revision 
again. After careful consideration I decided to publish the new work in three 
parts : Meteorological Tables, Geographical Tables, and Physical Tables, each 
representative of the latest knowledge in its field, and independent of the others ; 
but the three forming a homogeneous series. 

Although thus historically related to Doctor Guyot's Tables, the present work 
is so entirely changed with respect to material, arrangement, and presentation, 
that it is not a fifth edition of the older tables, but essentially a new publication. 

The first volume of the new series of Smithsonian Tables (the Meteorological 
Tables) appeared in 1893. The present volume, forming the second of the 
series, the Geographical Tables, has been prepared by Professor R. S. Woodward, 
formerly of the United States Coast and Geodetic Survey, but now of Columbia 
College, New York, who has brought to the work a very wide experience both in 
field work and in the reduction of extensive geodetic observations. 

S. P. Langley, Secretary, 



Digitized by 



GooqIc. 



Digitized by 



GooqIc 



PREFACE. 

In the preparation of the following work two difHculties of quite different 
kinds presented themselves. The first of these was to make a judicious selec- 
tion of matter suited to the needs of the average geographer, and at the same 
time to keep the volume within prescribed limits. Of the vast amount of 
material available, much must be omitted from any work of limited dimen- 
sions, and it was essential to adopt some rule of discrimination. The rule 
adopted and adhered to, so far as practicable, was to incorporate little material 
already accessible in good form elsewhere. Accordingly, while numerous ref- 
erences are made in the volume to such accessible material, an attempt has 
been made wherever feasible to introduce new matter, or matter not hitherto 
generally available. 

The second difficulty arose from the present uncertainty in the relation of the 
British and metric units of length, or rather from the absence of any generally 
adopted ratio of the British yard to the metre. The dimensions of the earth 
adopted for the tables are those of General Clarke, published in 1866, and now 
most commonly used in geodesy. These dimensions are expressed in English 
feet, and in order to convert them into metres it is necessary to adopt a ratio of 
the foot to the metre. The ratio used by (General Clarke, and hitherto gener- 
ally used, is now known to be erroneous by about one one hundred thousandth 
part. The ratio used in this volume is that adopted provisionally by the Office 
of Standard Weights and Measures of the United States and legalized by Act 
of Congress in 1866. But inasmuch as a precise determination of this ratio is 
now in progress under the auspices of the International Bureau of Weights and 
Measures, and inasmuch as the value for the ratio found by this Bureau will 
doubtless be generally adopted, it has been thought best in the present edition 
to restrict quantities expressed in metric measures to limits which will require 
no change from the uncertainty in question. In conformity with this decision 
the dimensions of the earth are given in feet only, and, with a few unimportant 
exceptions, to which attention is called in the proper places, tables giving quan- 
tities in metres are limited to such a number of figures as are definitely known. 

Digitized byLjOOQlC 



VI PREFACE. 

It is a matter of regret that, owing to the cause just stated, less prominence 
has been given in the tables to metric than to British units of length. On the 
other hand, it seems probable that the more general use of British units will 
meet the approval of the majority of those for whose use the volume is designed. 

The introductory part of the volume is divided into seven sections under the 
heads. Useful Formulas, Mensuration, Units, Geodesy, Astronomy, Theory of 
Errors, and Explanation of Source and Use of Tables, respectively. In pre- 
senting the subjects embraced under the first six of these headings an attempt 
was made to give only those features leading directly to practical applications 
of the principles involved. It is hoped, however, that enough has been given of 
each subject to render the work of value in a broader sense to those who may 
desire to go beyond mere applications. 

The most of the calculations required in the preparation of the tables were 
made by Mr. Charles H. Kummell and Mr. B. C. Washington, Jr. Their work 
was done with skill and fidelity, and it is believed that the systematic checks 
applied by them have rendered the tables they computed entirely trustworthy. 
Mention of the particular tables computed by each of them is made in the 
Explanation of Source and Use of Tables, where full credit is given also for 
data not specially prepared for the volume. 

The Appendix to the present volume is that prepared by Mr. George E. Cur- 
tis for the Meteorological Tables. Its usefulness to the geographer is no less 
obvious and general than to the meteorologist. 

The proofs hav^ been read independently by Mr. Charles H. Kummell and 
the editor. The plate proofs, also, have been read by the editor ; and while it 
is difficult to avoid errors in a first edition of a work containing many formulas 
and figures, it is believed that few, if any, important errata remain in this volume. 

R. S. Woodward. 
Columbia College, New York, N. Y., June 15, 1894 



Digitized by 



GooqIc 



CONTENTS. 



USEFUL FORMULAS. 

PAGB 

1. Algebraic Formulas xiii 

a. Arithmetic and geometric means xiii 

b. Arithmetic progression xiii 

c. Geometric progression xiii 

d. Sums of special series xiii 

e. The binomial series and applications xiv 

f. Exponential and logarithmic series xiv 

g. Relations of natural logarithms to other logarithms .... xv 

2. Trigonometric Formulas xv 

a. Signs of trigonometric functions xv 

b. Values of functions for special angles xv 

c. Fundamental formulas xv 

d. Formulas involving two angles xvi 

e. Formulas involving multiple angles xvi 

f. Exponential values. Moivre's formula xvi 

g. Values of functions in series xvii 

h. Conversion of arcs into angles and angles into arcs .... xvii 

3. Formulas for Solution of Plane Triangles xviii 

4. Formulas for Solution of Spherical Triangles xx 

a. Right angled spherical triangles xx 

b. Oblique angled triangles xx 

5. Elementary Differential Formulas xxi 

a. Algebraic xxi 

b. Trigonometric and inverse trigonometric xxi 

6. Taylor's and Maclaurin's Series xxii 

a. Taylor's series xxii 

b. Maclaurin's series xxii 

c. Example of Taylor's series xxii 

d. Example of Maclaurin's series xxiii 

7. Elementary Formulas for Integration xxiii 

a. Indefinite integrals xxiii 

b. Definite integration xxvi 

MENSURATION. 

I. Lines xxviii 

a. In a circle xxviii 

b. In regular polygon xxviii 

c. In ellipse xxix 



Digitized by 



Google 



Vlll CONTENTS. 

2. Areas ••••• xxix 

a. Area of plane triangle xxix 

b. Area of trapezoid xxix 

c. Area of regular polygon xxx 

d. Area of circle, circular annul us, etc xxx 

e. Area of ellipse xxx 

f. Surface of sphere, etc xxxi 

g. Surface of right cylinder xxxi 

h. Surface of right cone xxxi 

i. Surface of spheroid xxxi 

3. Volumes xxxii 

a. Volume of prism xxxii 

b. Volume of pyramid xxxii 

c. Volume of right circular cylinder xxxii 

d. Volume of right cone with circular base xxxii 

e. Volume of sphere and spherical segments xxxii 

f. Volume of ellipsoid xxxiii 

UNITS. 

1. Standards of Length and Mass xxxiv 

2. British Measures and Weights xxxvii 

a. Linear measures xxxvii 

b. Surface or square measures xxxviii 

c. Measures of capacity xxxviii 

d. Measures of weight xxxix 

3. Metric Measures and Weights xl 

4. The C. G. S. System of Units xlii 

GEODESY. 

1. Form of the Earth. The Earth's Spheroid. The Geoid . . xliii 

2. Adopted Dimensions of Earth's Spheroid xliii 

3. Auxiliary Quantities xliii 

4. Equations to Generating Ellipse of Spheroid xliv 

5. Latitudes used in Geodesy xliv 

6. Radii of Curvature xlv 

7. Lengths of Arcs of Meridians and Parallels of Latitude . xlvi 

a. Arcs of meridian xlvi 

b. Arcs of parallel xlix 

8. Radius-Vector of Earth's Spheroid 1 

9. Areas of Zones and Quadrilaterals of the Earth's Surface 1 

10. Spheres of Equal Volume and Equal Surface with Earth's 

Spheroid Hi 

11. Co-ordinates for the Polyconic Projection of Maps . . . liii 

12. Lines on a Spheroid Ivi 

a. Characteristic property of curves of vertical section .... Ivi 

b. Characteristic property of geodesic line Ivii 



Digitized by VjOOQIC 



CONTENTS. IX 

13. Solution of Spheroidal Triangles Ivii 

a. Spherical or spheroidal excess Iviii 

14. Geodetic Differences of Latitude, Longitude, and Azimuth Iviii 

a. Primary triangulation Iviii 

b. Secondary triangulation Ix 

15. Trigonometric Leveling Ixi 

a. Computation of heights from observed zenith distances ... Ixi 

b. Coefficients of refraction Ixiii 

c. Dip and distance of sea horizon Ixiii 

16. Miscellaneous Formulas Ixiii 

a. Correction to observed angle for eccentric position of instrument Ixiii 

b. Reduction of measured base to sea level Ixiv 

c. The three-point problem Ixiv 

17. Salient Facts of Physical Geodesy Ixv 

a. Area of earth's surface, areas of continents, area of oceans . . Ixv 

b. Average heights of continents and depths of oceans .... Ixv 

c. Volume, surface density, mean density, and mass of earth . . Ixv 

d. Principal moments of inertia and energy of rotation of earth . Ixvi 

ASTRONOMY. 

1. The Celestial Sphere. Planes and Circles of Reference . Ixvii 

2. Spherical Co-ordinates Ixvii 

a. Notation Ixvii 

b. Altitude and azimuth in terms of declination and hour angle . Ixviii 

c. Declination and hour angle in terms of altitude and azimuth . Ixix 

d. Hour angle and azimuth in terms of zenith distance .... Ixix 

e. Formulas for parallactic angle Ixix 

f. Hour angle, azimuth, and zenith distance of a star at elongation Ixx 

g. Hour angle, zenith distance, and parallactic angle for transit of 

a star across prime vertical Ixx 

h. Hour angle and azimuth of a star when in the horizon, or at the 

time of rising or setting Ixxi 

i. Differential formulas Ixxii 

3. Relations of Different Kinds of Time used in Astronomy . Ixxii 

a. The sidereal and solar days Ixxii 

b. Relation of apparent and mean time Ixxiii 

c. Relation of sidereal and mean solar intervals of time .... Ixxiii 

d. Interconversion of sidereal and mean solar time Ixxiii 

e. Relation of sidereal time to the right ascension and hour angle 

of a star Ixxiv 

4. Determination of Time Ixxiv 

a. By meridian transits Ixxiv 

b. By a single observed altitude of a star Ixxvi 

c. By equal altitudes of a star Ixxvii 

5. Determination of Latitude Ixxvii 

a. By meridian altitudes Ixxvii 

b. By the measured altitude of a star at a known time .... Ixxviii 

c. By the zenith telescope by.izedbvG-Oogf^ 



X CONTENTS. 

6. Determination of Azimuth Ixxix 

a. By observation of a star at a known time bcxix 

b. By an observed altitude of a star Izxad 

c. By equal altitudes of a star lyxxi 

THEORY OF ERRORS. 

1. Laws of Error Ixzxiii 

a. Probable, mean, and average errors Ixxxiv 

b. Probable, mean, average, and maximum actual errors of inter- 

polated logarithms, trigonometric functions, etc Ixxxv 

2. The Method of Least Squares Ixxxvi 

a. General statement of method Ixxxvi 

b. Relation of probable, mean, and average errors , . , . . Ixxxviii 

c. Case of a single unknown quantity Ixxxix 

d. Case of observed function of several unknown quantities . . xc 

e. Case of functions of several observed quantities xciii 

f. Computation of mean and probable errors of functions of ob- 

served quantities xcv 

EXPLANATION OF SOURCE AND USE OF TABLES. 

Tables i and 2 xcix 

Table 3 . xcix 

Table 4 xcix 

Tables 5 and 6 xcix 

Tables 7 and 8 c 

Table 9 c 

Tables 10 and II c 

Table 12 c 

Tables 13 and 14 c 

Tables 15 and 16 ci 

Table 17 ci 

Table 18 cii 

Tables 19-24 cii 

Tables 25-29 ciii 

Table 30 ciii 

Table 31 civ 

Tables 32 and 33 civ 

Tables 34 and 35 civ 

Tables 36 and 37 civ 

Table 38 civ 

Table 39 civ 

Table 40 civ 

Table 41 cv 

Table 42 cv 



Digitized by VjOOQIC 



CONTENTS. 



TABLES. 

TABLB PACB 

1. For converting U. S. Weights and Measures — Customary to 

Metric 2 

2. For converting U. S. Weights and Measures — Metric to Cus- 

tomary 3 

3. Values of reciprocals, squares, cubes, square roots, cube roots, 

and common logarithms of natural numbers 4-22 

4. Circumference and area of circle in terms of diameter d . , , 23 

5. Logarithms of numbers, 4-place 24-25 

6. Antilogarithms, 4-place 26-27 

7. Natural sines and cosines 28-29 

8. Natural tangents and cotangents 30-31 

9. Traverse table (differences of latitude and departure) .... 32-47 

10. Logarithms of meridian radius of curvature in English feet . . 48-56 

1 1 . Logarithms of radius of curvature of normal section in English feet 5 7-65 

12. Logarithms of radius of curvature (in metres) of sections oblique 

to meridian 66-67 

13. Logarithms of factors for computing spheroidal excess of triangles 

(unit = English foot) 68 

14. Logarithms of factors for computing spheroidal excess of triangles 

(unit ^ the metre) 69 

15. Logarithms of factors for computing differences of latitude, longi- 

tude, and azimuth in secondary triangulation (unit = English 

foot) 70-73 

16. Logarithms of factors for computing differences of latitude, longi- 

tude, and azimuth in secondary triangulation (unit ^ the metre) 74-77 

17. Lengths of terrestrial arcs of meridian (in English feet) .... 78-80 

18. Lengths of terrestrial arcs of parallel (in English feet) .... 81-83 

19. Co-ordinates for projection of maps, scale = 1/250000 .... 84-91 

20. Co-ordinates for projection of maps, scale = 1/125 000 .... 92-101 

21. Co-ordinates for projection of maps, scale = 1/126 720 .... 102-109 

22. Co-ordinates for projection of maps, scale = 1/63 360 .... 110-121 

23. Co-ordinates for projection of maps, scale = 1/200000 .... 122-131 

24. Co-ordinates for projection of maps, scale = 1/80 000 .... 132-141 

25. Areas of quadrilaterals of the earth's surface of 10^ extent in lati- 

tude and longitude 142 

26. Areas of quadrilaterals of the earth's surface of 1° extent in lati- 

tude and longitude 144-145 

27. Areas of quadrilaterals of the earth's surface of 30' extent in lati- 

tude and longitude 146-148 

28. Areas of quadrilaterals of the earth's surface of 15' extent in lati- 

tude and longitude 150-154 

29. Areas of quadrilaterals of the earth's surface of 10' extent in lati- 

tude and longitude 156-159 

30. Determination of heights by the barometer (formula of Babinet) . 160 

31. Mean astronomical refraction 161 



Digitized by 



Google 



XU CONTENTS. 

32. Conversion of arc into time 162 

33. Conversion of time into arc 163 

34. Conversion of mean time into sidereal time 164 

35. Conversion of sidereal time into mean time 165 

36. Length of 1° of the meridian at different latitudes (in metres, 

statute miles, and geographic miles) 166 

37. Length of i^ of the parallel at different latitudes (in metres, stat- 

ute miles, and geographic miles) 167 

38. Interconversion of nautical and statute miles 168 

39. Continental measures of length, with their metric and English 

equivalents 168 

40. Acceleration (f) of gravity on surface of earth and derived func- 

tions 169 

41. Linear expansions of principal metals 170 

42. Fractional change in a number corresponding to a change in its 

logarithm 170 

APPENDIX. 

Numerical Constants 171 

Goedetical Constants *. . . . 171 

Astronomical Constants 172 

Physical Constants 172 

Synoptic conversion of English and Metric Units — 

English to Metric 173 

Metric to English 174 

Dimensions of physical quantities 175 

INDEX 177 



Digitized by 



GooqIc 



USEFUL FORMULAS. 



I. Algebraic. 

a. Arithmetic and geometric means. The arithmetic mean of n quanti- 
ties ay d, Cy ,,. is 

-^ (« + * + .+ ...); 

their geometric mean is 

(a d c. .)K 
A case of special interest is 

^ = H. + *){.-(2f|)'}'- 

b. Arithmetic progression. If a is the first term, and a-^-dy a -{- 2 dy 
a-^- $ dy . ,. 2ire the successive terms, the ;ith or last term z is 

g=:a-^ (n — 1) d 
The sum s of the n terms of this series is 

= {z-i(n-i)d}n 



c. Geometric progression. If a is the first term, and ary ar^y 
successive terms, the ;ith or last term z is 

The sum of the n terms is 



a (r*— i ) r z — a __ z (r*— i) 



If 



r— I r— I 

r < 1 and « ^ 00, 



are the 






I — r 



d. Sums of special series. 

1 + 2+3 + 4 + .. . + « =i«(«+i) 



2+4+6+8+ 

X+3+S+7+ 
i«+2»+3»+4'+ 
^•+2«+3*+4'+ 



+ 2 « = « (» + i) 

+ (2»— l) = «« 

+ «« =J«(«+l)(2«+l) 

Digitized byLjOOQlC 



Xiv USEFUL FORMULAS. 

e. The binomial series and applications. 



For a> b, 

' 1.2 

«(«-l)(>,-2) 

1.2.3 <^-|-.... 

For « < I, 

(i ± «)• = I ±« « H — \-^ x' ± -^ J^^ '^ A^ + . . . . 

(i -! xf = » + ** + 3«'+4«»+S**+... 
(i + *)* = 1 + **- 4 ^ + tV** - tI» **+ . . . 

(^^p^ = I - i*+ I **- w *•+ ^ ^- . . . 

f. Exponential and logarithmic series. 

For — 00 < jc < 00, 

""" I "' 1.2"' 1.2.3"' I.2.3.4"''**" 

The number e is the base of the natural or " Napierian " system of logarithms. 
For :r = -|- I, the above series gives 

e=. 2.718281828459 .... 
In the natural system the following series hold with the limitations indicated : 

' 1 ' 1.2 ^^ 1.2.3 • 

— 00 < j: < op; 

log (I 4-*) = *---!-^-^+^-... 

o < :r < 00; 

y<(2x+:yy. 

Digitized by VjOOQ IC 



USEFUL FORMULAS. 



XV 



g. Relations of natural logarithms to other logarithms. 
B = base of any system, 
JV= any number, 
L = log N\.o base B = log^-A^ 
/ = log i\r to base e = loge^ 
Then 

Z = /l0g,K?=//l0ge^, 

log^= i/logeB = fly say, which is called the modulus of the system whose base 
is B. In the common, or Briggean system, 

M = logio^ = 0.43429448 

log /A = 9.6377843 — 10. 



2. Trigonometric Formulas. 
a. Signs of trigonometric functions. 



Function. 


1st Quadrant. 


2d Quadrant. 


3d Quadrant. 


4th Quadrant. 


sine 

cosine .... 
tangent . . . 

cotangent . . . 

I 


+ 
+ 
+ 

+ 


+ 


+ 


1 1 + 1 



b. Values of functions for special angles. 





0° 


90° 


180^ 


270° 


3^° 


30° 


45° 


60° 


sine .... 





+ 1 





— I 





i 


iV2 


iVs 


cosine . . . 


+ 1 





— I 





+ t 


iV3 


\>fi 


i 


tangent . . . 





00 





00 





JV3 


I 


V3 


cotangent . . 


00 





00 





00 


V3 


I 


4V3 



c. Fundamental formulas. 

sin* a -|- cos* a = i, 
cos a sec a = i, 

sin a 



tan a: 



cos a 



tan a cot a ^ I, 

sin a cosec a = i, 

cos a 
cot a= -rr — > 
sm a 



1 + tan* a = T— 5- =sec*a, 

* cos* a ^ 



I + C0t*a=: .0 = cosec* a, 
' Sin* a ^ 



versed sin a = i — cos < 



Digitized by 



Google 



XVI USEFUL FORMULAS. 

d. Formulas involving two angles. 
sin (a±i 0) = sin a cos fi ± cos a sin fi, 
cos (a ± j8) = cos a COS ^ =f sin a sin /S. 

tan (a ± j8) = (tan a ± tan /3)/(i :f tan a tan /?), 

cot (a ± J8) = (cot a cot iS T l)/(cot a ± COt /3). 

sin a -|- sin /? = 2 sin ^(a -|- /5) cos J(a — ^), 
sin a — sin /5 = 2 cos J(a -|- i^) sin J(a — )3). 

cos a -|- cos P=2 COS J(a -|- fi) COS ^(a — fi), 

cos a — COS /8 = — 2 sin ^(a + j8) sin J(a — /?). 

^ sin (a ± B) 
tan a ± tan /? = ^^^^ ;r, A> 

'^ cos a COS p 

sin 09 ± a) 

cot a ± cot j8 = ,:^^,- p - 

'^ sin a sm p 
2 sin a sin ^ = cos (a — /5) — cos (a -|- p\ 

2 cos a COS /? = COS (a — j8) + COS (a + jS), 

2 sin a COS j8 = sin (a — /5) + sin (a -|- /8). 

Slf±|il| = ,..K. + «co.K.-«, 

e. Formulas involving multiple angles. 

sin 2 a = 2 sin a cos a, 

sin 3 a = 3 sin a cos* a — sin* a, 

cos 2 a = cos' a — sin* a = i — 2 sin* a = 2 cos* a— i, 
cos 3 a = cos* a — 3 sin* a cos cu 

sin a I — cos a / l — COS a \* 

tan J a = J _|.cosa~ sin a ~ \i + cos a) ' 

2 tan a ^ cot* a — I 

tan 2 a = zzzrz* cot 2 a = 



I — tan* a 2 cot a 

2 tan i a I — tan* j a 

^^^^ = r+-SEn^ ^^'"=i+tan*ia 

2 sin* a = I — cos 2 a, 2 COS* a = I + COS 2 a, 

4 sin* a = 3 sin a — sin 3 a, 4 cos* a = 3 cos a + cos 3 eu 

f. Exponential values. Moivre's formula. 

e = base of natural logarithms, 

/= V^ ^'^= - i» ^'*= - '» ^■*= ^ etc. 

cos ;c = i (^ + ^-*'), sin j. = iU^ - ^"**), 

cos m; = i (<f-* + <?*), sin m: = ^V (^"* — <?*)• 

(cos X ±i sin ^)'" = cos mx ±$ sin »w. 

Digitized by VjOOQ IC 



USEFUL FORMULAS. XVll 

g. Values of functions in series. 

For X in arc the following series hold within the limits indicated. 

^ JC* x^ 

sin* = *-g- + — - — + ..., 

cos*=i-- + ---^+..., 

— 00 < a: < + 00. 

tanjr = * + J^ + A^ + 3¥y*^ + .... 
sec Jc=i-fi:jf*-|-Aa:* + VW *•+•••» 
— Jir<jc<+iir. 

cot ^ = - (i - J :!:* - A •** - viir -^^ - • • • )i 

COSec :«: = ^ (l + J :J^ + 3 Jiy X* + y/iViy ^* + - . . ). 

— IT < a: < + IT. 

arc sin ;r = ;c + i j^ + A -^ + T^y -^^^ + • • • » 
arctan^ = ^--+--y+--..., 

- I <:r < + i. 

or =: sin ^ + J sin* * + tfe sin* x + xf y sin^ or + • • • i 
--i«-<^<4-iir. 

ic = tan X '~'\ tan* jp + J tan* j: — | tan' :i: + • • • > 
-Jir<Jt:< + iir. 

log sin a: = log or - fi (J :c* + y^^ a:* + 7^7 :«•+...), 
X positive and < ir, 
fi = modulus of common logarithms. See p. xv. 

log tan :«: = log ^ + ^ (i x« + /^ ^* + ^f f 5 ^* + . . . X 
:c positive and < ^ ir. 

h. Conversion of arcs into angles and angles into arcs. 

Denote by x^^ a:', and x" respectively the angle (in degrees, minutes, or sec- 
onds) corresponding to the arc x. Then by equality of ratios 

360° _ 360 X 60^ _ 360 X 60 X 60'' _ 2jr 
x^ 
whence 



^ 


— «" 


a:° = 


180° 


9! = 


180 X 60' 


«" = 


180 X 60 X 60" 



Digitized by VjOOQIC 



Then 



XVlll USEFUL FORMULAS. 

Put l8o^ ^ t. rj . t. ^. 

= p = number of degrees m the radius, 

=zp' = number of mmutes in the radius, 

= p = number of seconds in the radius. 

*° = a: p^ x'zzzx p\ x" = X p". 

p" = 57-°2957795» log p"" = 1.75812263, 

p' = 3437-'74677, log p' = 353627388, 

p" = 2o6264."8o6, log p" = 5.3 14425 13- 

3. Formulas for Solution of Plane Triangles. 

a, dyC = sides of triangle, 

a, /8, y = angles opposite to <?, 3, c, respectively, 

A = area of triangle, 
r = radius of inscribed circle, 

J? = radius of circumscribed circle, 

a b^ c_^ 

sin a sin /8 sin y * * 

a:=^b cos y + ^ cos /8, ^ = ^ cos a -|- <* cos y, ^ = « cos /5 + ^ cos o. 
r = 4 ^ sm ^ a sm ^ /3 sin ^ y = ^ » •» 

(« + ^) cos i (a + /8) = r cos i (a - )S), 
(a — ^) sin i (a -j- /?) = ^- sin J (a — /?). 

g + ^ _ tan j^ (fl +i^) ^ tan ^y 
a — ^ ~ tan i (a—fi) ~ tan i (a — j8)' 

tf* = ^ -|- ^ — 2 ^ ^ cos o = (^ + f)* — 4 ^ r cos* ^ a. 

V s (s — a) s — a 

, , . df* sin )8 sin y _, . . /> . 

^ = ^ a ^ sin Y = 7- '- -=12 Ic sin a sin a sm y 

■ ' 2 sm a '^ ' 

= r» cot i a cot i /8 cot J y = ^ j (j — ^z) (j — ^) (j — ^) 
=.rs:=\ahc IR. 

Digitized by VjOOQIC 



sm 



In right angled triangles let 



Then 



USEFUL FORMULAS. 

a = altitude, 

b = base, 

c = hypothenuse, 

a = ^ sin a = ^ cos p=z b tan a = ^ cot /5, 
b =zcsm p-=c cos a=z a tan p = acotcu 

^ = Jtf^ = Jfl«cota = J^tana = J^sin2a. 
Table for solution of oblique triangles. 



zix 



Given. 


Sought. 


Formula. 


a, ^, ^ 


a 
A 


sini«-v/('-'^j^'-'\ .-i(a + 3 + .), 




tf, ^, a 


/8 

y 


sin )8 = ^ sin a/a. 

When tf > ^, /5 < 90** and but one value results. When b> a, 

P has two values. 
y=i8o'>-(a + /S). 
r = tr sin y/sin a, 
^= J tr ^ sin y. 


a.^^ 


b 

y 

c 
A 


3 =1 a sin )3/sin a. 

y=i8o»-(« + ^). 

r = tf sin y/sin a = tf sin (a + /3)/sin a. 

-^ = i df ^ sin y = J a* sin /5 sin y/sin a. 


a,b,y 


a 


a sin y 
i(« + i8) = 9o°-iy, 

<• = (a* + ^* — 2 « * cos 7)', 
= {(aJfSf-Aabcos*\yY, 

= (a — *)/cos ^ where tan ^ = 2 V<' ^ sin ^ y/(a — b), 
= a sin y/sin a. 
/I = ^ a ^ sin y. 



Digitized by V^OOQ IC 



ZX USEFUL FORMULAS. 

4. Formulas for Solution of Spherical Triangles. 

a. Right angled spherical triangles. 

aybyC'=z sides of triangle, c being the hypotenuse, 
a, /5, y = angles opposite to tf, b^ c, respectively, 
7 = 90^ 

sin a=zsin c sin o^ sin ^ = sin c sin )3, 

tan a = tan c cos /3, tan b = tan c cos a, 

= sin b tan a, = sin « tan /3 ; 

cos a = cos a sin ft, cos /3 = cos 3 sin a ; 

cos c = cos a cos ^ = cot a cot /9. 

b. Oblique angled triangles. 

a, b, c = sides of triangle, 

a, ft 7 = angles opposite to a, by r, respectively, 

€ = a + /5-|-7— 180° = spherical excess, 
S = surface of triangle on sphere of radius r. 

sin a sin b sin c 

sin a sin )3 sin y 
cos a = cos ^ cos c-^ sin b sin ^ cos a, 

..,^_ZZ.COS_a-C0S^^j-^ . COS(<T-P)cos(<r-^ y) 
sin * a — : a — = > cos * d — : a — : f 

' * sin /3 Sin y ^ ^ ^ ^^^^ ^ ^^^ ^ 

J — cos o- cos (o- — g) 

tan *^ — cos(cr-i8)cos(cr-yy 

. « sin (j — b) sin (^ — ^) « , sin s sin (j — a) 

^^'^'^^= sin ^ sin. ^' ^^^'*"= sin ^ sin. ' 

fo«« r « — s^n {s - ^) sin (j - c) 
tan J a— gin j sin (j -«) ' 

cot 1 tf cot i^ ^ 4- cos y 

cot i € = -r-^ ' -^ 

^ sm y 

tan* J €== tan i J tan J (j — a) tan i ( J — ^) tan i (^ — .). 

Napier's analogies. 

Digitized byLjOOQlC 



USEFUL FORMULAS. XXi 

Gausses formulas, 

cos i (a -[- fl) COS J r = COS \{a-\' S) sin \ y, 
sin J (o 4- i^) cos i ^ = cos \{a ^V) cos ^ y, 

cos J (o — )8) sin J ^ = sin J (dP + ^) sin i y, 
sin J (a — ^) sin i r = sin J (« — ^) cos \ y. 

5. Elementary Differential Formulas. 
a. Algebraic. 

u^ VyW,»,.=> variables subject to diiferentiation, 
a, 3, r, . . . = constants. 

d(a + «) = du^ d(a u)-=,a dUj 

d(u v)z=LU dv-^-v du, 

J/ \ ( du , dv y dwx_ \ 

<«z^a/...)=^— + — + — + .•• j»i^w..., 

' du - -udv du udv 






(a '\-bu \ _ bh - ag 

da'' = a" log a dv, d^:=^ dv 

(e = base of natural logarithms), 
dlogv=z dv/v. 

b. Trigonometric and inverse trigonometric. 

//sin ;r = cos * dx, dcos jc = — sin ^ /£r, 

^an X = sec* x dx, dcot x = — cosec* x dx, 

dsec X = sec" x sin x dx, //cosec :t = — cosec* :tr cos x dx. 



dlog sin j; = cot x dx, dlog cos ^ = — tan :c dx. 

dx ^ dx 

, « » //arc cos :tr = ^ / » 



. . . ^^ . dx 

//arc sin a* = ± . . //arc cos :tr = =F 



//arc tan :« = ^ . ^ daxc cot :r = — 



Digitized by 



GooqIc 



XXll USEFUL FORMULAS. 

6. Taylor's and Maclaurin's Series. 

a. Taylor's series. 

If «=y(j;-|-^), any finite and continuous function oi x -{^ A, A being an 
arbitrary increment to x; and if du/dxy if^u/dx^^ ... are finite and deter- 
minate, 

u =/(x + A) =/(x) +/' (x) h +/" ix) f +/'" {X) ^ + . . . . 

where f(x\/' (x\ /" (jr), ... are the values of /(x + ^), du/dx, dhi/dx^^ . . . 
when ^ = o. This is Taylor's series or theorem. The remainder after the first 
n terms in ^ is expressed by the definite integral 

// 

o 

b. Maclaurin's series. 
If in Taylor's series we make jc = o, and ^ = ^, the result is 

«=/(*)=/(o)+/'(o)*+y"(o)^^+/'"(o)j^+..., 

where/(o),/'(o), /"(o), ... are the values oi/(x), du/dx^ dhijdx^ . . . when 
a: = o. This is Maclaurin's series or theorem. The remainder after the first n 
terms in x is expressed by the definite integral 



o 

c. Example of Taylor's series. 

u=f{x + h) = \og(x-\-h). 



du I 

1% ~x-\-h' 



f{x) = log X, 



Hence for common logarithms, ^ being the modulus, 

log (jc + >i) = log Ji: + ft (jiri^-i:r-«>i« + i;^«/5« -...), 
and the sum of the remaining terms is 

h 



o 



Digitized by VjOOQIC 



USEFUL FORMULAS. Xziii 

Since jp is the least value of(x'\'A^z) within the limits of this integral, the 
sum of the remaining terms is negative, and numerically 



^4)'- 



If, for example, (^/x) = i/ioo, the remainder in question is less than 
i X 0.434 X io~^, or about one unit in the ninth place of decimals. 

d. Example of Maclaurin's series. 
u =z/(x) = sin X, 

/(o)=o, 
^ =cosx, /(o) = + i, 

^ = - sm X, /'(o) = o, 

^-j- = - cos X, f'ip) = - I, 



Hence 



f(x) = sin :!C = :!C — 1 

-^ ^ ^ 1.2.3 ' 1.2.3.4.5 



and the sum of the remaining terms is 

X 

r i sin (x -^ z) sfi dz, 

o 

If g is the greatest value of sin (x — z) within the limits of this integral the 
remainder in question is negative and numerically 

^ 6 '^ 5 ! *^- 

If, for example, x = ir/S (the arc of 30°), g=i, and the remainder is numeri- 
cally less than 0.0000143. 

7. Elementary Formulas for Integration. 

a. Indefinite integrals. 

I adx =:aidx = aX'^C. 

f/(x) dx+f<l> (x)dx = f{/(x) + ^ (x)} dx. 
If ar = ^ (y), and dx=zil/ (ji) dy^ 

jfix) dx = j>{* {y)} *' O) dy. 

Digitized by VjOOQIC 



XXiv USEFUL FORMULAS. 

Since d{uv) = udv + vdu^ 

j udv z=,uv —x vdu ; and 
if i^ = J{x) and z/ = <^ {x)^ 

fdxf/(x, y) dy =py^/{x, y) dx. 
^^p{x) dx = *p(«) </* -Cxf(x) dx. 

/(^ + ^-)"^-^^^'+^- 

/<^ . ^ r — d'* , ^ 

Y37P = arc tan x-\- C, I ^\^ = arc cot ;c + C 

— , , A = (ab)"^ arc tan (3/tf)* jc + ^» ^or a and 3 both positive, 
= (cUf)"^ arc cot (^/^)* jc + C, for j; and ^ both negative, 

= i (- «^)""* log (Z^^)t^^^ + ^, for ^^^ negative. 

=H^'-^r*iog gig:^:^:j:g +c,for^'~^.>o. 

r(a + :r*)* /& = i ;r (a + ^* + i df log {:c + (^ + ^»} + C 
r(aa - ;c«)» ,/^ = i ^ («« -. ^* + i tf a arc sin ^ + C 

r(tf + bxy dx = l(a^ bx)\lb + C 

♦ This is the fonnula for integration by parts. 

t Natural logarithms are used in this and the following integrals. For relation of natural to 

common logarithms see section i, g. i ^ ^^ rri ^ 

Digitized by VjOOQIC 



USEFUL FORMULAS. XXV 



+ J (fl^r - ^lc^{a + 2 ^o: + a^" » /£r + C. 
C{a + ^^)-» i& = 2 (tf + bx)^lb + C. 
fCa + ^ar) (tf + ^jr)- * //:c = S (3 a^ - 2 a/5 + j8 bx) (a + ^o:) V^ + (7. 
r(d!» — jc*)-» /i^ = ± arc sin ^ + C, 
= T arc cos ~ + Q 
= aarctan(^)' + C. 
J(« + **)-» ^* = log {* + (« + ;^'} + C, 

r(a + 2 *;t + c«^-» <& = T== log {3 + «;+(«:+&*+<»**)»}+C;for<:>o, 

= - 7^ "c sin (^lS)t + ^' ^°^ '<°- 

C<edx = a' /log a-\-C, Ci'dx =ze*-\-C. 

1 1<^ X dx = x log X — x-\- C. 

JOog xy :r'dx = ^^ (log *)•+» + C. 

Isxax dx^=z ^ cos ^ + C, I cos ^ //a: = sin :c + ^• 

1 sin" Jf //a:=: Jx — J sin 2 ;r+ (7, j cos*a:^ = 4^ + i sin 2;r+C 

I tan X dx=> — log cos ^ + C, I cot jc ^ = log sin X'\'C. 

/'^ • r ^ tf sin ^x — ^ COS ^jc ^ , _ 
^s\xibxdx= ^2 ^^2 ^+(7. 

/'^, . , ^ COS bx-^b sin ^:tr ^, , ^ 
^ cos bx dx = ^a ! ^a ^ + (7. 

I arc sin ;r ^:c = ^ arc sin a; ± (i — c^^ + C. 

I arc cos :« /£r = ;ic arc cos ^ T (i — ^* + C 
I arc tan xdx'=.x arc tan x —\ log (i + ^ + ^• 
I arc cot X dx-=LX arc cot :t + J log (i + ^c*) + ^« 



Digitized by 



GooqIc 



XXVI USEFUL FORMULAS. 

b. Definite Integration. 
n b c n 

J4, (x) dx —J4, (x) dx + J"^ {x)dx'\'.. . r^ ix) dx. 
a a b m 

b a 

r^ (^) dx = -Cfl> (x) dx. 
a b 

a a 

r<^ ix) dx = f<l> (a — x) dx. 
o o 

If ^ (;r) = ^ (— x), an " even function " of x, 

a o a 

JV (*) dx—^^ (x) dx = \C4>(x) dx. 
o — tf — fl 

If ^ (jc) = — ^ (— x\ an " odd function " of x, 

o a -{-a 

I ^ (a:) ^ = I ^ (:c) dx, and 1 4^ (x) dx ^=1 o. 
—a o — tf 

If A be the greatest and B the least value of ^ (x) within the limits a and ^^ 

b 
Aib-'d) > JV {x)dx> £{b — a\ 
a 

Si formula useful in determining approximate values of integrals. See, e. g., 
section 6, d. 
b 



If u = Cff, (x) dx, 



du . du 

00 

o 

I 00 

C dx _ C__dx__. 



o 

00 



I 

Digitized by VjOOQIC 



USEFUL FORMULAS. ZXVU 



00 



o 
00 



o 

jP?-—'*x »•/!:«:= I. 3. 5... (2 «— l)tf— (2 a) -(" + *> Vir. 
o 

00 
JV— * ^-1 ^jp _ V(ir/a). 

o 

«• IT 

I sin m:c sin /UP ii[r = J cos fnx cos at ^ = o, 
o o 

when m and » are unequal integers. 
w 

I sin mx cos nx dx =, —^——^ for m and « integers and m^n odd, 
o 

= o, for m and « integers and m— n even. 

W IT 

I sin' mx dx= i cos* x^ur ^ = ^ ir, for m an integer, 
o o 

^ir ^TT I 

fsin- X dx = fcos" xdx— C(i — ar^ »<— « dx. 
000 

00 00 

/sin X J /*cos jf . /^ , V 

o o 

00 00 

j sin :^ dx '=.\co^s? dx'=.\ V(7r/2). 
o o 

00 

r?— *• cos 23* i& = J ^-(&/«)« V(ir/a). 
o 

00 

j ^" «• *• sin 23* i£i;= o. 



Digitized by VjOOQIC 



MENSURATION. 



I. Lines. 
a. In a circle. 



r = radius of circle, 
€ = length of any chord, 
s = arc subtended by r, 
a = angle corresponding to s, 

h = height of arc s above r, or perpendicular distance from middle point of 
arc to chord. 

Circumference = 2 «• r, 

IT = 3.14 159 265, log IT = 0.49 7149^7* 

2 IT = 6.28318 531, log 2 IT =0.79 817 987. 

r=2rsin^a, jz=ra. 

Length of perpendicular from center on chord 
= r cos \ a 

Hr-r(^)--»(^)'-*(^)--...}. 

A = r (l — COS i a) 

= 2 r sin* J a 

=*.j(9+A0)'+*(^)+...}. 

b. In regular polygon. 

r = radius of inscribed circle, 
• i?= radius of circumscribed circle, 
« = number of sides, 
s = length of any side, 
fi = angle subtended by s, 
p = perimeter of polygon. 

Digitized by VjOOQIC 



MENSURATION. 



^ = 36o7«, 

s=:2 rtan\ fiz=z2 J^ sin ^ Pf 

p = ns = 2 nr ta,n i P = 2 nl^ sin \ p. 

See table under c, below. 

c. In ellipse. 

a = semi-axis major, 

d = semi-axis minor, 

^ = eccentricity = (i — ^/a*)*, 

jPz=: perimeter of ellipse, 

■1+8 ^^'i- +■ 



i + ^i-^" 



64 



Distance from centre to focus =.ae. 

Distance from focus to extremity of major axis = (i — i). 

Distance from focus to extremity of minor axis = a. 

= IT (<z -|- ^) ^, say, where q stands for the series in n. The values of q cor- 
responding to a few values of n are : — 



n 


^ 


n 


9 





1. 0000 


0-5 


1.063s 


0.1 


1.0025 


0.6 


1.0922 


0.2 


I.OIOO 


: 0-7 


1. 1267 


0.3 


1.0226 


0.8 


1.1677 


0.4 


1.0404 


1 0.9 


I-2ISS 






I.O ' 


1.2732 



2. Areas. 

a. Area of plane triangle. 
(See table on p. xix.) 

b. Area of Trapezoid. 

bi = upper base of trapezoid, 
b% = lower base of trapezoid, 
a = altitude of trapezoid, or perpendicular distance between bases. 

Area = J (^^ + b^ a. 

Digitized by VjOOQIC 



XXX 



MENSURATION. 



c. Area of regular polygon. 
A = area, 
ryE=. radii of inscribed and circumscribed circles, 
s = length of any side, 
n = number of sides, 
P = angle subtended by x = $60° /n, 

A = nr^ tsia i p = in JP sin p=zins* cot \ p. 

Table of Values. 



9t 





^ 


A 


jP 


s 


3 


120° 


0.4330 J* 


1.2990 it' 


0.5774 s 


1.7321^ 


4 


90 


1. 0000 


2.0000 


0.7071 


I.4I42 


S 


72 


1-7205 


2.3776 


0.8507 


1.1756 


6 


60 


2.5981 


2.5981 


I.OOOO 


I.OOOO 


7 


Sif 


36339 


2-7364 


1.1524 


0.8678 


8 


4S 


5-8284 


2.8284 


1.3066 


0.7654 


9 


40 


6.i8i8 


2.8925 


I.46I9 


0.6840 


10 


36 


7.6942 


2.9389 


I.6I80 


0.6180 


II 


32A 


9-3656 


2-9735 


»-7747 


0.5635 


12 


30 


1 1. 1962 


3.0000 


1-9319 


0.5176 


13 


28ft 


13-1858 


3.0207 


2.0893 


0.4786 


14 


25* 


IS-334S 


3-0372 


2.2470 


0.4450 


IS 


24 


17.6424 


3-0505 


2.4049 


0.4158 


16 


22^ 


20.1094 


30615 


2.5629 

1 


0.3902 



d. Area of circle, circular annulus, etc. 

r = radius of circle, 

d = diameter, 

a = angle of any sector, 
ri, r, = smaller and greater radii of an annulus. 

Area of circle = «• r^ = J ir ^, 

W = 3.14 159 265, log XT = 0.49 714 987- 

Area of sector =zar^f for a in arc, 

= IT r^ W360), for a in degrees. 

Area of annulus = ir (rj* — rj^. 

e. Area of ellipse. 
ay d = semi axes respectively 
e = eccentricity = (a^ — d^^a 



Digitized by 



Google 



MENSURATION. XXXi 

Area of ellipse = w a d, 

= IT a* COS ^, if ^ = sin ^ 

f. Surface of sphere, etc. 

r = radius of sphere, 
^, ^ = latitudes of parallels bounding a zone, 
c = spherical excess of a spherical triangle 
= sum of spherical angles less i8o°, 

Total surface = 4 ir r*. 

Surface of zone = 2 ir r* (sin <^ — sin <^), 

= 4 IT f^ cos J (^ + <^ sin i (<^ — 4^). 

Surface of spherical triangle = r* c, for c in arc, 

= r* c/p", for c in seconds, 
p" = 206 264.8", log p" = 5.3 1 442 s 13. 

g. Surface of right cylinder. 

r = radius of bases of cylinder, 
h = altitude of cylinder. 

Area cylindrical surface = 2 ir r ^. 

Total surface = 2 ir r (r -|- ^). 

h. Surface of right cone. 

r =: radius of base, 
h = altitude, 
s = slant height. 

Conical surface •=.Trrsz=nrr{h^-\' r*)\ 
Total surface = ir r (j + r). 

i. Surface of spheroid. 
a^ d=z semi axes, 

e = eccentricity = {(a + ^) (« — ^)}V^* 

Surface of oblate spheroid = 2 ir «• -j i -| log (--3-) \ 

= 4ira«(i~i^-TV^-A^'-...). 
Surface of prolate spheroid = 2 vad •] (i — ^*-| >• 

= 4^« ^ (i - i^ - A ^-Ti3f^* --..). 

* The logarithm in this fonnula refers to the natural or *' Napierian " system. For areas of 
zones and qnadrilaterals of an oblate spheroid, see pp. 1-liL 

Digitized by VjOOQIC 



ZXXll MENSURATION. 

3. Volumes. 

a. Volume of prism. 

A = area of base, h = altitude, F= volume. 

• V= A A. 

For an oblique triangular prism whose edges a, b^ c are inclined at an angle a 
to the base, 

r=i (a + ^ + ^)^sino. 

b. Volume of pyramid. 

A = area of base, h = altitude, F= volume. 

V= \Ah. 

For a truncated pyramid whose parallel upper and lower bases have areas Ax 
and A^ respectively and whose distance apart is ^, 



The volume of a wedge and obelisk may be expressed by means of the volumes 
of pyramids and prisms. 

c. Volume of right circular cylinder. 
r = radius of base, h = altitude, r= volume. 

IT = 3.X4I59 265, log IT = 0.49 714987' 

For an obliquely truncated cylinder (having a circular base) whose shortest and 
longest elements are h^ and h^ respectively, 

For a hollow cylinder the radii of whose inner and outer surfaces are rx and r, 
respectively, and whose altitude is hy 

V—irh{r\ — r\) 

d. Volume of right cone with circular base, 
r = radius of base, h = altitude, F= volume. 

For a right truncated cone the radii of whose upper and lower parallel bases 
are r^ and r, respectively, and whose altitude is h, 

e. Volume of sphere and spherical segments. 

r = radius of sphere, h = altitude of segment, V-=. volume. 



Digitized by 



v^oogle 



MENSURATION. XXXlll 

For the entire sphere 

y=i ^ IT r*z=: 4.1888 r* approximately. 
(For V and log v see c above.) 
For a spherical segment of height A 

For a zone, or difference in volume of two segments whose altitudes are Ai and 
Ai respectively 

y=irr(Al — AD — i^(Ai — /i^ 

where ri and r, are the radii of the bases of the zone and ^ A = Af^ Ai. 

f. Volume of ellipsoid. 
a, df c = semi axes, ^= volume. 

For an ellipsoid of revolution about 

the a-axis, y= ^ fr a i^^ 
the ^axis, ^= ^v a* d. 



Digitized by 



GooqIc 



UNITS. 



I. Standards of Length and Mass. 

The only systems of units used extensively at the present day are the British 
and metric. The fundamental units in these systems are those of time, length, 
and mass. From these all other units are derived. The unit of time, the mean 
solar second, is common to both systems. 

The standard unit of length in the British system is the Imperial Yard, which 
is defined to be the distance between two marks on a metallic bar, kept in the 
Tower of London, when the temperature of the bar is 60° F. 

The standard unit of mass in the British system is the Imperial Pound Avoirdu- 
pois. It is a cylindrical mass of platinum marked " P. S. 1844, i lb.," preserved 
in the office of the Exchequer at Westminster. 

In the metric system the standard unit of length is the Metre, now represented 
by numerous platinum iridium Prototypes prepared by the International Bureau 
of Weights and Measures. 

The standard of mass in the metric system is the Kilogramme, now represented 
by numerous platinum iridium Prototypes prepared by the International Bureau 
of Weights and Measures. 

Both systems of units have been legalized by the United States. Virtually, how- 
ever, the material standards of length and mass of the United States are cer- 
tain Prototype Metres and certain Prototype Kilogrammes. The present status 
of the two systems of units so far as it relates to the United States is set forth 
in the following statement from the Superintendent of Standard Weights and 
Measures, bearing the date April 5, 1893. 

Fundamental Standards of Length and Mass.* 

" While the Constitution of the United States authorizes Congress to * fix the 
standard of weights and measures,' this power has never been definitely exer- 
cised, and but little legislation has been enacted upon the subject. Washington 
regarded the matter of sufficient importance to justify a special reference to it in 
his first annual message to Congress (January, 1790), and Jefferson, while Secre- 
tary of State, prepared a report at the request of the House of Representatives, in 
which he proposed Quly, 1790) *to reduce every branch to the decimal ratio 
already established for coins, and thus bring the calculation of the principal 
affairs of life within the arithmetic of every man who can multiply and divide.' 
The consideration of the subject being again urged by Washington, a committee 

• Bulletin 26, U. S. Coast and Geodetic Survey. Washington : Government Printing Office, 
1893. Published here by permission of Dr. T. C. Mendenhall, Superintendent Coast and Geo- 
detic Survey. 

Digitized by V^OOQ IC 



UNITS. XXXV 

of Congress reported in favor of Jefferson's plan, but no legislation followed. 
In the mean time the executive branch of the Government found it necessary to 
procure standards for use in the collection of revenue and other operations in 
which weights and measures were required, and the Troughton 82-inch brass 
scale was obtained for the Coast and Geodetic Survey in 18 14, a platinum kilo- 
gramme and metre, by Gallatin, in 182 1, and a Troy pound from London in 1827, 
also by Gallatin. In 1828 the latter was, by act of Congress, made the standard 
of mass for the Mint of the United States, and although totally unfit for such pur- 
pose it has since remained the standard for coinage purposes. 

" In 1830 the Secretary of the Treasury was directed to cause a comparison to 
be made of the standards of weight and measure used at the principal custom- 
houses, as a result of which large discrepancies were disclosed in the weights and 
measures in use. The Treasury Department, being obliged to execute the consti- 
tutional provision that all duties, imposts, and excises shall be uniform throughout 
the United States, adopted the Troughton scale as the standard of length ; the 
avoirdupois pound to be derived from the Troy pound of the Mint as the unit of 
mass. At the same time the Department adopted the wine gallon of 231 cubic 
inches for liquid measure and the Winchester bushel of 2 150*42 cubic inches for 
dry measure. In 1836 the Secretary of the Treasury was authorized to cause a 
complete set of all weights and measures, adopted as standards by the Depart- 
ment for the use of custom-houses and for other purposes, to be delivered to the 
Governor of each State in the Union for the use of the States respectively, the 
object being to encourage uniformity of weights and measures throughout the 
Union. At this time several States had adopted standards differing from those 
used in the Treasury Department, but after a time these were rejected, and finally 
nearly all the States formally adopted by act of legislature the standards which 
had been put in their hands by the National Government. Thus a good degree 
of uniformity was secured, although Congress had not adopted a standard of 
mass or of length other than for coinage purposes as already described. 

" The next and in many respects the most important legislation upon the subject 
was the Act of July 28, 1866, making the use of the metric system lawful through- 
out the United States, and defining the weights and measures in common use in 
terms of the units of this system. This was the first general legislation upon the 
subject, and the metric system was thus the first, and thus far the only system 
made generally legal throughout the country. 

" In 187 s an International Metric Convention was agreed upon by seventeen 
governments, including the United States, at which it was undertaken to establish 
and maintain at common expense a permanent International Bureau of Weights 
and Measures, the first object of which should be the preparation of a new inter- 
national standard metre and a new international standard kilogramme, copies of 
which should be made for distribution among the contributing governments. 
Since the organization of the Bureau, the United States has regularly contributed 
to its support, and in 1889 the copies of the new international prototypes were 
ready for distribution. This was effected by lot, and the United States received 
metres Nos. 21 and 27, and kilogrammes Nos. 4 and 20. The metres and kilo- 
grammes are made from the same material, which is an alloy of platinum with ten 
per cent of iridium. 

". -^ . Digitized by Google 



XXXVl UNITS. 

*'0n January 2, 1890, the seals which had been placed on metre No. 27 and 
kilogramme No. 20, at the International Bureau of Weights and Measures near 
Paris, were broken in the Cabinet room of the Executive Mansion by the Presi- 
dent of the United States, in the presence of the Secretary of State and the 
Secretary of the Treasury, together with a number of invited guests. They were 
thus adopted as the National Protot3rpe Metre and Kilogramme. 

" The Troughton scale, which in the early part of the century had been tenta- 
tively adopted as a standard of length, has long been recognized as quite un- 
suitable for such use, owing to its faulty construction and the inferiority of its 
graduation. For many years, in standardizing length measures, recourse to copies 
of the imperial yard of Great Britain had been necessary, and to the copies of 
the metre of the archives in the Office of Weights and Measures. The standard 
of mass originally selected was likewise unfit for use for similar reasons, and 
had been practically ignored. 

"The recent receipt of the very accurate copies of the International Metric 
Standards, which are constructed in accord with the most advanced conceptions 
of modern metrology, enables comparisons to be made directly with those stand- 
ards, as the equations of the National Prototypes are accurately known. It has 
seemed, therefore, that greater stability in weights and measures, as well as much 
higher accuracy in their comparison, can be secured by accepting the international 
prototypes as the fundamental standards of length and mass. It was doubtless 
the intention of Congress that this should be done when the International Metric 
Convention was entered into in 1875 ; otherwise there would be nothing gained 
from the annual contributions to its support which the Government has con- 
stantly made. Such action will also have the great advantage of putting us in 
direct relation in our weights and measures with all civilized nations, most of 
which have adopted the metric system for exclusive use. The practical effect 
upon our customary weights and measures is, of course, nothing. The most care- 
ful study of the relation of the yard and the metre has failed thus far to show 
that the relation as defined by Congress in the Act of 1866 is in error. The 
pound as there defined, in its relation to the kilogramme, differs from the impe- 
rial pound of Great Britain by not more than one part in one hundred thousand, 
an error, if it be so called, which utterly vanishes in comparison with the allow- 
ances in all ordinary transactions. Only the most refined scientific research will 
demand a closer approximation, and in scientific work the kilogramme itself is 
now universally used, both in this country and in England.* 

* Note. — Reference to the Act of 1866 results in the establishment of the following : — 

Equations, 

I yard = ^— - metre. 
' 3937 

I pound avoirdupois = > kilo. 

A more precise value of the English pound avoirdupois is ^ ^ kilo., differing from the above 

by about one part in one hundred thousand, but the equation established by law is sufficiently 
accurate for aU ordinary conversions. 

As already stated, in work of high precision the kilogramme is now all but universally used, 
and no conversion is required. 



Digitized by VjOOQIC 



UNITS. XXXVU 

•* In view of these facts, and the absence of any material normal standards of 
customary weights and measures, the Office of Weights and Measures, with the 
approval of the Secretary of the Treasury, will in the future regard the Interna- 
tionai Prototype Metre and Kilogramme as fundamental standards, and the cus- 
tomary units, the yard and the pound, will be derived therefrom in accordance 
with the Act of July 28, 1866. Indeed, this course has been practically forced 
upon this office for several years, but it is considered desirable to make this for- 
mal announcement for the information of all interested in the science of metrology 
or in measurements of precision. 

T. C. Mendenhall, 
Superintendent of Standard Weights and Measures. 
" Approved : 

J. G. Carlisle, 

Secretary of the Treasury. 
April 5, 1893." 

No ratios of the yard to the metre and of the pound to the kilogramme have as 
yet been adopted by international agreement ; but precise values of these ratios 
vrill doubtless be determined and adopted within a few years by the International 
Bureau of Weights and Measures. In the mean time, it will suffice for most pur- 
poses to use the values of the ratios adopted provisionally by the Office of Stand- 
ard Weights and Measures of the United States. These values are — 

I yard ^ f |g^ metres, or i metre = f |g J yards, 
I pound ^ \%%%% kilogrammes, or i kilogramme = \%%^i pounds. 

These ratios were legalized by Act of Congress in i866. Expressed decimally 
these values are * — 

I yard ^ 0.914402 metres, i metre = 1.093 611 yards, 
I pound = 0.45 359 kilogrammes, i kilogramme = 2.20462 pounds. 

The above values of the relations of the standards of the British and Metric 
systems of units are adopted in this work. Tables i and 2 give the equivalents 
of multiples of the standard units and also equivalents of multiples of the derived 
units of surface and volume. These tables are published by the Office of Stand- 
ard Weights and Measures of the United States, and are here republished by per- 
mission of the Superintendent of that Office. 



2. British Measures and Weights. 

a. Linear measures. 

The unit of linear measure is the yard. Its principal sub-multiples and multi- 
ples are the inch ; the foot ; the rod, perch, or pole ; the furlong ; and the mile. 
The following table exhibits the relations among these measures : — 

* The actual error of the relation of the yard to the metre may be as great as T/200 0C0th part, 
and the actual error of the relation of the pound to the kilogramme as great as i/ioo 000th part. 



Digitized by VjOOQIC 



XXXVUl 



UNITS. 



Inches. 


Feet. 


Yards. 


Rods. 


Furlongs. 


MUes. 


I 


0.083 


0.028 


0.00505 


0.00012626 


0.0000157828 


12 


I. 


0.333 


0.06060 


0.00151515 


0.00018939 


36 


3- 


I. 


0.1818 


0.00454s 


0.00056818 

• 


198 


16.S 


5-5 


I. 


0.025 


0.003125 


7920 


660. 


220. 


40. 


I. 


0.125 


63360 


5280. 


1760. 


320. 


8. 


I. 



Other measures are the — 

Surveyor's or Gunter's chain = 4 rods = 66 feet = 100 links of 7.92 inches 
each. 

Fathom = 6 feet ; Cable length =120 fathoms. 

Hand = 4 inches ; Palm = 3 inches ; Span = 9 inches. 

b. Surface or square measures. 

The unit of square measure is the square yard. Its relations to the principal 
derived units in use are shown in the following table : — 



Sq. feet. 


Sq. yards. 


Sq. rods. 


Roods. 


Acres. 


Sq. miles. 


I. 


O.IIII 


0.00367309 


0.000091827 


0.000022957 




9- 


I. 


0.0330579 


0.000826448 


0.000206612 




272.25 


30.25 


I. 


0.025 


0.00625 




10890. 


I2ia 


40. 


I. 


0.25 




43560. 


4840. 


i6a 


4. 


I. 




27878400 


3097600. 


102400. 


2560. 


640. 


I. 



c. Measures of capacity. 

The unit of capacity for dry measure is the bushel (2150.4 cubic inches about). 
The units of capacity for liquid measure are the British gallon (of 277.3 cubic 
inches about) and the wine gallon (of 231 cubic inches, nominally). The latter 
gallon is most commonly used in the United States. The following table shows 
the relations of the sub-multiples and multiples of the bushel and gallon : — 



Digitized by 



Google 



UNITS. 



XZXIX 



Dry Measures. 


liquids. 


Pint 


= A bushel. 


Gill 


= ^gall. 


Quart 


= 2 pints = ^ " 


Pint = 4 gills 


= i " 


Peck 


= 8 quarts = J " 


Quart = 2 pints 


= i " 


Bushel 


= 4 pecks =1 " 


Gallon = 4 quarts 


= I " 






Barrel = 31^ gallons 


= 31* " 


1 




Hhd. = 2 barrels 


= 63 " 



Besides the above measures of capacity the following volumetric units are 
used : — 

Cubic foot ^ 1728 cubic inches. 

Cubic yard = 27 cubic feet = 46656 cubic inches. 

Board-measure foot = i square foot X i inch thickness = 144 cubic inches. 

Perch (of masonry) = i perch (16.5 feet) length X i foot height X i-S feet 
thickness^ 24.75 cubic feet ; 25 cubic feet are commonly called a perch for con- 
venience. 

Cord (of wood) = 8 feet length X 4 feet breadth X 4 ^eet height. 
= 128 cubic feet. 



d. Measures of weight. 

The unit of weight is the avoirdupois pound. One 7000th part of this is called 
a grain, and 5760 such grains make the troy pound. The sub-multiples and mul- 
tiples of these two pounds are exhibited in the following table : — 





Avoirdupois. 






Troy. 


Dram 




= 


iriir lb. 


Grain 


= i^M lb. 


Ounce 


= 16 drs. 


= 


A " 


Pennyweight =20 grs. 


= ^iiy 


Pound 


= 16 ozs. 


= 


I " 


Ounce =24 dwt. 


= A " 


Quarter 


= 28 lbs. 


= 


28 " 


Pound =12 ozs. 


= I " 


Hundred-wt 


.= 4qrs. 


= 


112 " 






Long ton 


= 20 cwt. 


= 


2240 " 






Short ton 


= 


= 


2000 " 







Digitized by 



Google 



XI UNITS. 

3. Metric Measures and Weights. 

As explained in section i above, the standards of length and mass in the 
metric system are the metre and the kilogramme. Two material representatives 
of each of these standards are possessed by the United States and preserved at 
the Office of Standard Weights and Measures at Washington, D. C. 

The standards of length are Prototype Metres Nos. 21 and 27. These are 
platinum iridium bars of X cross section, and their lengths are defined by lines 
ruled on their neutral surfaces. Their lengths at any temperature / Centigrade 
are given by the following equations : — 

Prototype No. 21 == i*" + 2.^5 + S,i^66$ t -|- o.'^oo 100 /*, 
Prototype No. 27 = i"* — i.'*6 -|- 8.'*657 / + o-'*oo 100 /*, 

where the symbol fi stands for one micron, or one millionth of a metre.- The 

probable errors of these Prototypes may be taken as not exceeding ± o.'*2, or 

1/5 000 oooth of a metre for temperatures between o"^ and 30° C. 

The standards of mass are Protot3rpe Kilogrammes Nos. 4 and 20. They are 

cylindrical masses of platinum iridium. Their masses and volumes are given by 

the following equations : — 

Mass. Volume. 

Prototype Kilogramme No. 4=1*^ — o."^o75, 46."'4i8, 

Prototype Kilogramme No. 20 = i*^ — o«"^o39» 46."'402, 

where the — 

Symbol kg stands for one kilogramme, 

Symbol mg stands for one milligramme ^ o.*^oooooi, 

Symbol tnl stands for one millilitre = one cubic centimetre. 

The definitive probable error assigned to the Prototype Kilogrammes by the 
International Bureau is ± o."'oo2, or 1/500 000 oooth of a kilogramme. 

The act of Congress approved July 28, 1866, authorizing the use of the metric 
system in the United States, provides that the tables in a schedule annexed shall 
be recognized " as establishing, in terms of the weights and measures now in use 
in the United States, the equivalents of the weights and measures expressed 
therein in terms of the metric system ; and said tables may be lawfully used for 
computing, determining, and expressing, in customary weights and measures, the 
weights and measures of the metric system." The following copy of that sched- 
ule gives the denominations of the multiples and sub-multiples of the measures 
of length, surface, capacity, and weight in the metric system as well as their 
legalized equivalents in British units. 



Digitized by 



GooqIc 



UNITS. 



Xli 



Schedule annexed to Act of July 28, 1866. 
Measures of Length. 



Equivalents in Denominations in Use. 



Metric Denominations. 



M^ametre 
Kilometre . 
Hectometre 
Decametre . 
Metre . . 
Decimetre . 
Centimetre . 
MUlunetre . 



Values in Metres. 



lOOOO. 

1000. 
100. 
10. 



0.1 
0.01 
0.001 



6.3137 miles. 

0.62137 °ule, or 3280 feet and lo inches. 

328 feet and i inch. 

393.7 inches. 

39.37 inches. 

3.937 inches. 

0.3937 inch. 

0.0394 inch. 



Measures of Surface. 



Metric Denominations. 



Hectare 

Are 

Centare 



Values in 
Square Metres. 



loooo 
100 



Equivalents in Denominations in Use. 



a.471 acres. 

1 19.6 square yards. 

1550 square inches. 



Measures of Capacity. 



Metric Denominations and Values. 



Equivalents in Denominations in Use. 



Names. 



Kilofitre or stere 

Hectoiitz« 

Decalitre. 

Litre . . 

DedKtre. 

Centilitre 

MiUiUtre. 



No. of 
Litres. 



1000. 
100. 



0.01 
0.001 



Cubic Measure. 



I cubic metre . . 
o. I cubic metre . 
10 cubic decimetres 
I cubic decimetre . 
o. I cubic decimetre 
10 cubic centimetres 
I cubic centimetre 



Dry Measure. 



I. ')o8 cubic yards 
2 bus. and 3.35 pks. 
9.08 quarts ... 
0.908 quart . . . 
6. 1022 cubic inches 
0.6102 cubic inch 
0.061 cubic inch . 



Liqiiid or Wine 
Measure. 



264.17 gallons. 
26.417 i^allons. 
2.6417 gallons. 
1.0567 quarts. 
0.845 Kill. 
0.338 fluid-ounce. 
0.27 fluid-drachm. 



Measures of Weight. 



Metric Denominations and Values. 



Names. 



Millier or tonneau 
<>iintal .... 
Myriagramme . . 
Kiiogrsnune, or kilo 
Hectogranune . . 
Decagramme . . 
Gramme .... 

Coitigramme . . 
Millignunme . . 



Number of 
Grammes. 



loooo. 

1000. 

100. 

10. 



0.1 

0.01 

0.001 



Weight of what Quantity of Water 
at Maximum Density. 



I cubic metre . . . 
I hectolitre . . . 
10 litres .... 

I litre 

I decilitre .... 
10 cubic centimetres 
I cubic centimetre . 
o. I cubic centimetre 
10 cubic millimetres 
I cubic millimetre . 



Equivalents in Denominations 
in Use. 



Avoirdupois Weight. 



2204.6 pounds. 
220.46 pounds. 
22.046 pounds. 
2.2046 pounds. 
3.5274 ounces. 
0.3527 ounce. 
1 5* 43s grains. 
1.5432 grains. 
0.1543 grain. 
00154 S^Ain. 



Digitized by 



Google 



xlii UNITS. 

4. The C G. S. System of Units. 

The C. G. S. system of units is a metric system in which the fundamental 
units are the centimetre, the gramme, and the mean solar second. It is the sys- 
tem now generally used for the expression of physical quantities. 

The most important of the derived units in the C. G. S. system, their equiva- 
lents in terms of ordinary units, and their dimensions in terms of the fundamen- 
tal units of length, mass, and time, are given in the Appendix to this volume. 

For an elaborate consideration of the subject of units and their interrelations 
the reader may be referred to "Units and Physical Constants," by J. D. Everett, 
London, Macmillan & Co., i2mo, 4th ed., 1891. 



Digitized by 



GooqIc 



GEODESY. 



I. Form of the Earth. The Earth's Spheroid. The Geoid. 

The shape of the earth is defined essentially by the sea surface, which embraces 
about three fourths of the entire surface. The sea surface is an equipotential 
surface due to the attraction of the earth's mass and to the centrifugal force of its 
rotation. We may imagine this surface to extend through the continents, and 
thus to be continuous. Its position at any continental point is the height at 
which water would stand if a canal connected the point with the ocean. 

Geodetic measurements show that this surface is represented very closely by 
an oblate spheroid, whose shorter axis coincides with the rotation axis of the 
earth. This is called the earth's spheroid. The actual sea surface, on the other 
hand, is called the geoid. With respect to the spheroid the geoid is a wavy sur- 
face lying partly above and partly below ; but the extent of the divergence of the 
two surfaces is probably confined to a few hundred feet. 

2. Adopted Dimensions of Earth's Spheroid. 

The dimensions of the earth's spheroid here adopted are those of General A. 
R. Clarke, published in 1866, to wit: — 

Semi major axis, a = 20 926 062 English feet. 
Semi minor axis, ^ = 20 855 121 " " 

3. Auxiliary Quantities. 
The following quantities are of frequent use in geodetic formulas : — 

^ = 1/ 5 — , the eccentricity of generating ellipse, 

a — d 
f = > the flattening, ellipticity, or compression, 

I — « 



^=2/-/«. 



/=^-v^^"^=^ + -f + ^ + I^ + 



2 n 



Digitized by VjOOQIC 



xliv GEODESY. 

/ 



2 



±7 = (J/) + a/)' + a/)* + a/)* + . 



'^= (F^^ = 4 (« - 2 «' + 3 «• - 4 »* + • • •)• 

"^ =r=r7 — T *+■ T "^ "8" "^ 16" + • • • • 






I + y^l — ^ 4 ' 8 * 64 ' 128 

The numerical values of the most useful of these quantities and their logarithms 
are — 

log 
tf = 20 926 062 feet, 7'32o6875, 

3 = 20 85s 121 feet, 7.3192127, 

^= 0.00676866, 7.8305030 — 10, 

m = 0.00339583, 7.5309454 - 10, 

n =z 0.00169792, 7.2299162 — 10. 

4. Equations to Generating Ellipse of Spheroid. 

With the origin at the centre of the ellipse, and with its axes as coordinate 
axes, the equation in Cartesian co-ordinates is 

^ + =^ = 1. 0) 

a and 3 being the major and minor axes respectively, and x and y being parallel 
to those axes respectively. 

For many purposes it is useful to replace equation (i) by the two following : — 

a: = tf cos Oj 

which give (i) by the elimination of 0. This angle is called the reduced latitude. 
See section 5. 

5. Latitudes used in Geodesy. 

Three different latitudes are used in geodesy, namely: (i) Astronomical or 
geographical latitude ; (2) geocentric latitude ; (3) reduced latitude. The astro- 
nomical latitude of a place is the angle between the normal (or plumb line) at that 
place and the plane of the earth's equator ; or when the plumb line at the place 
coincides with the normal to the generating ellipse, it is the angle between that 
normal and the major axis of the ellipse. The geocentric latitude of a place is 
the angle between the equator and a line drawn from the place to the earth's cen- 
tre ; or it is the angle between the radius-vector of the place and the equator. 
The reduced latitude is defined by equations (2) in section 4 above. The geo- 
metrical relations of these different latitudes are shown in Fig. i by the notation 
given below. 

Digitized by VjOOQ IC 



GEODESY. • Xlv 

In order to express the analytical relations between the different latitudes let 

B <l> = the astronomical latitude, 

if/ = the geocentric latitude, 
$ = the reduced latitude. 

Then, referring to equations (i) and (2) under 
section 4 above, and to Fig. i, it appears that 




Figl. 



tan <^: 
tan ^ : 



dx _.a^y 



•^v 






tantf = f. 
dx 



Hence 



tan ^ = — g- tan <^ = (i — ^ tan <^, 

tan tf = (i — <f^» tan <^ = (i — r^"* tan ^. 

^ — ^ = »f sin 2 <^ — /«^ sin 4 <^ + . . . , 
<^ — tf = «sin2^ — 4^«'sin4<^ + .... 



For the adopted spheroid 



and 



log (i - ^ = 9.9970504, 



^ — ^ (in seconds) = 7oo."44 sin 2 <^ — i."i9 sin 4 4h 
if^ -^ tf (in seconds) = 35o."22 sin 2 ^ — ©."30 sin 4 ^ 

6. Radii of Curvature. 

p^ = radius of curvature of meridian section of spheroid at any point whose 

latitude is <f>=^PO, Fig. i, 
p. = radius of curvature of normal section perpendicular to the meridian at 

the same point = PQ, Fig. i, 
p. = radius of curvature of normal section making angle a with the meridian 

at same point. 

p« = /z (i - ^ (i - <f» sin« <^)-f, 
p« = d5(i — i?^sinV)-*, 
£^ COS* a , sin* a 

Pa~ Pm "^ Pn 
I ^ 

^^ i (' + i"3? ^^^^ ^ ^^^* a) (i — ^ sin* <^)*. 

log (i - ^ sin* <^)-* = + log (i + n) 

— fin cos 2<l> 
+ i A* »* cos 4<^ 

— ^ fin* cos 6<^ 

fi = modulus of common logarithms and n is same as in section 3. For the 
adopted spheroid — 

Digitized by VjOOQIC 



Xlvi GEODESY. 

Radius of curvature of meridian section p^ in feet, 
log P-. = + 7-3199482 

— [4.34482] cos 2<^ 
+ [1.274] cos 4<^ 
~~ • . • • 

Radius of curvature of normal section pn in feet. 

log p» = + 7-32^243 

— [3.86^70] COS 2^ 
+ [0.797] COS 4<^ 

The numbers in brackets in these formulas are logarithms to be added to the 
logarithms of cos 2<^ and cos 4<^. The numbers corresponding to the sums of 
these logarithms will be in units of the seventh decimal place of the first constant 
Thus, for <^ = o, 

log p,= 7.3214243 
- 7373-9 

_+ 6^ 

= 7.3206875 = log a. 

7. Length of Arcs of Meridians and Parallels of Latitude. 

a. Arcs of Meridian. 

For the computation of short meridional arcs lying between given parallels of 
latitude the following simple formulas suffice : 

* = K^ + *i), (i) 

In these, ^ and <^ are the latitudes of the ends of the arc, A^is the required 
length, and p^ is the meridian radius of curvature for the latitude ^ of the middle 
point of the arc. The formula for ^M implies that A^ is expressed in parts of 
the radius. If A<^ is expressed in seconds, minutes, or degrees of arc, the for- 
mula becomes — 

Meridional distance h.M in feet. 

A »^ — Pm A<^ (in seconds) 
^^— 206264.8 ' 

p^ A<^ (in minutes) 

~ 3437-747 ' 

_ p^ A<^ (in degrees) . 

57-29578 ' (2) 

log (1/206264.8) = 4.6855749 — io» 
log (1/3437-747) = 6.4637261 - 10, 
log 0/57-29578) = 8.2418774 — 10. 
^i, ^, = end latitudes of arc, A^ = ^, — ^„ 
pb = meridian radius of curvature for ^ = ^(^ + ^) * ^^r log p^ see Table xo. 



Digitized byLjOOQlC 



GEODESY. Xlvii 

The relations (2) wfll answer most practical purposes when A^ does not exceed 
5°. A comparison with the precise formula (3) below shows in fact that the error 
of (2) is very nearly 

i ^ Aif>* cos 2if> . /^lM, 

which vanishes for ^ = 45°, and which for A^ = 5° is at most yirAinr ^-^» or 
about II feet. 

Numerical example. Suppose — 

^ = 37°29'48/'i7, 
^ = 3S%8'29."89. 
Then 

* = K^ + <^) = 36" 39' 09."o3, 

A«^= 4^— <^= i°4i'. i8."28, 

= 6o78."28. 

From the first of (2) 

cons't. log 4.6855749 — 10 

Table 10, log p« 7.3193112 

log A«^ 3.7837807 

AJIf = 614705 feet, log AJfeT 5.7886668 

The values of AJl/'for intervals of 10", 20" . . . 60", and for 10', 20' . . . 60' are 
given in Table 17 for each degree of latitude from 0° to 90°. 

For precise computation of long meridional arcs the following formula is ade- 
quate : — 

^M=z Aq A^ — Ai cos 2^ sin A^ 
+ A% cos 4<^ sin 2A^ 

— A^ cos 6<^ sin 3A^ (3) 

+ A^ cos 8^ sin 4A^ 



In this, AJf, ^, and A^ have the same meanings as above, and ^0, ^j, . . . are 
functions of a and ^ or of ^ and n. 
Thus, in terms of a and n^ 

^o = « (I +«r + i «" + A «* + . . . X 

^i = 3a(i + «)-»(«-i«»-...), 

^,= V a (l + «)-!(««- i «^- . . . ), 

Introducing the adopted values of a and », these constants become — 

log. 
^0 = 20 890 606 feet, 7.3 1995 10, 
Ai= 106 411 feet, 5.0269880, 
^, = 113 feet, 2.0528, 

A^ = 0.15 feet, 9.174 — 10. 



Digitized by 



GooqIc 



xlviii GEODESY. 

It appears, therefore, that the first three terms of (3) will give AJl/'with an 
accuracy considerably surpassing that of the constant A^ In the use of (3) it will 
generally be most convenient to express A<^ in degrees, and in this case Aq must 
be divided by the number of degrees in the radius, viz. : 57.2957795 [1.7581226]. 
Applying this value and writing the logarithms of Aq, A^^ etc., in rectan^lar 
brackets in place of Aq, Ai, etc., (3) becomes 

Meridional distance AM in feet 

^Jlf=: [5.5618284] A<^ (in degrees) 

— [5.0269880] cos 2<^ sin A^ (4) 

-}- [2.0528] cos 4<^ sin 2A^ 

2^ = ♦« + ^i. A^ == ^, — ^^ ^j, ^, = end latitudes of arc. 

Formula (4) will suffice for the calculation of any portion or the whole of a 
quadrant. The length of a quadrant is the value of the first term of (4) when 
<^ = 45° and A<^ = 90^, since all of the remaining terms vanish. 

Numerical examples, — 1°. Suppose 

«^i = o'' and <^ = 45°. 
Then 2<^ = 4S^ 

log. 
cons't 5.5618284 
45 1.6532125 



ist term + 16 407 443 feet ist term 7.2150409 

cos 2^ 9.8494850 — 10 
sin A<^ 9.8494850 — 10 
cons't 5.0269880 

2d term — 53 205.7 ^^^^ ^^ ^^"^"^ 47259580 

The third term of the series vanishes by reason of the factor cos 4 <^ = cos 90** 
= o. The sum of the first two terms, or length of a meridional arc from the 
equator to the parallel of 45®, is 16 354 237 feet. 

2°. Suppose ^i = 45° and ^ = 90°. 

Then 2^ = 135°, 

A^= 45". 

The numerical values of the terms will be the same as in the previous example, 
but the sign of the second term will be plus. Hence the length of the meridional 
arc between the parallel of 45° and the adjacent pole is 16 460 649 feet. The 
sum of these two computed distances, or the length of a quadrant, is 32 814886 
feet. 

Digitized by VjOOQIC 



GEODESY. Xlix 

This agrees as it should with the length given by (4) when 2^ ^ 90^ and A^ 
= 90**.* 

b. Arcs of parallel. 

The radius of any parallel of latitude is equal to the product of the radius of 
curvature of the normal section for the same latitude by the cosine of that lati- 
tude. That is, see Fig. i, r being the radius of the parallel — 

r = p^cos«^ 

and the entire length of the parallel is — 

2 IT r = 2 IT p, cos ^. 

Designate the portion of a parallel lying between meridians whose longitudes 
are \\ and A^ by A/', and call the difference of longitude A^ — • Ai, AA. 

Then — 

Arc of parallel tJ* in feet 

. « 2 IT pL, cos ^ ^ , ,. , V 

^-P= X296000 ^("'^^°'^»)' 

2 IT p^ cos ^^^/. .^v /v 

= aTeoG ^^ (''' minutes), (i) 

2 «r p, COS ^ ^ . /. J X 

= V60 ^^ ^"^ degrees). 

log (2 ir/i 296000) = 4.6855749 — 10, 

log (2 ir/21600) = 6.4637261 — 10, 

log (2 ir/360) = 8.2418774 — 10. 

A,, A^ = end longitudes of arc, AA. ^ X, — A,, 
ph = radius of curvature of normal section for latitude of parallel ; for log p^k see Table 11. 

NumericcU Example, — Suppose ^ = 35°, and AA = 72^ Then from the third 
of (9) 

log. 
cons't 8.2418774 — 10 

Table 11, p, 7.321 17 16 

cos«^ 9.9133645 — 10 
AA 1.8573325 

A/'= 21 564 827 feet, tkP 7.3337460 

* The best formula for computing the entire length of a meridian curve is this : 

»(« + *) (i + l«« + A«* + ...), 

m which a, b, and n are the same as defined in section 2. For the values here adopted— > 

log. 
(i 4- i »' + • • •) 0.0000003 

(a + b) 7.6209807 

» 0.4971499 

length 8.1181309 

The length of the perimeter of the generating ellipse, or the meridian circumference of the 
earth, is, therefore — 

131 259 550 feet = 24 859.76 miles. 



Digitized by VjOOQIC 



1 



GEODESY. 



The values of A/'for intervals of lo", 20" . . . 60", and for 10', 20' 
are given in Table 18 for each degree of latitude from 0° to 90°. 

8. Radius- Vector of Earth's Spheroid. 

p = radius-vector 
= a (i — 2^ sin« ft> + ^ sin« </>)* (i — ^ sin* <^)-». 



60' 



logp: 



^^S I'Vv^l'Tir?- +/*(«-«) cos 2^ 

~" i A* (^* "■ ^*) cos 4^ 
+ J /* («• — «•) cos 6^ 



For the adopted spheroid 

log (p in feet) = 7.3199520 + [3.86769] cos 2«^ 

— [1-2737] cos 4<^, 

the logarithms for the terms in ^ corresponding to units of the seventh decimal 
place. Thus, for ^ = o, 

^og p = 7-3199520 

+ 7373-8 
— 18.8 



= 7.320687s = log a. 

9. Areas of Zones and Quadrilaterals of the Earth's 

Surface. 

An expression for the area of a zone of the earth's surface or of a quadrilateral 
bounded by meridians and parallels may be found in the following manner : — 

The area of an elementary zone dZ, whose middle latitude is ^ and whose 
width is p„ dif>f is (see Fig. i), 

dZ = 2 w r p^dtfi 

= 2 7rp„,p^cosif> dff>. 

By means of the relations in section 6 this becomes 

J7 a/ ^ cos d4> 



„ I — ^ // (<f sin A) 



(x) 



2 V a 



e (i — ^ sin'-* ^f ' 



The integral of this between limits corresponding to <^ and <^ or the area of a 
zone bounded by parallels whose latitudes are if>i and ^ respectively, is 



Z=ira^ 



I - ^ 



f sin <^ 



^ sin 01 



I — ^ sin' ^ I — ^ sin* ^ 



+ * Nap. log ?^+'f ^M'l''!"?^ 
I » f ^ (i — ^ sm </>,) (i + ^ sm 0i) . 



>■ (2) 

Digitized byLjOOQlC 



GEODESY. 



To get the area of the entire surface of the spheroid, make <^i = — • J ir and <^ 
= -|- i TT in (2). The result is 

Surface of spheroid = 2 tt a' I i + — ~r ^^P- ^^S 1 j _^ ) \ (3) 

For numerical applications it is most advantageous to express (3) in a series of 
powers of e. Thus, by Maclaurin's theorem, 



Surface 



of spheroid = 4 'r a* ^i -——————... j. (4) 



For the calculation of areas of zones and quadrilaterals it is also most advan- 
tageous to expand (2) in a series of powers of e sin <;^] and e sin ^ and express 
the result in terms of multiples of the half sum and half difference of <^ and <^. 
Thus, (2) readily assumes the form 

Z •=.2v a^ {\ — ^ I (sin ^ — sin <i^i) + ~ ^ (sin* <^ — sin* ^) + . • . I. 

From this, by substitution and reduction, there results 



wherein 



_ 1 Ci cos <^ sin J A</> — Ca cos 3«^ sin I A0 ) 

^ — 2 ^ ) _|_ Cs cos 50 sin # A^ - . i ^S; 

A«^ = 08 — <^i , 

a=.^(|- + ^ + o+...), (6) 

^=.».(i^ + i + ...). 

If Q be the area of a quadrilateral bounded by the parallels whose latitudes are 
01 and 0s and by meridians whose difference of longitude is AA, 

AX 
^ 27r 

Hence, using the English mile as unit of length, (5) and (6) give for the 
adopted spheroid — 

Area of quadrflateral in square miles. 

C = AA (in degrees) j 1'°^ ^ ^'1* ^^''J "^^ ^* ''^^ * ^* 1 , 
^ / + ^8 cos 50 sm } A0 — . . . ) ' 

log ^ * = 5.7375398, (7) 

log rj= 2.79173, 
log ^3 = 9.976 — 10. 

♦ = i (^, + ^1 ), A^ = ^, — ^1. 
^1, ^2 = latitudes of bounding parallels, 

AA. ^ difference of longitude of bounding meridians. 

* ^if ^1. ^» ^^ obtained from Cj, C^ C, respectively by dividing the latter by the number of 
degrees in the radius, viz : 57-29578. 

Digitized by V^OOQ IC 



lii GEODESY. 

Numerical examples, — i°. Suppose <^ = o, ^ = 90° and AX = 360°. Then 
(7) should give the area of a hemispheroid. The calculation runs thus : 

log. log. log. 

^1 5-7375398 c, 2.79173 c^ 9.976 - 10 

cos 9.8494850 — 10 COS 3 ^ 9.84948, — 10 cos s ^ 9.849, — 10 

sin \ A<^ 9.8494850 — 10 sin I A^ 9.84949 — 10 sin f A^ 9-848, — 10 

360 2.5563025 360 2.55630 360 2.556 

Sum 7.9928123 5.04700, 2.229 

Hence — 

ist term = -j- 98358591 
2dterm = -- 111429 
3d term = + 169 



Q = sum = 98470189 

Twice this is the area of the spheroidal surface of the earth ; 1. ^., 196 940 378 
square miles. 

2°. The last result may be checked by (4). Thus, 



(y- + 7j + . • . ) = 0.00225928 



1.9990177 

log a* = 7.1961072 

log 4 ^r = 1.0992099 

log (196940407) = 8.2943348 

This number agrees with the number derived above as closely as 7-place 
logarithms will permit, the discrepancy between the two values being about 
vjnsijnru P^^ ^^ ^^^ siea.. Hence, with a precision somewhat greater than the 
precision of the elements of the adopted spheroid warrants, 

Area earth's surface = 196 940 400 square miles. 

The areas of quadrilaterals of the earth's surface bounded by meridians and 
parallels of 1°, 30', 15', and 10' extent respectively, in latitude and longitude, are 
given in Tables 25 to 29. 



10. Spheres of Equal Volume and Equal Surface with 
Earth's Spheroid. 

rj = radius of sphere having same volume as the earth's spheroid, 
rs = radius of sphere having same surface as that spheroid. 



Digitized by 



GooqIc 



1^ 



GEODESY. 

<j — ri = J<i^(i+A^4"---) = 0-00II3 «> about 
r2 — rj = ^ tf^* -]-... = o.oooooi <z, about. 



liii 




II. Coordinates for the Polyconic Projection of Maps. 

In the polyconic system of map projection every parallel of latitude appears on 
the map as the developed circumference of the 
base of a right cone tangent to the spheroid along 
that parallel. Thus the parallel EF (Fig. 2) 
will appear in projection as the arc of a circle 
EOF (Fig. 3) whose radius 0G-=>1 is equal 
to the slant height of the tangent cone EFG 
(Fig. 2). Evidently one meridian and only one 
will appear as a straight line. This meridian is 
generally made the central meridian of the area 
to be projected. The distances along this cen- 
tral meridian between consecutive parallels are 
made equal (on the scale of the map) to the real Aj- 
distances along the surface of the spheroid. The 
circles in which the parallels are developed are 
not concentric, but their centres all lie on the 
central meridian. The meridians . are concave 
toward the central meridian, and, except near the corners of maps showing large 

areas, they cross the paral- 
lels at angles differing little 
from right angles. 

In the practical work of 
map making, the meridians 
and parallels are most ad- 
vantageously defined by the 
co-ordinates of their points 
of intersection. These co- 
ordinates may be expressed 
in the following manner : 
For any parallel, as EOF 
(Fig. 3), take the origin O 
at the intersection with the 
central meridian, and let the rectangular axes oi V (OG) and X (OQ) be re- 
spectively coincident with and perpendicular to this meridian. Call the interval 
in longitude between the central meridian and the next adjacent one AA, and 
denote the angle at the centre G subtended by the developed arc OF by a. 




Digitized by 



Google 



liv • GEODESY. 

Then from Fig. 3 it appears that 

x= / sin a, 
y= 2 / sin* Jo. 

But from Figs. 2 and 3, 

/=p^COt«^, 
/a = r AX = p^ AA. cos <^, 
whence 

a = AA. sin ^ 

Hence, in terms of known quantities there result 

x = p^ cot <f> sin (AX sin </>), ^ x 

^ = 2 p, cot ^ sin* ^ (AX sin <;^). 

Numerical example. — Suppose <^ = 40° and AX = 25° = 90000". 

Then 

log 90000" = 4.9542425, 

log sin 40° = 9.8080675 — 10, 

log 578So-"88 = 4.7623100 ; 

AX sin.</» = 16° 04' io."88, 

J (AX sin <^) = 8°o2'o5."44. 

log. log. 

sin (AX sin <^) 9.4421760 — 10 sin \ (AX sin <^) 9.1454305 — 10 

cot ^ 0.0761865 sin i (AX sin ^) 9.1454305 — 10 

pi,. Table 11 7.3212956 cot ^ 0.0761865 

p^ Table 11 7.3212956 

2 0.3010300 

X 6.8396581 y 5-9^93731 

jT = 6 912 865 feet y = 975 828 feet 

The equations (i) are exact expressions for the co-ordinates. But when 
AX is small, one may use the first terms in the expansions of sin (AX sin <^) and 
sin* K^^ ^i'^ ^) ^"^ reach results of a much simpler form. 

Thus, 

sin (AX sin ^) = AX sin ^ — J(AX sin <^)* + . . . , 
sin* i(^0 sin <^) = i(AX sin <^)* - A(^ sin <^)* + . . . ; 



whence, to terms of the second order, 

^ = p„ AX cos <^ [i — i(AX sin <^)*], 

y = iPn (AX)* sin 2<l> [i - T^KAX sin<^)*]. 



(2) 



If the terms of the second order in these equations be neglected, the value of 
X will be too great by an amount somewhat less than i(AX sin </>)* . x, and the 
value of y will be too great by an amount somewhat less than -^(AX sin <^)* . y. 
An idea of the magnitudes of these fractions of x and y may be gained from the 
following table, which gives the values of i(AX sin <^)* for a few values of the 
arguments AX and (^. 

Digitized by VjOOQIC 



GEODSSY. 
Valiics of i(AA sin <^)«. 



Iv 





* 


AX 


20° 


40° 


60° 


o 

I 


1/1680OO 


1/47700 

1 


1/26260 


2 


1/42000 


1/119OO 


1/6560 


3 


1/1870O 


1/5300 


1/2920 



It appears from this table that the first terms of (2) will suffice in computing 
the coordinates for projection of all maps on ordinary scales, and of less extent 
in longitude than 2° from the middle meridian. For example, the value of x for 
AX = 2°, and <j> = 40°, and for a scale of two miles to one inch (i/i 26720), is 
53.063 inches less 1/11900 part, or about 0.004 inch, which may properly be 
regarded as a vanishing quantity in map construction. For the computation of 
the co-ordinates given in the tables 19 to 24, where AX does not exceed 1°, it 
is amply sufficient, therefore, to use 



^ = p„ AX cos <^, 

y = ipn (^y sin 2i>. 



(3) 



In these formulas and in (2), if AX is expressed in seconds, minutes, or degrees, 
it must be divided by the number of seconds, minutes, or degrees in the radius. 
The logarithms of the reciprocals of these numbers are given on p. xlvi. In the 
construction of tables like 19 to 24, it is most convenient, when English units are 
used, to express AX in minutes and x and y in inches. For this purpose, sup- 
posing log pM to be taken from Table 11, if s be the scale of the map, or scale 
factor, equations (3) become — 

Co-ordinates x and^ in inches for scale s. 



X = 



3437-747 
3 



p, s AX cos <t>. 



AX in minutes ; 

log (12/3437.747) = 7.54291 -- 10, 
log (3/(3437747)0 = 3-4046 - 10. 



(4) 



Tables 19 to 24 give the values of x andy for various scales and for the zone of 
the earth's surface lying between 0° and 80°. 

Numerical example, — Suppose <^ = 40° and AX = 15' ; and let the scale of 
the map be one mile to the inch, or ^ = 1/63360. Then the calculation by (4)1 
runs thus : Digitized by LjOOgic 



Ivi GEODESY. 



log. 


log. 


cons't 7.54291 — 10 


cons't 3.4046 — 10 


Pn 7-32130 


Pn 7-3213 


s 5.19818 — 10 


s 5.1982 — 10 


IS 1. 17609 


(15)* 2.3522 


COS ^ 9.88425 — 10 


sin 2<^ 9.9934 — 10 


X 1.12273 


y 8.2697 — 10 


In. 


In. 


X = 13.266 


y = 0.01861. 



These values of x and ^, it will be observed, agree with those corresponding to 
the same arguments in Table 22. 

When many values for the same scale are to be computed, log s should, of 
course, be combined with the constant logarithms of (4). Moreover, since in (4) 
X varies as AA and y as (AX)*, when several pairs of co-ordinates are to be com- 
puted for the same latitude, it will be most advantageous to compute the pair cor- 
responding to the greatest common divisor of the several values of AX and derive 
the other pairs by direct multiplication. 

12. Lines on a Spheroid. 

The most important lines on a spheroid used in geodesy are (a) the curve of a 
vertical section ; (S) the geodesic line ; and (c) the alignment curve. Imagine two 
points in the surface of a spheroid, and denote them by /\ and P2 respectively. 
The vertical plane at I*i containing J\ and the vertical plane at ^2 containing 
1*1 give vertical section curves or lines. The curves cut out by these two planes 
coincide only when /\ and J\ are in a meridian plane. The geodesic line is 
the shortest line joining JPi and /g, and lying in the surface of the spheroid. 
The alignment curve on a spheroid is a curve whose vertical tangent plane at 
every point of its length contains the terminal points I*i and J\. The curve 
(a) lies wholly in one plane, while (f) and (c) are curves of double curvature. 
In the case of a triangle formed by joining three points on a spheroid by lines 
lying in its surface, the curves of class (a) give two distinct sets of triangle 
sides, while the curves of classes (d) and (c) give but one set of sides each. 
For all intervisible points on the surface of the earth, these different lines differ 
immaterially in length ; the only appreciable differences they present are in their 
a2imuths (see formula under b below). Of the three classes of curves the first 
two only are of special importance. 

a. Characteristic property of curves of vertical section. 

Let ttij = azimuth of vertical section at J\ through J\, 

a^i = azimuth of vertical section at I2 through JF^i, 

$1, $2 = reduced latitudes of /\ and 1*2 respectively, 

81, 82 = angles of depression at /\ and J\ respectively of the chord joining 
these points. 

Then the characteristic property of the vertical section curve joining /\ and /i is 

sin aui cos 61 cos Si = sin (oj.! — 180°) cos O2 cos ^ j 

Digitized byLjOOQlC 



GEODESY. Ivii 

The azimuths a^ and 03.1, it will be observed, are the astronomical azimuths, 
or the azimuths which would be determined astronomically by means of an alti- 
tude and azimuth instrument. 

b. Characteristic property of geodesic line. 

Let aYs = azimuth of geodesic line at -Pi, 

a'2.1 = azimuth of geodesic line at P^ 
0^ $2 = reduced latitudes of Pi and P^ respectively. 

Then the characteristic property of the geodesic line is 

sin ttj^ cos ^1 = sin (i 80°— 02.1) cos 62 = cos 60, 

where ^0 is the reduced latitude of the point where the geodesic through Pi and 
P^ is at right angles to a meridian plane. 

The difference between the astronomical azimuth a^^s and the geodesic azimuth 
a'l^ is expressed by the following formula : 

ai^ — a'lj (in seconds) =1^ p" ^ / £ | cos^ <^ sin 201^ 



where s = length of geodesic line Pi P^, 

a = major semi-axis of spheroid, 
ez=. eccentricity of spheroid, 
p" = 2o6264."8, 

if> =. astronomical latitude of /\, 
ttij = azimuth (astronomical or geodesic) of Pi P^ 

log tV p"\-\ = 7-4244 — 20, for a in feet. 



Thus, for ^ = o and aj^ = 45°, for which cos* ^ sin 20^, = i, the above for- 
mula gives 

aij — a'ug = o."o74, for s = 100 miles, 
;= 0.296, for s = 200 miles. 



so that for most geodetic work this difference is of little if any importance. 

13. Solution of Spheroidal Triangles. 

The data for solution of a spheroidal triangle ordinarily presented are the 
measured angles and the length of one side. This latter may be either a geodesic 
line or a vertical section curve, since their lengths are in general sensibly equal. 
Such triangles are most conveniently solved in accordance with the rule afforded 
by Legendre's theorem, which asserts that the sides of a spheroidal triangle (of 
any measurable size on the earth) are sensibly equal to the sides of a plane 
triangle having a base of the same length and angles equal respectively to the 
spheroidal angles diminished each by one third of the excess of the spheroidal 
triangle. In other words, the computation of spheroidal triangles is thus made to 
depend on the computation of plane triangles. Digitized byLjOOQlC 



Ivili GEODESY. 

a. Spherical or spheroidal excess. 
The excess of a spheroidal triangle of ordinary extent on the earth is given by 

€ (in seconds) = p" > 

Pm Pn 

where S is the area of the spheroidal or corresponding plane triangle ; p« /», are 
the principal radii of curvature for the mean latitude of the vertices of the tri- 
angle ; and p" = 206 26^"%. For a sphere, p^=z p^=: radius of the sphere. 

Denote the angles of the spheroidal triangle by A, B, C, respectively ; the cor- 
responding angles of the plane triangle by a^ P,y (as on p. xviii) ; and the sides 
common to the two triangles by a, bj c. Then 

5 = i <j^ sin y = i ^r sin o = J ^tf sin p. 

a = A — i€, P = B — \€, y=C— Jc. 

Tables 13 and 14 give the values of log Q/'/ipi^ for intervals of 1° of astro- 
nomical or geographical latitude.* 

14. Geodetic Differences of Latitude, Longitude, and 

Azimuth. 

a. Primary triangulation. 

Denote two points on the surface of the earth's spheroid by Bi and P^ respec- 
tively. Let 

s = length of geodesic line joining /\ and /V, 
^, 0, = astronomical latitudes of Bi and If, 
Ai, X2 = longitudes of J\ and B3, 

oij = azimuth of jPi P^ (s) at -Pi, 
oj.! = azimuth of P^ Pi (s) at P^ 
e = eccentricity of spheroid, 
p^^ p^ = principal (meridian and normal) radii of curvature at the point -Pi. 

Then for the longest sides of measurable triangles on the earth the following 
formulas will give <^ A,, and ojj in terms of <^, Ai, ai.s, and s. The azimuths are 
astronomical, and are reckoned from the south by way of the west through 360°. 



a' = 180° — ttij, and oai = 180° + **"> ^^^ a^ <i8o° 
a! = ai4 — 180°, and Oj.! = 180° — a", for a^ > 180° 



(« 



{ = 1 j-:^^ cos^ <h sin 2a' (3) 

• For the solution of very large triangles and for a full treatment of the theory thereof, consult 
Die Afathematischtn und PhysiktUischen TheorUcn der Hbheren Geoddsie^ von Dr. F. R. Helmert. 
Leipzig. i88o, 1884. ^.g.,.^^^ ^y V^OOg le 



GEODESY. lix 






(4) 



'^"^'^^ sin |(a" + „' + {) {^ + A 'y' COS» Ka" - a% (5) 

To express 17, ^, and 0s — <^ in seconds of arc we must multiply the right hand 
sides of (2), (3), and (5) by p" = 206 264."8. For logarithmic compution of rf" 
and C\ or 17 and { in seconds, we may write with an accuracy generally sufficient 

log v" = log (p"s/p.) + i j^ (^J' COS« <k COS* a', (6) . 

log r = log J (7^1^ + log {(VO* COS* <h sin 2 a'}, (7) 

where /t in (6) is the modulus of common logarithms. For units of the 7th deci- 
mal place of log V' we have for the adopted spheroid 



M*' 



'°si^:r?= 3-69309. 

Also 



Similarly, for the computation of the logarithm of the last factor in (5) we have 

log {i + tV ^* 
Putting for brevity 



log {I + A '^^ cos« K»" - ''O} = log {1 + ^, (v'T cos* K-" - -O}. 



the logarithm of the desired logarithm is given to terms of the second order 
inclusive in ^ by 

log log (i + i^) = log ^ ^ - i /x ^. 

For the adopted spheroid 

'°sn^«= 4-92975 -10 

for units of the seventh decimal place. 

For a line 200 miles (about 320 kilometres) long, the maximum value of the 
second term in (6) is but 12.6 units in the 7th place of log ?/". For the same 
length of line, the maximum value of £" is o/'Sg^, and the maximum value of the 
logarithm of the last factor in (5), or log (i + ^)> is less than 922 units in the 
seventh place of decimals. 

For computing differences of latitude, longitude, and azimuth in primary 
triangulation whose sides are 1° (about 70 miles, or 100 kilometres) or less 
in length, the most convenient means are formulas giving ^ — <^i, A, — Xj, and 

Digitized byLjOOQlC 



Ix GKODBSY. 

ojj — (i8o® — ajj), in series proceeding according to powers of the d i stance x. 
Formulas of this kind with convenient tables for facilitating the computatioos 
are given in the Reports of the U. S. Coast and Geodetic Survey.* 

b. Secondary triangulation. 

For secondary triangulation, wherein the sides are 12 miles (20 kilometres) or 
less in length, and wherein differences of latitude and longitude are needed to tlxe 
nearest hundredth of a second only, the following formulas may suffice. Usin^ 
the same notation as in the preceding section, the formulas are : — 

(4j = 180° + o,j -|- Aa, 

A^ = — aiS cos ajj — tfj -^ sin* au^ 

AX = + ^i sec ^1 s sin a^ — ^, j* sin 0^ cos au^ (2) 

Aa = — ^1 tan if>i s sin a^ -|- r, J* sin a, j cos a^^ 

The constants entering the latter equations are defined by the following 
expressions, wherein p,» and p. are the principal radii of curvature of the spheroid 
at the point whose latitude is <^ and p" = 206 264."8 : 

Pm Pm 

p" tan ifn . p" sec <^i tan <^i p'^ ( i -|- 2 tan* ^) 

(h y ^2 —s > *8 2 • 

2 P- A, Pn 2 Pi,* 

The logarithms of the factors <Zi, ^1, Ci, Of, df, Cf, are given in Table 15 for the 
English foot as unit, and in Table 16 for the metre as unit, the argument being 
the initial latitude 4>i for all of them. 

When all of the differences given by (2) are computed, they may be checked 
by the formula 

sinK^+^,) = ^- (3) 

For convenience of reference in numerical applications of the above formulas, 
(2) may be written thus : 

A<^ = ^1 + ji^ 

AX = ^, + B^ 
Aa = Ci + Ci, 

in which, for example, Ai and A^ are the first and second terms respectively of 
A^, due regard being paid to the signs of the functions of a^j. 

Numerical example. The following example will serve to illustrate the use of 
formulas (i) to (3). The value of log s is for s in English feet, s being in this 
case about 12.3 miles. 

^ 38°54'o8."38 

A0 —07' 5o."2i 

^ 38° 46' i8/'i7 

i(*,+ *i) 38°50'i3/'27 

• See Appendix 7, Report of 1884, for latest edition of .these tablp. t 

Digitized by VjOOQ IC 



^1 


88» 03' 24."is 


«ij 43° 01' 46-"29 


AA. 


+ 09'20."23 


Aa —05' 51. "32 


A, 


88° 12' 44."3T 


<4., 223° St; S4."97 



GEODESY. Ixi 

log log log log 

s 4.81308 s 4.81308 s sin aij 4.647 s sin a^^ 4.647 

cos au 9.86392 sin ajj 9.83402 s sin a^^ 4-647 ^ cos a^ 4.677 

ai 7.99495 sec ^1 0.10890 <Z2 0.279 ^8 0.688 

^1 7-99316 ^s 0.733 

Ai 2.6719s Bi 2.74916 Ai 9.573 Bi 0.012 

sin ^ 9-79795 ^« °-°57 

Ci 2.54711 

log 

^1 - 469."84 -^1 + 56i."25 C, - 352-"46 Aa 2.54570 

^, - o."37 ^2 - i."o3 C, + i."i4 AX 2.74836 

A^ — 47o."2i A\ + s6o."22 Aa — 35i."32 sin i(<^ + *i) 9-79734 

15. Trigonometric Leveling. 

a. Computation of heights from observed zenith distances. 

Let s = sea Iqvel distance between two points /i and /i, 

Z?i, Hi = heights above sea level of Fi and JPf, 
Zi = observed zenith distance of P2 from -Pi, 
Zi = observed zenith distance of Pi from /\, 

p = radius of curvature of vertical section at /\ through P^ or at P^ 
through Pi^ the curvature being sensibly the same for both for this 
purpose, 
C = angle at centre of curvature subtended by j, 
«fi, nii = coefficients of refraction at Pi and P^ 
Aj?i, A«i = angles of refraction at Pi and P^. 

Then, the fundamental relations are 

C=-, £iiZi=.miC, t^ZiZ=.miC, ^ ^x 

*i + ^ + Ajj + Ajgj = 180° 4- (7, 

H^^Hi = stzxi K^ + A.. - ^x - A^O (i + t^yi^^ + -i^+. . .). (2) 

When the zenith distances Zi and z^ are simultaneous, or when A«i and Aiij are 
assumed to be equal, (2) becomes 

i9i-^,= .tan K*, - ^0 (i + ^^y^' + I¥7 + - • •)• <3) 

For the case of a single observed zenith distance 2^1, say, and a known or 
assumed value of »i = »ii = »?8, the following formula may be applied : 

^,-^i = :rcot^,+ '~^^ x^+^-:=^^«cot«^i. (4) 

The coefficient of refraction m varies very greatly under different atmospheric 
conditions. Its average value for land lines is about 0.07. The following table 
gives the values of log \{i — 2 w) and log (i — m) for values of m ranging from 
0.05 to 0.10. It is taken from Appendix 18, Report of U. S. Coast and Geodetic 

Digitized byLjOOQlC 



Ixii 



GEODESY. 



Survey for 1876. Table 12 taken from the same source gives values of log p 
needed for use in (3) and (4). 



For less precise work one may use equation (4) in the form 
^ — i?i = X cot «i + ^ -^t 





Tai/e of values of log Ki 


— 2 «) and log (i — m). 




m 


logi(i — 2»»). 


log(i-«). 


m 


log i(i — 2 m). 


log (!-•). 1 


0.050 


9-65321 


9.978 


0.075 


9.62839 


9.966 


SI 


65225 


77 


76 


62737 


66 


52 


65128 


77 


77 


62634 


65 


53 


65031 


76 


78 


62531 


65 


54 


64933 


76 


79 


62428 


64 


0.0SS 


9.64836 


9-975 


0.080 


9-62325 


9-964 


56 


64738 


75 


81 


62221 


63 


57 


64640 


75 


82 


621 18 


63 


58 


64542 


74 


83 


62014 


62 


59 


64444 


74 


84 


61910 


62 


0.060 


964345 


9-973 


0.085 


9.61805 


9.961 


61 


64246 


73 


86 


61700 


61 


62 


64147 


72 


87 


61595 


60 


63 


64048 


72 


88 


61490 


60 


64 


63949 


7» 


89 


61384 


60 


0.065 


9.63849 


9.971 


0.090 


9.61278 


9-959 


66 


63749 


70 


9' 


61172 


59 


67 


63649 


70 


92 


61066 


58 


68 


63543 


69 


93 


60959 


58 


69 


63448 


69 


94 


60853 


57 


0.070 


9-63347 


9.968 


0.095 


9.60746 


9-957 


71 


63246 


68 


96 


60638 


56 


7a . 


63144 


68 


97 


60531 


56 


73 


63043 


67 


98 


60423 


55 


74 


62941 


67 


99 


60315 


55 


t 






0.1 00 


9.60206 


9-954 



(s) 



wherein, if we make m = 0.07 and use for p its average value, or SPmpZ for 
latitude 45^, 

log c = 2.313 — 10 for s in feet, 
= 2.829 — 10 for J in metres. 

Thus, for a distance (s) of 10 miles the value of the term cs^'m (5) is 57.3 feet. 

If altitudes a^, say, are observed in the place of zenith distances ^i, it is most 
convenient to write (5) thus : — 



^ — ZTi = ± J tan tti -|- r J*, 



Digitized by 



Google 



(6) 



GEODESY. Ixiii 

where the upper sign is used when oi is an angle of elevation and the lower sign 
when Oi is an angle of depression. 

b. Coefficients of refraction. 

When Zi and z^ are both observed for a given line, a coefficient of refraction may 
be computed from the assumption of equality of coefficients at the two ends of 
the line. Thus, equations (i) give 

AiTi + A^, = i8o° + C - (^1 + «,), 
or 

(^1 + ^«) ^ = ^So° + ^ - (*i + ^)' 
whence 

»ll + ^2 = I — - (^l + *8 "~ lS0°)' 

Assuming wi = jw, = «, and supposing *i + ^a "" ^^^^ expressed in seconds 
of arc, 

^ = j|i -^(5, + ^,- i8o°)j. 

p"= 2o6264."8, log p" = 5.3144251. 
c. Dip and distance of sea horizon. 



Let 



Then 



^ = height of eye above sea level, 

8 = dip or angle of depression of horizon, 

s = distance of horizon from observer. 



8 (in seconds) = 58.82 ^A in feet, 



= 106.54 V^ in metres. 



s (in miles) = 1.3 17 V>4 in feet, 
s (in kilometres) = 3.839 ^A in metres. 

The above formulas take account of curvature and refraction. They depend 
on the value 0.0784 for the coefficient of refraction, and are quite as accurate as 
the uncertainties in such data justify. For convenience of memory, and for an 
accuracy amply sufficient in most cases, the coefficients of the radicals in the last 
two formulas may be written | and V respectively. 

16. Miscellaneous Formulas. 

a. Correction to observed angle for eccentric position of instrument 

Let C be the eccentric position of the instrument, and Co the observed value of 
the angle at that point between two other points A and B. Let C denote the 
central point as well as the angle ACB desired. Call the distance CC r and 
denote the angle ACC by 6. Denote the lines BC and AC, which are as- 
sumed to be sensibly the same as BC and AC, by a and d respectively. Then 

Digitized byLjOOQlC 



Iziv GBODESY. 

n n r a^ p"r sin (6 ^ Q) p"r sin 
C— Q (m seconds) = ^^ ^ — - — r 1 

p" = 206 264."8, log p" = 5.3144251. 

Attention must be paid to the signs of sin (0 — Co) and sin B, and to tbe fact 
that angles are counted from A towards B through 360°. A diagram drawn in 
accordance with the above specifications will elucidate any special case. 

b. Reduction of measured base to sea level. 

Let / be the length of the bar, tape or other unit used in measuring the base. 
Let 4 be the corresponding length reduced to sea level for a height A, this latter 
being the observed height of /. Then if p denote the radius of curvature of the 
earth's surface in the direction of tlie base, 



*=,-^.=(.-^+...)' 



with sufficient accuracy. Hence, for the whole length of the base, 

2^ = 2/- -UA. 
P 

If Z denote the total measured length, Zq the corresponding total sea level 
length, and If the mean value of the heights A, the above equation gives 

Zo = Z-Z ^. 

P 

c. The three-point problem. 
In this problem the positions of three points A, By C, and hence the elements 
of the triangle they form, are given 'together with the two angles y^-PC and BPC 
at a point B whose position is required. Denote the angles and the sides of the 
known triangle by A^ B^ C, and a, b^ c, respectively. Also put 

APC=P, BPC=a, 
PAC = x, BBC=zy. 

Then the sum of the angles in the quadrilateral PACB is 

a + )3 + x+>+C=36o^ 
whence 

K* + >) = 180° - i(a + iS + C). (i) 



Compute an auxiliary angle z from the equation 

a sin /3 
Then 



tan z = , ^. ; (2) 

sin a ^ ^ 



tan ^x - J') = tan {z - 45°) tan y^x + y\ (3) 

These three equations give all the data essential to a complete determination 
of the position of P, Any special case should be elucidated by a diagram drawn 
in accordance with the specifications given above. 

Digitized by VjOOQIC 



GEODESY. 



IXF 



When the position? of thQ points A, B, C are given on a map, the position of 
J^ on the same map may be found graphically by drawing lines making angles 
with each other equal to the given angles a and fi from a point on a piece of 
tracing paper, and then placing this tracing on the map so as to meet the required 
conditions. This ready method of solving the problem is often sufficient. 



17. Salient Facts of Physical Geodesy. 
a. Area of earth's surface, areas of continents, area of oceans.* 

Square miles. 

Total area of earth's surface 196 940 000 

Area continent of Europe 3 820 000 

" " Asia 17230000 

" " Africa 11 480 000 

" " Australia 3406000 

" " America 15950000 

Total area of continents 51886000 

Total area of oceans 145054000 



b. Average heights of continents and depths of oceans.t 

Feet. Metres. 

Average height of continent of Europe . 

** " Asia . . 

" Africa . 

" " Australia 

" " America . 

Average height of all 



980 
1640 
1640 

820 

1340 
1440 



300 
500 
500 
250 
410 
440 



Feet. Metres. 

Average depth of Atlantic Ocean 12 100 3680 

" " Pacific Ocean 12 700 3890 

" " Indian Ocean 11 000 3340 

Average depth of all 11 300 3440 

c. Volume, surface density, mean density, and mass of earth. 

Volume of earth = 259 880 000 000 cubic miles. 

= I 083 200 000 000 cubic kilometres. 

= 260 X !©• cubic miles (about). 

= 108 X 10" cubic kilometres (about). 

Surface density of earth = 2.56 ± 0.16 t 
Mean density of earth = 5.576 ± 0.016. 

• Derived from relative areas given in Helmert's Geoddsie^ Band II. p. 313. 

t Helmert's Geoddsiey Band II. p. 313. 

X These densities are given by Professor Wm. Harkness in his memoir on The Solar Parallax 
and Related Constants, The surface density applies to that portion of the earth's crust which lies 
above and within a shell ten miles thick, the lower surface of this shell being ten miles below sea 
level. 



Digitized by V^OOQ IC 



Ixvi GEODESY. 

Assuming the mass of a cubic foot of water to be 62.28 pounds (at 62^ ¥.), 

Mass of earth* = 13 284 X 10** pounds. 

= 6642 X 10" tons (of 2000 lbs.). 
= 60 258 X 10" kilogrammes. 

d. Principal moments of inertia and energy of rotation of earth. 

M= mass of earth, 

A = moment of inertia of earth about an axis in its equator, 
C = moment of inertia about axis of rotation, 
a = equatorial axis of earth, 
w = angular velocity of earth, 
= (2 ir/86164) for mean solar second as unit of time. 
Thent 

^ = 0.325 Ma^f 
0=0.326 Afa\ 

Energy of rotation of earth = i (JC. 

= 0.163 w'J/a*. 

= 504 X lo** foot-poundals. 

= 217 X lo** kilogramme-metres. 

= 212 X 10" ergs. 

The most exhaustive treatise on the theory of geodesy is found in " Die Mathe* 
matischen und Physikalischen Theorieen der Hoheren Geodasie," von Dr. F. R. 
Helmert. Leipzig : B. G. Teubner ; 8vo, 1880 (vol. i.), 1884 (vol. ii.). An excel- 
lent work on the practical as well as theoretical features of the subject is *' Die 
geodatischen Hauptpunkte und ihre Co-ordinaten," von G. Zachariae ; autorisirte 
deutsche Ausgabe, von £. Lamp. Berlin : Robert Oppenheim, 8vo, 1878. Of 
works in English the most comprehensive is " Geodesy," by A, R. Clarke. Ox- 
ford : The Clarendon Press, 8vo, 1880- 

* The mass of the earth's atmosphere is about one-millionth part of the entire mass, or about 
66 X lo^* tons. 

t The values of A and C are those given by Harkness, /oc. ci/.t but they are here abridged to 
three places of decimals. 



Digitized by 



GooqIc 



ASTRONOMY. 



I. The Celestial Sphere. Planes and Circles of Reference. 

The celestial sphere is a sphere to which it is convenient to refer stars and 
other celestial objects. Its centre is assumed to be coincident with the eye of 
the observer, and the objects referred to it are supposed to lie in its surface. 
The orientation of this sphere is defined by its equator, which is assumed to be 
parallel to the earth's equator. The equator is thus the principal plane of refer- 
ence. Other planes of reference are the plane of the horizon, which is perpen- 
dicular to the plumb line at the place ; the meridian, which is a plane through 
the place and the earth's axis of rotation ; the prime-vertical, which is a vertical 
plane at the place at right angles to the meridian ; and the ecliptic, which is a 
plane parallel to the plane of the earth's orbit. These planes cut the surface of 
the sphere in great circles called the equator, the horizon, the meridian, etc. The 
points on the sphere defined by the intersection of the meridians, or the points 
where the axis of the equator pierces the sphere, are called the poles. Similarly, 
the prolongation of the plumb line upwards pierces the sphere in the zenith, and 
its prolongation downwards pierces the sphere in the nadir. Great circles pass- 
ing through the zenith are called vertical circles. 

2. Spherical Co-ordinates. 

a. Notation. 

The position of a celestial body may be defined by several systems of co-ordi- 
nates. The most important of these in practical astronomy are the azimuth 
and altitude system and the hour angle and declination system. In the first of 
these the azimuth of a star or other body is the angle between the meridian 
plane of the place and a vertical plane through the star. It is measured, in gen- 
eral, from the south around by the west through 360°. The altitude of a star is 
its angular distance above the horizon, and its zenith distance is the complement 
of the altitude. In the second system the hour angle of a star is the angle 
between the meridian plane of the place and a meridian plane through the star. 
It is measured towards the west through 360°. The declination of a star is its 
angular distance above or below the equator ; the complement of the declination 
is called the polar distance. 

The angular distance of the pole above the horizon is equal to the zenith dis- 
tance of the equator, or to the latitude of the place. Likewise, the altitude of 
the equator and the zenith distance of the pole are each equal to the comple- 
ment of the latitude at any place. 

Digitized by VjOOQIC 



Ixviii ASTRONOMY. 

These quantities are usually designated by the following notation : — 

A = the azimuth of a star or object, 

h=^\Xs altitude, 

z = its zenith distance = 90° — ^, 

/ = its hour angle, 

3 = its declination, 

/ = its polar distance = 90° — 8, 

^ = the parallactic angle, or angle at the star between the pole and the 

zenith, 
^ = the latitude of the place of observation. 

b. Altitude and azimuth in terms of declination and hour angle. 

The fundamental relations for this problem are — 

sin ^ = sin ^ sin 8 -|- cos ^ cos 8 cos /, 
cos h cos ^ = — cos ^ sin 8 -|- sin ^ cos 8 cos /, (i) 

cos ^ sin ^ = cos 8 sin /. 

When it is desired to compute both A and h by means of logarithms, the most 
convenient formulas are, 

m sin ^ = sin 8, tan 8 

m cos M^=> cos 8 cos /, cos f 

. • y . .^ ., tan / cos M , ^ 

sin Az=m cos (^ — Jf), tan A = ^-^ (^^AfY ^^^ 

cos Acqs A =im sin (ff> — J/), ^ __ cos ^ ^ 

cos A sin A ^= cos 8 sin /, tan (0 — Af}' 

A > 180** when / > 180** and A < 180° when / < 180**. 

For the computation of A and z separately, the following formulas are useful : 

sin / 

^ cot 8 cos /) 

(3) 



tznA— ^^g ^ ^^^ g ^ J _ ^^^ ^ ^^^ g ^^^ ^^ 



<7 sm / 



1 — d cos /' 
where 

a = sec cot 8, ^ = tan ^ cot 8. 

Formulas (3) are especially appropriate for the computation of a series of 
azimuths of close circumpolar stars, since a and ^ will be constant for a given 
place and date. 

cos « = cos (0 '^ 8) — 2 cos 4^ cos 8 sin* i /, 
sin« ^z = sin" H<^ '^ 8) + cos <^ cos 8 sin* i /, 

(<^ ^ 8) = <^ — 8, for <^ >S ^"^^ 

= 8 — <^, for ff>< 8. 



Digitized by VjOOQIC 



ASTRONOMY. Ixiz 

For logarithmic application of (4) we may write 

n^ z= cos ^ cos 8, «* = sin* i (^ '^ 8), 

tan N— - sin i /, (s) 



/I 



cos J\^ sm iV^''*" » 



c. Declination and hour angle in terms of altitude and azimuth. 

The fundamental relations for this case are 

sin 8 = sin ^ sin A — cos ff> cos A cos A, 
cos 8 cos / = cos ^ sin ^ -|- sin ^ cos A cos A, (i) 

cos S sin / = cos A sin A, 

For logarithmic computation by means of an auxiliary angle Mone may write 

w sin M= cos A cos A, tan Jl/"= cot >4 cos A^ 

m cos il/rr: sin Af 

sin 8= « sin (^-^, tan / = tan^sin^ ^^^ 

cos (9 — il/ ) 
COS S cos t-=.tn cos (<^ — J!/^, 

cos 8 sin / = cos A sin -^, tan 8 = tan (^ — M) cos /. 

d. Hour angle and azimuth in terms of zenith distance. 

^^« * cos J? — sin <i sin 8 

cos / = -^-— . 

cos <^ cos 6 

^^,^^^sin(^-.^)cos(o--8) ^ = j(^_|_a + ,). 

cos <r cos (<r — «) a v-r I i / 

COS ^_ sin<^cos^-sin8 
COS ^ sin « 

COS <r sm (<r — 6) ^ \^ \ 1 / 

e. Formulas for parallactic angle. 

cos = sin 8 sin <^ -^ cos 8 cos ^ cos /, 
sin * cos q = cos 8 sin ^ — sin 8 cos ^ cos /, 
sin ^ sin ^ = cos <^ sin /, 

sin 8 = cos « sin ^ -|- sin z cos ^ cos /, 
cos 8 cos ^ = sin s sin ^ -(" ^^^ s cos ^ cos -«4, 
cos 8 sin ^ ^ cos <^ sin A, 



(0 



Digitized by VjOOQIC 



IXX ASTRONOMY. 

The first three of these are adapted to logarithmic computation as follows : — 

n sin iV= cos ^ cos /, 
n cos iV= sin ^, 

cos ;5 = » sin (S -|- iVQ, 
sin z cos q=^n cos (8 -|- iV), 
sin 2 sin ^ = cos <^ sin // 
whence 

tan iV= cot ^ cos /, 

4.«« . -;« tan / sin ^ / >, 

tan if cos ^ = cot (8 + W). 

A similar adaptation results for the last three of equations (i) by interchanging 
S and jr. The equations (2) give both z and q in terms of ^ ^ and /, without 
ambiguity, since tan z is positive for stars above the horizon. 

If A^ Zy and q are all required from ^, 8, and /, they are best given by the 
Gaussian relations 

sin J ir sin ^A + ^) = sin J / cos i(^ + 8), 

sin ^ z cos i{A + j^) = cos i / sin J(</> — 8), . . 

cos ^ « sin ^A — ^) = sin J / sin J(^ + 8), 

cos J z cos ^A ^ q) = cos J / cos i{</> — 8). 

f. Hour angle, azimuth, and zenith distance of a star at elongation. 

In this case the parallactic angle is 90^ and the required quantities are given by 

the formulas 

tan <t> 



cos / = 



tan 8' 



cos z = 



cos 8 
cos <l> 
sin <^ 



sin A = -— -T» (i) 

cos 9 ^ ^ 



sm 



When all of the quantities /, Ay and z are to be computed the following formulas 
are more advantageous : — 

JP = sin (8 + <t>) sin (8 - t^), 

IT K K 

sin t = -zZTTT^rv cos A = r— -p sin z = ^. ^» (2) 

cos 9 sm 6 cos 9 sm 6 ^ ^ 

K , cos8 K 

^VLt'=z , , ;. » tan ^ = — T?-» tan j?= 1^—7- 
sm 9 cos o A. sm 9 

g. Hour angle, zenith distance, and parallactic angle for transit of a 
star across prime vertical. 

In this case the azimuth angle is 90"^ and the required quantities are given by 
the formulas 

Digitized by VjOOQ IC 



ASTRONOMY. Izzi 

tan S 

sin 8 
cos « = ^. .> (i) 

sin 9 ^ ' 

cos d} . 

or, if all of them are to be computed, by the formulas 

AT" = sin (^ + 8) sin (^ - 8), 

^ . Jir K 

sin / = -: — 1^ 5» sm z = -^ — ~j f cos ^ = m 

sm </> cos o sm ^ ^ cos o 

K ^ K cos«^ 

^"'= cos sins' ^*"^ = inr8' tan^ = -;g-- 

For special accuracy the following group will be preferred : — 

sin (^ — S) 



(2) 



sin 



T*+^ 



(3) 



,,„a,, tan K<^ - 8) 
tann^=tanK<A + «) 

tan* (45 ° - i ^) = tan K<^ + 8) tan K* - 8). 

h. Hour angle, and azimuth of a star when in the horizon, or at the 

time of rising or setting. 

In this case the zenith distance of the star is 90°, and the required quantities 

are given by 

cos / = — tan ^ tan 8, 

sin 8 
cos -4 = — —--7 ; 
cos 9 ' 

or by ' 



cos 



WV^I 



tanH^-'-^-^^5£^^^^-±^. 

On account of refraction, the values of / and A given by these formulas are 
subject to the following corrections, to wit : — 

^^ ~" cos <^ cos 8 sin/' ^ "~ sin ^ ^' 

where R is the refraction in the horizon. Thus the actual values of the hour 
angle and azimuth at the time of rising or setting of a star are 

/ + A/ and ^ + A^. 

Digitized by VjOOQIC 



Izxii ASTRONOMY. 



L Differential formulas. 

The general differential relations for the altitude and azimuth and the declina- 
tion and hour angle systems of coordinates are : — 



^j? = — cos ^ </S + sin q cos 8 ^/ + cos A </^, 
sin z dA-=^ sin ^ </8 -|- cos q cos h dt — cos * sin A dif>. 



(0 



</8 = — cos q dz -{- sin q sin z dA + cos / dtj^^ /^\ 

cos hdt=. sin q dz-^- cos ^ sin z dA '\- sin 8 sin / d<f>. 



The following values derived from (i) are of interest as showing the dependence 
of g and ^ on / in special cases : — 

(§) m 

cos 8 
For a star in the meridian = o, = r[Z~i' 

For a star in the prime vertical = cos ^ = sin ^ 

For a star at elongation = cos 8, = o. 

3. Relations of Different Kinds of Time used in Astronomy. 

a. The sidereal and solar days. 

The sidereal day is the interval between two successive transits of the vernal 
equinox over the same meridian. The sidereal time at any instant is the hour 
angle of the vernal equinox reckoned from the meridian towards the west from o 
to 24 hours. The sidereal time at any place is o when the vernal equinox is in 
tiie meridian of that place. 

The solar day is the interval between two successive transits of the sun across 
any meridian ; and the solar time at any instant is the hour angle of the sun at 
that instant. The solar day begins at any place when the sun is in the meridian 
of that place. 

The mean solar day is the interval between two successive transits over the 
same meridian of a fictitious sun, called the mean sun, which is assumed to move 
uniformly in the equator at such a rate that it returns to the vernal equinox at 
the same instant with the actual sun. 

Time reckoned with respect to the actual sun is called apparent time, while 
that reckoned with respect to the mean sun is called mean time. The difference 
between apparent and mean time, which amounts at most to about iG**, is called 
the equation of time. This quantity is given for every day in the year in 
ephemerides. 

The sidereal time when a star or other object crosses the meridian is called the 
right ascension of the object. The right ascension of the mean sun is also called 
the sidereal time of mean noon. This time is given for every day in the year in 
ephemerides for particular meridians, and can be found for any meridian by allow- 
ing for the difference in longitude. 

The time to which ephemerides and most astronomical calculations are referred 

Digitized byLjOOQlC 



ASTRONOMY. IxxiU 

is the solar day, beginning at noon, and divided to hours numbered continuously 
from o* to 24\ This is called astronomical time ; and such a day is called the 
astronomical day. It begins, therefore, 12 hours later than the civil day. 

b. Relation of apparent and mean time. 

A = apparent time = hour angle of real sun, 
M=^ mean time = hour angle of mean sun, 
£ = equation of time. 

M=A']'JS. 

In the use of this relation, £ may be most conveniently derived (by interpola- 
tion for the place of observation) from an ephemeris. 

c. Relation of sidereal and mean solar intervals of time. 

/= interval of mean solar time, 
/' = corresponding interval in sidereal time, 

r = the ratio of the tropical year expressed in sidereal days to the tropical 
year expressed in mean solar days 

= 3^^:2^^=1.002738. 
365.2422 

/' = rl= /-I- (r - i) 7= 7+ 0.002738 7 
7= r-^ 7' = 7' - (i - r-0 7' = 7' - 0.002730 7'. 

Tables for making such calculations are usually given in ephemerides (see, for 
example, the American Ephemeris). Short tables for this purpose are Tables 
34 and 35 of this volume. 

Frequent reference is made to the relations 

24* sidereal time = 23* 56"* o4.*o9i solar time, 
24* mean time = 24* 03"' 56/555 sidereal time. 

d. Interconversion of sidereal and mean solar time. 

Ti, = mean time at any place, 
Tg = corresponding sidereal time, 

= right ascension of meridian of the place, 
A = right ascension of mean sun for place and date, 

= sidereal time of mean noon for place and date. 

Tg= A -{^ T^ expressed in sidereal time. 

Ti, = (7i — -^ expressed in mean time. 

The quantity A is given in the ephemerides for particular meridians, and can 
be found by interpolation for any meridian whose longitude with respect to the 
meridian of the ephemeris is known. The formulas assume that A is taken out 
of the ephemeris for the next preceding mean noon. Digitized byLjOOQlC 



Ixxiv ASTRONOMY. 

e. Relation of sidereal time to the right ascension and hour angle 

of a star. 

T, = sidereal time at any place, 

= right ascension of the meridian of the place, 
a = right ascension of a star, 
/ = the hour angle of the star at the time Tg, 

4. Determination of Time. 
a. By meridian transits. 

A determination of time consists in finding the correction to the clock, chro- 
nometer, or watch used to record time. If To denote the true time at any place 
of an event, T the corresponding observed clock time, and A 7' the clock correc- 
tion, 

To = 7"+ at: 

The simplest way to determine the clock correction is to observe the transit of 
a star, whose right ascension is known, across the meridian. In this case the 
true time TJ = a, the right ascension of the star ; and if T is the observed clock 
time of the transit, 

Ar=a— T. 

Meridian transits of stars may be observed by means of a theodolite or transit 
instrument mounted so that its telescope describes the meridian when rotated 
about its horizontal axis. The meridian transit instrument is specially designed 
for this purpose, and affords the most precise method of determining time.* 

Since it is impossible to place the telescope of such an instrument exactly in 
the meridian, it is essential in precise work to determine certain constants, which 
define this defect of adjustment, along with the clock correction. These con- 
stants are the azimuth of the telescope when in the horizon, the inclination of the 
horizontal axis of the telescope, and the error of collimation of the telescope.t 
Let 

a = azimuth constant, 

d = inclination or level constant, 

c = collimation constant. 

a is considered plus when the instrument points east of south ; d is plus when 
the west end of the rotation axis is the higher; and c is intrinsically plus when 
the star observed crosses the thread (or threads) too soon from lack of collima- 
tion. (The latter constant is generally referred to the clamp or circle on the 
horizontal axis of the instrument.) 

* The best treatise on the theory and use of this instrument is to be found in Chauvenet's 
Manual of Spherical and Practical Astronomy^ which should be consulted by one desiring to go 
into the details of the subject. 

t Other equivalent constants may be used, but those given are most commonly employed. 

Digitized by V^OOQlC 



ASTRONOMY. IxXV 

Also let 

^ =: latitude of the place, 
S = declination of star observed, 
a = right ascension of star observed, 
2"=: observed clock time of star's transit, 
A 7"= the clock correction at an assumed epoch To, 
r = the rate of the clock, or other timepiece, 

^ = ^^"i'tT^^ = the " azimuth factor," 
cos ' 

^ = """it 7^^ = the " level factor," 
cos O ' 

C= « = the " collimation factor." 

cos 

Then, when a, d, c are small (conveniently less than lo' each, and in ordinary 
practice less than i' each), 

r-f AT-^- ^fl -[. ^* + a -[. r (7-- 71) = a. 

This is known as Mayer's formula for the computation of time from star transits. 
The quantity Bb is generally observed directly with a striding level. Assuming 
it to be known and combined with T, the above equation gives 

/^T'\-Aa'\-Cc'{-r(T-' TJ) = o - T. (i) 

This equation involves four unknown quantities, A 7^ a, r, and r; so that in 
general it will be essential to observe at least four different stars in order to get 
the objective quantity ATI Where great precision is not needed, the effect of the 
rate, for short intervals of time, may be ignored, and the collimation c may be 
rendered insignificant by adjustment. Then the equation (i) is simplified in 

Ar+ Aa = a- T. (2) 

This shows that observations of two stars of different declinations will suffice to 
give A 71 Since the factor A is plus for stars south of the zenith (in north lati- 
tude) and minus for stars north of the zenith, if stars be so chosen as to make the 
two values of A equal numerically but of opposite signs, A 7* will result from the 
mean of two equations of the form (2). With good instrumental adjustments 
(d and c small), this simple sort of observation with a theodolite will give A7' to 
the nearest second. 

A still better plan for approximate determination of time is to observe a pair of 
north and south stars as above, and then reverse the telescope and observe an- 
other pair similarly situated, since the remaining error of collimation will be partly 
if not wholly eliminated. Indeed, a well selected and well observed set of four 
stars will give the error of the timepiece used within a half second or less. This 
method is especially available to geographers who may desire such an approxi- 
mate value of the timepiece correction for use in determining azimuth. It will 
suffice in the application of the method to set up the instrument (theodolite or tran- 
sit) in the vertical plane of Polaris, which is always close enough to the meridian. 
The determination will then proceed according to the following programme : — , 

Digitized by V^OOQIC 



IxXVi ASTRONOMY. 

1. Observe time of transit of a star south of zenith, 

2. Observe time of transit of a star north of zenith. 

Reverse telescope, 

3. Observe time of transit of another star south of zenith, 

4. Observe time of transit of another star north of zenith. 

Each star observation will give an equation of the form (i), and the mean of 
the four resulting equations is 

^4*4^ 4 4 

Now the coefficient of r in this equation may be always made zero by taking 
for the epoch TJ the mean of the observed times T, Likewise, ^A and %C may 
be made small by suitably selected stars, since two of the A% and Cs are positive 
and two negative. The value \ 2(a — T^ is thus always a close approximation to 
A 7* for the epoch 7J = J 27; when ^A and 2C approximate to zero. But if these 
sums are not small, approximate values of a and c may be found from the four 
equations of the form (i), neglecting the rate, and these substituted in the above 
formula will give all needful precision. 

For refined work, as in determining differences of longitude, several groups of 
stars are observed, half of them with the telescope in one position and half in the 
reverse position, and the quantities ^T^ a^ c^ and r are computed by the method 
of least squares. In such work it is always advantageous to select the stars with 
a view to making the sums of the azimuth and collimation coefficients approxi- 
mate to zero, since this gives the highest precision and entails the siruplest com- 
putations.* 

b. By a single observed altitude of a star. 

An approximate determination of time, often sufficient for the purposes of the 
geographer, may be had by observing the altitude or zenith distance of a known 
star. The method requires also a knowledge of the latitude of the place. 
Let 

Zx = the observed zenith distance of the star, 
R = the refraction, 
z = the true zenith distance of the star, 

= ^1 + ^, 
a, 8, = the right ascension and declination of the star, 
/ = hour angle of star at time of observation, 
T-=. observed time when Zy^ is measured, 
AT= correction to timepiece, 
</» = latitude of place. 

Then the hour angle / may be computed by 

* COS <r cos \<T — z) 

* For details of theory and practice in time work done according to this plan see Bulletin 49, 
U. S. Geological Survey. Digitized by LjOOg IC 



ASTRONOMY. Ixxvii 

Having the hour angle the clock correction A 7* is given by 

Ar=a + /— 7; 

in which all terms must be expressed in the same unit; /. ^., in sidereal or in mean 
time. 

The refraction R may be taken from Table 31. 

The most advantageous position of the star observed, so far as the effect of an 
error in the measured quantity ^i is concerned, is in the prime vertical, but stars 
near the horizon should be avoided on account of uncertainties in refraction. 
The least favorable position of the star is in the meridian. 

Compared with the preceding method the present method is inferior in preci- 
sion^ but it is often available when the other cannot be applied. 

c. By equal altitudes of a star. 

This method is an obvious extension of the preceding method, and has the 
advantage of eliminating the effect of constant instrumental errors in the meas- 
ured altitudes or zenith distances. Thus it is plain that the mean of the times 
when a (fixed) star has the same altitude east and west of the meridian, whether 
one can measure that altitude correctly or not, is the time of meridian transit 

This method may, therefore, give a good approximation to the timepiece 
correction when nothing better than an engineer's transit, whose telescope can 
be clamped, is available. When the instrument has a vertical circle (or when a 
sextant is used) a series of altitudes may be observed before meridian passage of 
the star, and a similar series in the reverse order with equal altitudes respectively 
after meridian passage. The half sums of the times of equal altitudes on the two 
sides of the meridian will give a series of values for the time of meridian transit 
from which the precision attained may be inferred. 

This method is frequently applied to the sun, observations being made before 
and after noon. For the theory of the corrections essential in this case on 
account of the changing position of the sun, on account of inequalities in the 
observed altitudes, etc., the reader must be referred to special treatises on prac- 
tical astronomy.* 

5. Determination of Latitude. 
a. By meridian altitudes. 

The readiest method of determining the latitude of a place is to measure the 
meridian zenith distance or altitude of a known star. When precision is not re- 
quired this process is a very simple one, since it is only essential to follow a (fixed) 
star near the meridian until its altitude is greatest, or zenith distance least. Thus, 
if the observed zenith distance is ^i, the true zenith distance z^ and the refrac- 
tion R^ 

• The best work of this kind is Chauvenet*s Manual of Spherical and Practical Astronomy^ It 

should be consulted by all persons desiring a knowledge of the details of praqtioal astmnoiiMf.^Q j p 

igi ize y ^ 



Ixxviii ASTRONOMY. 

and if the declination of the star is S and the latitude of the place ^ 

according as the star b south or north of the zenith. 

A more accurate application of the same principle is to observe the altitudes 
of a circumpolar star at upper and lower culmination (above and below the pole). 
The mean of these altitudes, corrected for refraction, b the latitude of the place. 
This process, it will be observed, does not require a knowledge of the star's 
declination. 

b. By the measured altitude of a star at a known time. 

A = measured altitude corrected for refraction, 
Tg = observed sidereal time, 
a, 3 = right ascension and declination of star, 
/ = hour angle of star, 
^ = latitude of place. 

Then ^ may be computed by means of the following formulas : — 

tan^ = ^ cosy = 5!ll*i^, 
cos / ' sm 8 

In the application of these P may be taken numerically less than 90% and since 
/ may also be taken less than 90°, P may be taken with the same sign as 5. y is 
indeterminate as to sign analytically, but whether it should be taken as positive 
or negative can be decided in general by an approximate knowledge of the lati- 
tude, which is always had except in localities near the equator. 

The most advantageous position of a star in determining latitude by this 
method is in the meridian, and the least advantageous in the prime vertical. 
When a series of observations on the same star is made, they should be equally 
distributed about the meridian ; and when more than one star is observed it is 
advantageous to observe equal numbers of them on the north and south of the 
zenith. 

The application of this method to the pole star is especially well adapted to 
the means available to the geographer and engineer, namely, a good theodolite 
and a good timepiece. In this case the following simple formula for the latitude 
may be used : — 

^ = ^ — / cos / -}- i/* sin i" sin* / tan ^, 

where/ is the polar distance of Polaris in seconds (about 5400"), and the other 
symbols have the same meaning as defined above. Tables giving the logarithms 
of/ and ip* sin i" are published in the American Ephemerb. 



Google 



Digitized by VjOOQ 



ASTRONOMY. Izxix 



c. By the zenith telescope. 

The zenith telescope furnishes the most precise means known for the deter- 
mination of the latitude of a place. For the theory of the instrument and method 
when applied to refined work the reader must be referred to special treatises.* 
It will suffice here to state the principle of the method, which may sometimes be 
advantageously applied by the geographer. Let z, be the meridian zenith distance 
of a star south of the zenith, and Zj^ the meridian zenith distance of another star 
north of the zenith. Let 8, and 8. denote the declinations of these stars respec- 
tively. Then 

z. = <t>''S„ 

whence 

It appears, therefore, that this method requires only that the difference (z, — z^) 
be measured. Herein lies the advantage of the method, since that difference 
may be made small by a suitable selection of pairs of stars. With the zenith 
telescope the stars are so chosen that the difference (z, — z^ may be measured by 
means of a micrometer in the telescope. 

The essential principles and advantages of this method may be realized also 
with a theodolite, or other telescope, to which a vertical circle is attached, the 
difference (z, — z^) being measured on the circle ; and a determination of latitude 
within 5" or less is thus easy with small theodolites of the best class (/. e., with 
those whose circles read to 10" or less by opposite verniers or microscopes). 



6. Determination of Azimuth. 

a. By observation of a star at a known time. 

T, = sidereal time of observation, 
a, 8 = right ascension and declination of star observed, 
/ = hour angle of star, 

= r. - a, 
^ = latitude of place, 

A = azimuth of the star at the time T, counted from the south around by the 
west through 360^ 

The azimuth A may be computed by the formulas 

a = sec ^ cot 8, 3 = tan ^ cot 8, 

a sin / (i) 

The angle A will fall in the same semicircle as /, and A is thus determined by its 
tangent without ambiguity. The quantities a and ^ will be sensibly constant for 

* Among which Chauvenet's Manual of Spherical and Practical Astronomy is the best. 

Digitized by V^OOQ IC 



IXXX ASTRONOMY. 

a given star and date ; and hence they need be computed but once for a series of 
observations on the same star on one date. 

The effects of small errors A/, A<^, and AS in the assumed time, latitude, and 
declination are expressed by 

cos S cos ^ . sin^^_ 

— .^ ^ A/, — sm A cot * A^ -v—^ A8, 

sin z ' ^ sm z ^^ 

respectively, where z and g are the zenith distance and parallactic angle of the 
star. Hence the effect of A/ will vanish for a star at elongation ; the effect of 
^4> vanishes for a star in the meridian, and is always small (in middle latitudes) 
for a close circumpolar star ; the effect of AS vanishes for a star in the meridian. 
It appears advantageous, therefore, to observe for azimuth (in middle latitudes) 
close circumpolar stars at elongations, since the effect of the time error is then 
least, and the effects of errors in the latitude and declination are small and may 
be eliminated entirely by observing the same star at both elongations. 

The hour angle /«, the azimuth A„ and the altitude h^ of a star at elongation 
are given by the formulas (2) of section 2,f. Those best suited to the purpose 
are 

K^ = sin (8 + 4>) sin (S - <^), 

AT ^ ^ cos S , sin <j^ (2) 

*'"<^ = sin^cos8 ' tan^. = -^. tan>». = -^- W 

Knowing the time of elongation of a close circumpolar star, it suffices for many 
purposes to observe the angle between the star and some reference terrestrial 
mark at or in the vicinity of that time. 

For precise determinations of azimuth it is customary to observe a star near 
its elongation repeatedly, thus obtaining a series of results whose mean will be 
sensibly free from errors of observation and errors due to instrumental defects. 

The computation of the azimuth A may be made accurately in all cases by the 
formulas (i) ; but when a close circumpolar star is observed near elongation, it 
may be more convenient to use the following formulas : — 

A/ = (/ — /,), or the interval before or after elongation at the time of 
observation, 
AA = (A — A^), or the difference in azimuths of the star at the time 

of elongation and at the time of observation, (3) 

_ (isV* sin S cos S Oi)!. sin S cos 8 

^^ — 2p" sin/, cos ^^^^^^ =*= 2 (p'7 sin /. tan /. cos 1^ ^^^^ 

* To the same order of approximation one may write in the first term of this expression 

which latter is the most convenient form when tables giving log — ^-^ ^„ — for the argument Af 

in time are at hand. Such tables are given in Chauvenet's Manual of Sphitical and Practical 
Astronomy (for full title see p. Ixxxii), and in Formeln und Hulfstafeln JUr Geographische Oris- 
bcstimmungen^ von Dr. Th. Albrecht Leipzig: Wilhelm Engelmann, 4to, 2d ed., 1879. 



Digitized by^OOQlC 



ASTRONOMY. Ixzzi 

This last formula gives AA in seconds of arc when A/ is expressed in seconds 
of time ; A/ is considered positive in all cases (in the use of the formula), and 
with this convention the positive sign is used when the star is between either 
elongation and upper culmination, and the negative sign when the star is between 
either elongation and lower culmination. For a given star, place, and date the 
coefficients of (A/^)' and (A/*)* will be sensibly constant and their logarithms will 
thus be constant for a series of observations of a star on any date. By reason of 
the large factors (p" = 206 264."8)' and tan /« in the denominator of the second 
term, it will be very small unless A/* is large. Hence this term may often be 
neglected. Using both terms, the formula will give XA for Polaris to the nearest 
o."oi when A/ < 40"* and when observations are made in middle latitudes. 

By reference to formulas (2) of section 2,/, it is seen that 



sin 



sin 8 cos 8 sin* S cos 8 

sin /, cos <t> II * 

sin S cos 8 sin* 8 cos* 8 sin <!> 

/, tan /e cos <^"~ Z* * 

^* = sin (8 + <t>) sin (8 - ^).* 



b. By an observed altitude of a star. 

A = true altitude of star observed ; /. ^., the observed altitude less the refrac- 
tion, 
^ = latitude of place, 
p = polar distance of star, 
A = azimuth of star. 

tan» iA = sin(o--<A)sin(o-->4) 

COS cr C0S(<7 — /) 

The most advantageous position of the star, on account of possible error in the 
observed value of A, is that in which sin A is a, maximum. This position is then 
at elongation for stars which elongate, in the prime vertical for stars which cross 
this great circle, and in the horizon for a star which neither elongates nor crosses 
the prime vertical. A star will elongate when / < 90° — <^ ; it will cross the 
prime vertical when/ lies between 90° — <;^ and 90° ; and it will neither elongate 
nor cross the prime vertical when/ >9o°, or when the declination (8) of the star 
is negative. 

c. By equal altitudes of a star. 

By this method, when a fixed star is observed first east of the meridian and 
then west of the meridian at the same altitude, the direction of the meridian will 

* In precise work the computed azimuth requires the following correction for daily aberration, 

namely : — 

A ^ ,/ cos ^ 

A^ =-0.-32 ^j^ cos ^, 

where ^ is to be reckoned from the south by way of the west through 360^. 

Digitized by VjOOQIC 



IzXXii ASTRONOMY. 

obviously be given by the mean of the azimuth circle readings for the two 
observed directions. This process will thus give the direction of the meridian 
free from the effect of any instrumental errors common to the equal altitudes 
observed. Neither does it require any knowledge of the star's position (right 
ascension and declination). It is therefore available to one provided with no- 
thing but an instrument for measuring altitudes and azimuths, and is susceptible 
of considerable precision when a series of such equal altitudes is carefully referred 
to a terrestrial mark. 

When the sun is observed, it is essential to take account of its change in 
declination between the first and the second observation. Let Ai and A^ be the 
true azimuths counted from the meridian toward the east and west respectively 
at the times /i and /^ of the two observations. Also, let AS be the increase in 
declination of the sun in the interval (/« — /i). Then 



cos ^ sin ^/t — /i) 



Calling the azimuth circle readings for the east and west observations J?i and J?t 
respectively, the resulting azimuths are 

References. 

Many excellent treatises on spherical and practical astronomy are available. 
Among these the most complete are the following : — 

^' A Manual of Spherical and Practical Astronomy," by William Chauvenet. 
Philadelphia: J. B. Lippincott & Co., 2 vols., 8vo, 5th ed., 1887. "A Treatise 
on Practical Astronomy, as applied to Astronomy and Geodesy," by C. L. Doo- 
little. New York: John Wiley & Sons, 8vo, 2d ed., 1888. "Lehrbuch der 
Spharischen Astronomic," von F. Briinnow. Berlin : Fred. Diimler, 8vo, 185 1. 
" Spherical Astronomy," by F, Briinnow. Translated by the author from the 
second German edition. London : Asher & Co., 8vo, 1865. 



Digitized by 



GooqIc 



THEORY OF ERRORS. 



I. Laws of Error, 

The theory of errors is that branch of mathematical science which considers the 
nature and extent of errors in derived quantities due to errors in the data on 
which such quantities depend. A law of error is a relation between the magni- 
tude of an error and the probability of its occurrence. The simplest case of a 
law of error is that in which all possible errors (in the system of errors) are 
equally likely to occur. An example of such a case is had in the errors of 
tabular logarithms, natural trigonometric functions, etc. ; all errors from zero to 
a half unit in the last tabular place being equally likely to occur. 

When quantities subject to errors following simple laws are combined in any 
manner, the law of error of the quantity resulting from the combination is in 
general more complex than that of either component. 

Let € denote the magnitude of any error in a system of errors whose law of 
error is defined by <]^(€). Then if € vary continuously the probability of its 
occurrence will be expressed by <fi(i)de. If c vary continuously between equal 
positive and negative limits whose magnitude is a^ the sum of all the probabili- 
ties ^(c)^€ must be unity, or 

— a 

For the case of tabular logarithms, etc., alluded to above, ^c) = r, a constant 
whose value is 1/(2 a) = i, since a = 0.5. 

For the case of a logarithm interpolated between two consecutive tabular 
values, by the formula zr = t^i + (z'l — Vi) / = z^i (i — /) + z'j /, where Vi and 
Vf are the tabular values, and / the interval between Vj and the derived value 
V, ^(c) has the following remarkable forms when the extra decimals (practically 
the first of them) in (v^ — z/j) / are retained : — 

^*^ ^^ /. J7/\ f for values of c between — ^ and — (i — /), 



= _ . for values of c between — (i — /) and + (J — /)> (^) 

Google 



= ^ \^ A . for values of c between + (i — /) and -|- J. 



Digitized by^ 



IxXXiv THEORY OF KRRORS. 

It thus appears that <]^c) in this case is represented by the upper base and the 
two sides of a trapezoid. 

When, as is usually the practice, the quantity (v^ — Vi) t is rounded to the 
nearest unit of the last tabular place, ^(c) becomes more complex, but is still 
represented by a series of straight lines. It is worthy of remark that the latter 
species of interpolated value is considerably less precise than the former, wherein 
an additional figure beyond the last tabular place is retained. 

When an infinite number of infinitesimal errors, each subject to the law of con- 
stant probability and each as likely to be positive as negative, are combined by 
addition, the law of the resultant error is of remarkable simplicity and generality. 
It is expressed by 

where e is the Napierian base, ^ = 3. 141 59 -f-, and A is a constant dependent on 
the relative magnitude of the errors in the system. This is the law of error of 
least squares. It is the law followed more or less closely by most species 
of observational errors. Its general use is justified by experience rather than 
by mathematical deduction. 

a. Probable, mean, and average errors. 

For the purposes of comparison of different systems of errors following the 
same law, three different terms are in use. These are ihtprobabU error* or that 
error in the system which is as likely to be exceeded as not ; the nuan error^ or 
that error which is the square root of the mean of the squares of all errors in the 
system ; and the average error, which is the average, regardless of sign, of all 
errors in the system. Denote these errors by ^ €^, €„ respectively. Then in all 
systems in which positive and negative errors of equal magnitude are equally 
likely to occur, and in which the limits of error are denoted by — a and -f- a, the 
analytical definitions of the probable, mean, and average errors are : — 

-a -cp o +€, 

+ tf -\-a 



a 



• The reader should observe that the word probable is here used in a speciallj techiucal sense. 
Thun, the probable error is not " the most probable error," nor " the most probable Talne of the 
actual error," etc., as commonly interpreted. 



Google 



Digitized by VjOOQ 



THEORY OF ERRORS. boXV 



b. Probable, mean, average, and maximum actual errors of interpo- 
lated logarithms, trigonometric functions, etc. 

When values of logarithms, etc., are interpolated from numerical tables by means 
of first differences, as explained above, the probable and other errors depend on 
the magnitude of the interpolating factor. Thus, the interpolated value is 

where Vi and v^ are consecutive tabular values and / is the interpolating factor. 

For the species of interpolated value wherein the quantity (v2 — Vi) t is not 
rounded to the nearest unit of the last tabular place (or wherein the next figure 
beyond that place is retained) the maximum possible actual error is 0.5 of a unit 
of the last tabular place, and formulas (i) and (3) show that the probable, mean, 
and average errors are given by the following expressions : — 

Cp = i (i — /) f or / between o and i, 

= J — J V2/ (i— /) for / between \ and §, 
= J / for / between | and i. 

•-- I 96(1-/)/ \ 
I — (l — 2/)» 

€« = J ^7 for / between o and J, 

24 ^^i — I) I 

I — (2/— 1)» ^ ^^ , J 

^^ / _ A / for ^ between \ and i. 

It thus appears that the probable error of an interpolated value of the species 
under consideration decreases from 0.25 to 0.15 of a unit of the last tabular place 
as / increases from o to 0.5. Hence such interpolated values are more precise 
than tabular values. 

For the species of interpolated values ordinarily used, wherein (z/j — v^ t is 
rounded to the nearest unit of the last tabular place, the probable, mean, and 
average errors are greater than the corresponding errors for tabular values. The 
laws of error for this ordinary species of interpolated value are similar to but in 
general more complex than those defined by equations (i). It must suffice here 
to give the practical results which flow from these laws for special values of the 
interpolating factor /.* The following table gives the probable, mean, average, 
and maximum actual error of such interpolated values for /= i, i, J, . . . iV* It 
will be observed that / = i corresponds to a tabular value. 

* For the theory of the errors of this species of interpolated values see Annals of Mathematics^ 
▼oL ii. pp. 54-59. 



Digitized by 



GooqIc 



IxXXVi THEORY OF ERRORS. 

Characteristic Errors of Interpolated Logarithms^ etc. 



Interpolating 
factor 

/ 


Probable 
error 


Mean 
error 


Average 
error 


Maximam actual 
error 


I 


0.250 


0.289 


0.250 


\ 




.292 


.408 


•333 


I 




.256 


•347 


.287 


» 




.276 


.382 


•313 


I 




.268 


•370 


•303 


ft 




.277 


.385 


•315 


I 




.274 


.380 


•3" 


H 


1 • 


.279 


.389 


.318 


I 




.278 


.386 


.316 


H 


tV 


.281 


•392 


.320 


I 



2. The Method of Least Squares. 

a. General statement of method. 

When the errors to which observed quantities are subject follow the law ex- 
pressed by 

a unique method results for the computation of the most probable values of the 
observed quantities and of quantities dependent on the observed quantities. The 
method requires that the sum of the weighted squares of the corrections to the 
observed quantities shall be a minimum,* subject to whatever theoretical condi- 
tions the corrections must satisfy. These conditions are of two kinds, namely, 
those expressing relations between the corrections only, and those expressing 
relations between the corrections and other unknown quantities whose values are 
disposable in determining the minimum. A familiar illustration of the first class 
of conditions is presented by the case of a triangle each of whose angles is mea- 
sured, the condition being that the sum of the corrections is a constant An 
equally familiar illustration of the second class of conditions is found in the case 
where the sum and difference of two unknown quantities are separately observed ; 
in this case the two unknowns are to be found along with the corrections. 

Mathematically, the general problem of least squares may be stated in two 



* Hence the term least squares. 



Digitized by 



Google 



THEORY OF ERRORS. IxXXVU 

equations. Thus, let Xyy,z,. . . be the observed quantities with weights /, ^, 
r, . . . . Let the corrections to the observed quantities be denoted by Ax, Ay, 
A«, - . . ; so that the corrected quantities are x + Ajc, y -|- ^y, ;s + ^» • • • • Let 
the disposable quantities whose values are to be determined along with the correc- 
tions be denoted by ^, 17, {, . . . . Then, the theoretical conditions which must be 
satisfied by jp + Ajc, _y -[" ^>'» ^ 4" ^> • • • ^^^ ^Y f » ^> f > • • • ^^V ^ symbolized 
by 

^niiyVfif'^ + ^fy-^ Ay, Z + ^Z,...) = 0. (4) 

Subject to the conditions specified by the n equations (4), we must also have 

/ (Ao:)* -[- ^ (Ayy + ^ i^y + • • • = * minimum (5) 

= Uy say. 

Equations (4) and (5) contain the solution of every problem of adjustment by 
the method of least squares. Two examples may suffice to illustrate their use. 

First, take the case of the observed angles of a triangle alluded to above. 
Calling the observed angles x, y, z, we have 

a: + Ajc-[-J' + A^ + ^ + ^= 180° -|- spherical excess, 
or 

Ao: + A^ 4- Ajj = 180° -|- spherical excess — (x -[" ^^ + *) 
= Cy say. 

This is the only condition of the form (4). The problem is completely stated, 
then, in the two equations 

Ax "I" Ay + ^ = ^ 
/ (Ax)* + ^ (A_y)* + r (A^:)" = a min. = «. 

To solve this problem the simplest mode of procedure is to eliminate one of the 
corrections by means of the first equation and then make u a minimum. Thus, 
eliminating A5, there results 

u =p (Ax)« + ^ (Aj/)« 4- r (^ - Ax - Aj^)«. 

The conditions for a minimum of 2^ are : — 

^ = 0> + r) Ax + r Ajf - rr = o, 

9U A I / I \ A 



5a^ '— I w I v-^ 


— rt. 


V, 


and these give, in connection with the value A« = 


zc- 


- Ax - Aj^, 


where 


Aj? 


= 2. 
r' 


Q— ' 






" - + - + -' 





When the weights are equal, or when / = ^ == r, the corrections are — 

A* = Ay = A^ = i A Digitized byGoOQle 



boxviii THEORY OF ERRORS. 

Secondly, take the case, also alluded to above, of the observed sum and t±ie 
observed difference of two numbers. Denote the numbers by ( and 17, the latter 
being the smaller. Let the observed values of the sum (( -^ 17) be denoted 
by ^1, ^ . . . x^ and their weights /i, /j, . . • /« respectively. Likewise, call 
the observed values of the difference (£ — 17), yy, >'2, . . . y^ and their weights 
^1, ^8 • . . ^» respectively. Then there will he m -{- n equations of the type (4), 
namely : — 

( + V-(^i + ^1) = o, 

f + ^ — (^a + ^^2) = o, 



i + v — (^«+ A««)= o, 



(a) 



i- ^-0» + Ay,) =0; 
and the minimum equation is 

«=A(^i)'+A(^^2)' + ... + ^i(Ari)' + ^i(Aj'2)" + ... = amin. (b) 
The equations of group (a) give 

A^l = f + 17 — dTi, 

(c) 

Ar2 = f - »; - j'a, 

• • • i 

and these values in (b) give 

«=A(.i+r,-x,y-\-...-\-f,(i-r,-J>,y^... (d) 

Thus it appears that all conditions will be satisfied if i and 77 are so determined 
as to make u in (d) a minimum. Hence, using square brackets to denote sum- 
mation of like quantities, the values of $ and 77 must be found from 

|? = I> + ^]£ + |>-y],-|>* + iy] = o. 

|^ = [j) - ^] £+ I> + y] ,-[/*- 4^] = 0. 

Equations (e) give i and 17, and these substituted in (c) will give the corrections 
to the observed quantities. 

b. Relation of probable, mean, and average errors. 

The introduction of the law of error (2) in equations (3) furnishes the following 
relations, when it is assumed that the limits of possible error are —00 and -^ 00 : 

€p = 0.6745 €« = 0.8453 'a- (6) 

Digitized by VjOOQIC 



THEORY OF ERRORS. Ixxxix 

c. Case of a single unknown quantity. 

The case of a single unknown quantity whose observed values are of equal or 
unequal weight is comprised in the following formulas : — 

XiyXi, . . . Xj^=z observed values of unknown quantity, 

A A • • • /m = the weights of x^, x^, . . . 

Vij Vf, . . . Vj^ = most probable corrections to Xi, x^ , , , 

X = most probable value of the unknown quantity, 
m == the number of independent observations. 

Then the conditional equations (4) are 

X — j^a = ^«» 

X — x^=.v^\ 
the minimum equation (5) is 

P^\ -^rPt^t + . . . = {pv^ = lp(x — Xi)^ = a min., 

where / = i, 2, . . . »j, and 

When the weights are equal, /i =A = . . , = A» ^^d 

^~ IP 

or the arithmetic mean of the observed values. 

Weight of jc = [/] when the/'j are unequal, 
= m when the/'j are equal. 

Mean error of an observed value of weight unity = y *- ^^ for unequal weights, 

=y _; • for equal weights. 
Mean error of an observed value of weight/ = y > ^^ -'. for unequal weights. 

Mean error of :c = y 7 — ^f_ Jr -. for unequal weights, 

j::^ 4/ — li!L! — ^ for equal weights, 
y pt {fn —■ 1} 

The corresponding probable errors are found by multiplying these values by 
0.6745. See equation (6). Digitized by LjOOQ IC 



XC THEORY OF ERRORS. 

A formula for the average error sometimes useful is 

Average error = 4/ / _ i^ T^ ^^^ unequal weights. 

= 7n^ ' — ^ for equal weights. 

In these the residuals v are all taken with the same sign. A sufficient approzi- 
mation in many cases of equal weights is ^^-^ ; but the above formulas dependent 

on the squares of the residuals are in general more precise. 

An important check on the computation of x is [/?'] = o ; /. ^., the sum of the 
residuals v, each multiplied by its weight, is zero if the computation is correct 

d. Case of observed function of several unknown quantities ^, 17, { - . . - 

A case of frequent occurrence, and one which includes the preceding case, is 
that in which a function of several unknown quantities is observed. Thus, for 
example, the observed time of passage of a star across the middle thread of a 
transit instrument is a function of the azimuth and collimation of the transit 
instrument and the error of the timepiece used. In cases of this kind the con- 
ditional equations of the type (4) assume the form 

-F(fiiy,{.... ^ + A^) = o; 

that is, each of them contains but one observed quantity x along with several 
disposable (disposable in satisfying the minimum equation) quantities ^, 17, ([ . . . • 

The process of solution in this case consbts in eliminating the corrections 
Ajti, ^x^ . . . from the above conditional equations, substituting their values in 
the minimum equation (5), and then placing the differential coefficients of u with 
respect to f , 17, i . . . separately equal to zero. There will thus result as many 
independent equations as there are unknown quantities of the class in which ^, 17, 
C . . . fall, the remaining unknown quantities Ajc^, ^LXf, . . . , or the corrections to 
the observed values, are then found from the conditional equations. 

In many applications it happens that the conditional equations 

^(ij ^, f, . . . :r + Aj:) = o, 

are not of the linear form. But they may be rendered linear in the following 
manner. First, eliminate the quantities jc -(- Ajp from the conditional equations. 
The result of this elimination may be written 

/(if 17, f ...) — «» — A^ = o. 
Secondly, put 

where fof ifc, • • • are approximate values of f, 17, ... , found in any manner, and 
Af, Aiy, ... are corrections thereto. Then supposing the approximate values 

Digitized byLjOOQlC 



THEORY OF ERRORS. xa 

^ 19^ . . . SO close that we may neglect the squares, products, and higher powers 
of A^, A?;, . . . , Taylor's series gives 

/(fo, -to £...•)+ ^Af + U ^-7 + If ^£+ •••-*- ^ = 0. 

which is linear with respect to the corrections Af, A17, . . . . For brevity, and for 
the sake of conformity with notation generally used, put 

zi = Ar, 
^_5/ ._5/ ,-^l 

x = ^(, y = ^Vf ^ = Af, 

Then the conditional equations will assume the form 

ax -^ dy -^ cz '{' . . , — n=zv; 

and if they are m in number they may be written individually thus : — 

aix -\- ^ly + ^i« + . . . — «i = ^i» 

W 
am -{- ^m + r^ + . . . - n^=v^. 

The minimum equation (5) becomes 

« = \jv^ = [>(a:p + ^_y + ^ +...-«)*] ; 

so that placing -^, -^v^, -^, . . . separately equal to zero will give as many 

dx dy dz 

independent equations as there are values oi x^y^ z, , . , . The resulting equa- 
tions are in the usual (Gaussian) notation of least squares : — 

[paa]x + [pad'jy + [P^c] ar + . . . — [pan] = o, 

[pad] + [pdd] 4- O^^] + . . . - [pdn] = o, (b) 

[pac] +[>^^] +|>^^] +...-[/^] = o, 

The equations (a) are sometimes called observation-equations. The absolute 
term n is called the observed quantity. It is always equal to the observed quan- 
tity minus the computed quantity/ (fo, vot i -- •)» which latter is assumed to be 
free from errors of observation. The term v is called the residual. It is some- 
times, though quite erroneously, replaced by zero in the equations (a). 

The equations (b) are called normal equations. They are usually formed 
directly from equations (a) by the following process : Multiply each equation by 
the coefficient of x and by the weight/ of the v in the same equation, and add 
the products. The result is the first equation of (b), or the normal equation in x. 
The normal equations in ^, ^r, . . . are found in a similar manner. 

Digitized byLjOOQlC 



ZCii THEORY OF ERRORS. 

A noteworthy peculiarity of the normal equations is their symmetry. Hence in 
forming equations (b) from (a) it is not essential to compute all the coefficients of 
jc, ^, JBT, . . . except in the first equation. 

Checks on the computed values of the numerical terms in the normal equations 
are found thus : Add the coefficients a, ^, r, . . . of x, y, z^ . . . in (a) and put 

«i + ^1 + ^1 + • • • = -^b 
d^j + ^s + ^a + • • • = -^a* 

Multiply each of these, first, by its pa; secondly, by its/^, etc., and then add the 
products. The results are 

Ipaa] + [pad] + |>^] + . . . = [pas] 
[pad] + [pdd] + [pdc] -\-... = [pds] 



These will check the coefficients of x,y,z,,.. in (b). To check the absolute 

terms, multiply each of the above sums by its np, and add the products. The 

result is 

[pan] + [pdn] + [pen] + . . . = [psn], 

which must be satisfied if the absolute terms are correct. 

Checks on the computation of x, j', -sr, . . . from (b) and of Vi, v^ . . . from (a) 
are furnished by 

[pav] = o, [pbv] = o, [pcv] = o, 

To get the unknowns x, y, z, and their weights simultaneously, the best method 
of procedure is, in general, the following : For brevity replace the absolute terms 
in (b) by A, B, C, . , . respectively. Then the solution of (b) will be expressed 
by 

^^ = oa + A + 72 + • • • » (c) 

z = a^ +A +78 +. 



9 



in which aj, /Si, 71, . . . are numerical quantities ; and 

weight oix = —y 

weight of j^=-g» 

weight of -gr == — > 
7« 



(d) 



To compute mean (and hence probable) errors the following formulas apply : — 
m = the number of observed quantities n 

= number of equations of condition, 
/JL = number of the quantities x^y, z, . . . 
€^ = mean error of an observed quantity («) of weight unity, 
€p = corresponding probable error = 0.6745 €„. 

Digitized by VjOOQ IC 



THEORY OF ERRORS. XCIU 



€^=zy L-^^ for unequal weights, 

= i/ L^ for equal weights, 
y m — fi 



Mean error of any observed quantity (n) of weight/ = -j~* 

Mean error of :p = €„ ^^, 
Mean error of >' = €„ ^^ 
Mean error of 5 = €„ ^^ 



where a^, /S^, ya, • . . are defined by equations (c) and (d) above. 

e. Case of functions of several observed quantities x, y, z, . . . . 

This case is that in which the conditional equations (4) contain no disposable 
quantities f , 17, i, . . . . It is the opposite extreme to that represented by the case 
of the preceding section.* It finds its most important and extensive application 
in the adjustment of triangulation, wherein the observed quantities are the angles 
and bases of the triangulation, and the conditions (4) arise from the geometrical 
relations which the observed quantities p/us their respective corrections must 
satisfy. 

An outline of the general method of procedure in this case is the following : — 
The first step consists in stating the conditional equations and in reducing 
them to the linear form if they are not originally so. The form in which they 
present themselves is (4) with f , 1;, ^, . . . suppressed, or 

wherein x^y, z, . . . of (4) are replaced by Xi, x^ Xg . . , for the purpose of sim- 
plicity in the sequel. If this equation is not linear, Taylor's series gives 

/^ (^1, ^ ^8 . . . ) + 5^ ^1 + -5^^ A^ = . . . = O, 

since the method supposes that the squares, products, etc., of A:ri, ^x^ . . . may 
be neglected. The last equation is then linear with respect to the corrections 
AoTi, Aj^ . . . which it is desired to find. 
For brevity put 

F{xi, ^, ^3 . . . ) = ^1, a known quantity, . 

9F 9F dF 

Then the conditional equations will be of the type 

• The middle ground between these extremes has been little explored ; indeed, most practical 
applications fall at one or the other of the extremes. 



Digitized by^OOQlC 



XCIV THEORY OF ERRORS. 

There will be as many equations of this type as there are independent relations 
which the quantities Xi -|- ^^u ^ -(~ ^^Sf • - • ii^ust satisfy. Suppose there are Jk 
such relations, and let the differential coefficients 9l^/9xi, 9F/9x2, ... for the sec- 
ond relation be denoted by ^i, ^a> ^s» • • • i ^or the third relation hy Ci^ Cf, c^ . . . , 
etc. Then all of the conditional equations may be written thus : 

ai^Xi + 02^X2 + «3^^8 + • • • +^1=0, 

^1 + ^2 + ^S + • • • + ^2 = 0» (a) 

^l +^i + ^8 + • • • + ^8 = 0» 

• • • > 

the number of these equations being k. 

Call the weights of the observed quantities jcj, :cs, . . . /i, /i, . . . . Then, sub- 
ject to the conditions (a) we must have (in accordance with (5)) 

u = A(A*i)' +M^^ + . . . = [/(A*)*] (*) 

a minimum. 

Equations (a) and (H) contain the solution of all problems falling under the 
present case. Obviously, the number of conditions (a) must be less than the 
number of observed quantities x, or less than the number of ^x*s in (d) ; in other 
words, if m denote the number of observed quantities, m > k,ioT ii m'^ k the 
minimum equation (d) has no meaning. 

The question presented by (a) and (ff) is one of elimination only. Two methods, 
the one direct and the other indirect, are available. Thus, by the direct method 
one finds from (a) as many Ax's as there are equations (a), or Jk such values, and 
substitutes them in (^). The remaining (m — k) values of Ax in (d) may then be 
treated as independent and the differential coefficients of u with respect to each 
of them placed equal to zero. Thus all of the corrections Ax become known. 

By the indirect process, one multiplies the first of equations (a) by a factor ^1, 
the second by Q2, the third by ^5, . . . and subtracts the difiFerential (with respect 
to the Ax's) of the sum of these products from half the differential of (d). The 
result of these operations is 

^du={fiiAx^ -(«i<2i + ^iG + ^i<23 + ..0}^^i 

+ {/2^ -(«2Gl + ^2C2 + ^2G8+...)}^^^ 

+ ... 

+ {/«AXm - (a^Ql + ^«G + ^mG + •••)} ^^^ 

Now we may choose the factors G> 02» • • • Gt i" such a way as to make k of the 
coefficients of the differentials in this equation disappear ; and after thus elimi- 
nating k of these differentials we are at liberty to place the coefficients of the 
remaining (m — k) differentials equal to zero. Thus all conditions are satisfied 
by making 

^iQi + ^iG + ^iG + • • • — PA^i = o, 
a% 4-^2 + ^2 + • • • — P^f^2 = o, 

if) 

«m + ^« +^m + • • • — Pm^^m = ©; 

and the values of the corrections will be given by these equations when the fac- 
tors G, Qa, . . . are known. To find the latter it suffices to substitute the values 

Digitized byLjOOQlC 



THEORY OF ERRORS. 



XCV 



of A^Ty Ajc^ . . . from (c) in (a), whereby there will result fc equations containing 
the Q], Qi . . . Qk alone as unknowns. The result of this substitution is 



[f]a+[^]a+[f]a+- ■+».=°> 



■ab- 

.P. 
' ac~ 

Vp\ 


+ 
+ 


vbb-\ 

L/J 

Vbc-\ 


+ 
+ 


Vbc-i 

Vp. 

' cc' 

L/J 



+ . . . + ^2 = O, 
-f . . . 4- ^3 = O, 



id) 



These equations {d) are derived directly from (r) in the following manner : multi- 
ply the first of (c) by ~> the second by % etc., sum the products, and compare the 

sum with the first of {<£). The first of (^) is then evident \ the others are obtained 
in a similar way. 

The mean error of an observed quantity of weight unity is in this case given by 
the formula 

where k is the number of conditions {a) ; and the mean error of any observed 
value of weight/ is 

sTp 

f. Compatation of mean and probable errors of functions of observed 

quantities. 

Let V denote any function of one or more independently observed quantities 
4r, ^, 5, . . . ; that is, let 

V=f{x,y,z...). 

A question of frequent occurrence with respect to such functions is, What is the 
mean * error of V in terms of the mean errors of x, j/, j?, . . . ? The answer to 
this question given by the method of least squares assumes that the actual errors 
(whatever they may be) of x^y^z^,,, are so small that the actual error of ^is a 
linear function of the errors of x^ y^ z. In other words, if <« ^y, ^« . . . denote 
the actual errors of x, y, z^ . . • , and A ^denote the corresponding actual error of 
F, the method assumes that 






(a) 



wherein the squares, products, etc., of e„ e^ e„ , , . are omitted. 

This condition being fulfilled, let c denote the mean error of V^ and e„ Cy, e, . . . 
denote those of ^, j^, ^, . . . respectively. Then the law of error of least squares 
requires that 

-=(VQ'-'+(f)v+(lr7-'+- <*> 

• Since the probable error is 0.6745 times the mean error the latter onlv need be (^^^f^^lp 



XCVl THEORY OF ERRORS. 

This equation includes all cases. Its analogy with {a) should be noted, since 
the step from {a) to {b) is clear when the correct form of {a) is known. Mistakes 
in the application of {b) are most likely to arise from a lack of knowledge of the 
independently observed quantities jc, ^, jr, . , . or from a lack of knowledge of the 
true form of {a). Hence,* in deriving probable errors of functions of observed 
quantities attention should be given first to the construction of the expression for 
the actual error {a), 

A few examples may serve to illustrate the use of (a) and {b). 

(i.) Suppose 



Then 

(2.) Suppose 
Then 



(3.) Suppose 
Then 



3V 3V ^ 5F ^ , 

^V=ae, + {b^a)e, + {b + c)e„ 

SV_ a dV_b dV ^by 

V=z a log X •\- b %Vi y ■\- c log tan t. 



and 



5F_ a/tt 5r_ dV_ cy. 

'd^—~^' "^ — ''cos^, 5, — sin z cos / 



€* = 



(f)V+(*»..)v+(i?^.)V. 



(4.) Suppose the case of a single triangle all of whose angles are observed. 
What is the mean error, ist, of an observed angle; 2d, of the correction to an 
observed angle ; and 3d, of the corrected or adjusted angle ? 

Let X, y, z denote the observed angles, /, q^ r their weights, and Aj:, Ay, A« 
the corresponding corrections. 

Then, as shown on p. Ixxxvii, 

Aa: + ^J' + ^ = ^= 180° + sph. excess — {x + J' + «) 
= error of closure of triangle, 

C= '- 

- + - + - 
P^ q^ r 

Ao: = ^, A^ = ^, Ajbt = ^. 

p q r 

• As remarked by Sir George Airy in his Theory of Errors, 

t ^ ^ modulus of common logarithms. ^-^ ^ 

Digitized by V^OOQIC 



THEORY OF ERRORS. ZCVU 

For brevity, put 

g = iSo*' + spherical excess, A = 1 • 

-4-- + - 
Then 

:r + A* = 7-(^ - ^ -^ - ^) + *, 

with similar expressions for the other two angles. 

Now by the formula on p. xcv the square of the mean error of an observed 
angle of weight unity is (since there is but one condition to which A^, A^, As are 
subject), 

Pit^r + q{Uyf + ritlzf = ^= ^. 

Hence, the squares of the mean errors of the observed angles x^ y, z, their weights 
being/, ^, r respectively, are 

Ae^ h^ hc^ 

"jT* "ZT^ ""IT* 

P q r 

respectively. 
To get the mean error of a correction, ^x for example, formula {a) gives 

A V= A(A*) = - j(.. + ^, + O, 

and the corresponding expressions for the actual errors of Aj/ and A? are found 
from this by replacing phy q and r respectively. Thus by (b\ observing that 
the mean errors of x^ y^ z are given above, there result 

Square of mean error of Ar = {hcjff^ 
" t^y={hclq)\ 



Likewise, the formula for the actual error of jc -f- ^^ is 



A F= A(^ + A:.) = (i -|)^. -|. 



h 

r 



and the corresponding expressions for the actual errors of ^ -}~ A^ ^^^ z-^ ^ 
are found by interchange of q and r with/. Thus the squares of the mean errors 
of the adjusted angles are : — 



£or(, + A.). f(x-|). 

forCy + A^), f(i-^). 

<>«■(*+ ). — ^I--j- Digitized by GoOQIc 



XCviii THEORY OF ERRORS. 

In case the weights are equal, or in case p=^q =.r^ ^ = i» smd thefe 
result, — 

Square of mean error of observed angle = i ^t 

" " " ** " correction to observed angle = J <r*, 
" « " " " adjusted angle = * ^, 

where c is the error of closure of the triangle ; so that in this case of equal weights 
the three mean errors are to one another as ^^3, ^, and ^^2. 

References, 

The literature of the theory of errors, especially as exemplified by the method 
of least squares, is very extensive. Amongst the best treatises the following are 
worthy of special mention : Method of Least Squares, Appendix to vol. ii. of 
Chauvenet's " Spherical and Practical Astronomy." Philadelphia : J. B. Lippin- 
cott & Co., 8vo, 5th ed., 1887. " A Treatise on the Adjustment of Observations, 
with Applications to Geodetic Work and Other Measures of Precision," by T. W. 
Wright. New York : D. Van Nostrand, 8vo, 1884. " On the Algebraical and 
Numerical Theory of Errors of Observation and on the Combination of Observa- 
tions," by Sir George Biddle Airy. London : Macmillan & Co., i2mo, 2d ed., 
1875. " Die Ausgleichungsrechnung nach der Methode der Kleinsten Quadrate, 
mit Anwendungen auf die Geodasie und die Theorie der Messinstrumente," von 
F. R. Helmert. Leipzig : B. G. Teubner, 8vo, 1872. 



Digitized by 



GooqIc 



EXPLANATION OF SOURCE AND USE OF THE 

TABLES. 



Tables x and a are copies of tables issued by the Office of Standard Weights 
and Measures of the United States, edition of November, 1891. 

Table 3 is derived from standard tables giving such data. The arrangement 
is that given in " Des Ingenieurs Taschenbuch, herausgegeben von dem Verein 
* Hiitte'"* (nth edition, 1877). The numbers have been compared with those 
given in the latter work, and also with those in Barlbw's ** Tables." The loga- 
rithms have been checked by comparison with Vega's 7-place tables. 

Table 4 is abridged from a similar table in the Taschenbuch just referred to. 

Tables 5 and 6 are copies of standard forms for such table. They have 
been checked by comparison with standard higher-place tables. The mode of 
using these tables will be evident from the following examples : — 

(i.) To find the logarithm of any number, as 0.06944, we look in Table 5 
in the column headed N for the first two significant figures of the number, which 
are in this case 69. In the same horizontal line with 69 we now look for the 
number in the column headed with the next figure of the given number, which is 
in the present case 4. We thus find .8414 for the mantissa of the logarithm of 
the' number 694. To get the increase due to the additional figure 4, we look in 
the same horizontal line under Prop. Parts in the column headed 4 and find the 
number 2, which b the amount in units of the fourth place to be added to the 
part of the mantissa previously found. Thus the mantissa of log (0.06944) is 
.8416. The characteristic for the logarithm in question is —2 =8— 10. Hence 
log (0.06944) = 8.841 6 —10. 

(2.) To find the number corresponding to any logarithm, as 8.8416— 10, we 
look in Table 6 in the column headed L for the first two figures of the mantissa, 
which are in this case 84. In the same horizontal line with 84 we now look for 
the number in the column headed by the next figure of the mantissa, which is in 
this case x. We thus find 6394 for the number corresponding to the mantissa 
8410. To get the increase due to the additional figure 6, we look in the same 
horizontal line under Prop. Parts in the column headed 6 and find 10, which is 
the amount in units of the fourth place to be added to the number previously 
found. Thus the significant figures of the number are 6944, and since the char- 
acteristic of the logarithm is8— io=— 2, the required number is 0.06944. 

* Berlin : Verlag von Ernst & Kom. This work is an invaluable one to the engineer, archi- 
tect, geographer, etc 



Digitized by VjOOQIC 



C EXPLANATION OF SOURCE AND USE OF TABLES. 

Tables 7 and 8 are taken from " Smithsonian Meteorological Tables " (the 
first volume of this series). Their mode of use will be apparent from the follow- 
ing example : Required the sine and tangent for 28° 17'. 

sine 28° 10', Table 7 0.4720. Tabular difference = 26. 

Proportional part for 7' (7 X 2.6) . . 18. 

sine 28^ 17' 0.4738. 

tangent 28° 10', Table 8 0.5354. Difference for i' = 3.8. 

Increase for 7' (7 X 3.8) 27. 

tangent 28** if 0.5381. 

Table 9 is a copy of a similar table published in " Professional Papers, Corps 
Engineers," U. S. A., No. 12. It has been checked by comparison with other 
tables in general use. This table is useful in computing latitudes and departures 
in traverse surveys wherein the bearings of the lines are observed to the nearest 
quarter of a degree, and in other work where multiples of sines and cosines are 
required. Thus, if Z denote the length and B the bearing from the meridian of 
any line, the latitude and departure of the line are given by 

ZcosjB and Zsin^ 

respectively; the " latitude " being the distance approximately between the paral- 
lels of latitude at the ends of the line, and the '' departure " being the distance 
approximately between the meridians at the ends of the line. As an example, let 
it be required to compute the latitude and departure for Z = 4837, in any unit; 
and jB = 36*^ 15'. The computation runs thus : — 

Latitude. Departure. 

For 4000 3225.77 2365.23 

800 645.16 473-05 

30 24.19 17.74 

7 5-63 4-14 

4837 Zcos^ = 3900.77 Zsin-5= 2860.16 

Tables 10 and 11 give the logarithms of the principal radii of curvature of the 
earth's spheroid. They were computed by Mr. B. C. Washington, Jr., and care- 
fully checked by differences. They depend on the elements of Clarke's spheroid 
of 1866. The use of these tables is sufficiently explained on p. xlv-xlix. 

Table 12 gives logarithms of radii of curvature of the earth's spheroid in sec- 
tions inclined to the meridian sections. It is abridged to 5 places from a 6-place 
table published in the " Report of the U. S. Coast and Geodetic Survey for 
1876." Its use is explained on pp. bd-lxiv. 

Tables 13 and 14 give logarithms of factors needed to compute the spheroidal 
excess of triangles on the earth's spheroid. No. 13 is constructed for the Eng- 
lish foot as unit, and No. 14 for the metre. These tables were computed by Mr. 

Digitized byLjOOQlC 



EXPLANATION OF SOURCE AND USE OF TABLES. a 

Charles H. Kummell. Their use is explained on p. Iviii. The following example 
will illustrate their use : — 

Latitude of vertex A of triangle 48^ 08' 

" B " 47 52 

" " C " 47 04 

Mean latitude 47 41 

Angle C= 51** 22' ss" log sin C 9.89283 — 10 

log a (feet) 5.64401 

log ^ (feet) 5.58681 
log factor, Table 13, for 47° 41' 0.37176 

Spheroidal excess = 31. "290, log i. 49541 

Tables 15 and 16 give logarithms of factors for computing differences of lati- 
tude, longitude, and azimuth in secondary triangulatton whose lines are 12 miles 
(20 kilometres) or less in length. These tables were computed by Mr. Charles 
H. Kummell. Table 15 gives factors for the English foot as unit, and Table x6 
for the metre as unit. The use of these tables is illustrated by a numerical exam- 
ple given on pp. Ix and Ixi. For lines not exceeding the length mentioned, the 
tables will give differences of latitude and longitude to the nearest hundredth of 
a second of arc, using 5-place logarithms of the lengths of the lines. 

Table 17 gives lengths of terrestrial arcs of meridians corresponding to lati- 
tude intervals of 10", 20", . . . 60", and 10', 20', . . . 60', or lengths corresponding 
to arcs less than i^. The unit of length is the English foot. The table was 
computed by Mr. B. C. Washington, Jr. 

The length corresponding to any latitude interval is the distance along the 
meridian between parallels whose latitudes are less and greater respectively than 
the given latitude by half the interval. Thus, for example, the length corre- 
sponding to the interval 30' and latitude 37° (182047.3 feet) is the distance along 
the meridian from latitude 36° 45' to latitude 37** 15'. 

By interpolation, we may get from this table the meridional distance corre- 
sponding to any interval. The following example illustrates this use : Required 
the distance between latitude 41° 28' i7."8 and latitude 41° 39' 53."4. The 
difference of these latitudes is 11' 35."6, and their mean is 41° 34' o5."6. The 
computation runs thus : — 







Latitude 410. 


Tabular difference. 


10' 




60724.60 feet 




10.70 feet 


l' 




6072.46 " 




1.07 « 


30" 




3036.23 " 




•54 " 


s" 




506.04 " 




.09 " 


o."6 




60.72 " 




.01 « 


MM V- 


12.41 


7.05 " 


sum, 


12.41 « 



Distance = 70407.10 ** 
When the degree of precision required is as great as that of the example just 

Digitized byLjOOQlC 



Cll EXPLANATION OF SOURCE AND USE OF TABLES. 

given, it will be more convenient to use formulas (2) on p. xlvL Thus, in this 
example, — 

log. 
A<^ = 6gS'% 2.8423596 

<l> = 41° 34' os:'6, p^ (Table 10) 7.3196820 

cons't 4-6855749 

Length = 70407.10 feet 4.8476165 

Table 18 gives lengths of terrestrial arcs of parallels corresponding to longi- 
tude intervals of 10", 20", . . . 60", and 10', 20', . . . 60', or lengths corresponding 
to arcs less than 1°. The unit is the English foot. This table was computed by 
Mr. B. C. Washington, Jr. 

The method of using this table is similar to that applicable to Table 17 
explained above. For the computation of long arcs it will in general be less 
laborious to use the formulas (i) on p. xlix than to resort to interpolation from 
Table 18. 

Tables 19-24 give the rectangular co-ordinates for the projection of maps, in 
accordance with the polyconic system explained on pp. liii-lvi, for the following 
scales respectively : — 

Table 19, scale gl^j 

21, • " gijg- (2 miles to i inch) 

22, *' ^ (i mile to I inch) 
^^9 sossoo 



unit = English inch. 



Tlunit = i 
uoo5 J 



^^ „ . . : millimetre. 

24» 

These tables were computed by Mr. B. C. Washington, Jr. 

The use of these tables and their application in the construction of maps may 
be best explained by an example. Suppose it is required to draw meridians and 
parallels for a map of an area of 1° extent in longitude, lying between the paral- 
lels of 34° and 35°. Let the scale of the map be one mile to the inch, or 1/63360, 
and let the meridians and parallels be 10' apart respectively. Draw on the pro- 
jection paper an indefinite straight line AB, Fig. 4, to represent the middle me- 
ridian of the map. Take any convenient point, as Q on this line for the latitude 
34°, and lay off from this point the meridional distances CD, CJS, CF^ , . . CI^ 
given in the second column of Table 22, p. 114.* Through the points D, E, /% 
... I, thus found, draw indefinite straight lines perpendicular to AB, By means 
of these lines and the tabular co-ordinates, points on the developed parallels and 
meridians are readily found. Thus, for example, the abscissas for points ten 
minutes apart on the parallel 34° 20' are 9.53, 19.06, and 28.59 inches. These 
distances are to be laid off on JVJV in both directions from AB. At the points 
Z, Mf N, Z', M\ N\ so determined, erect perpendiculars to NN' equal in 
length, respectively, to the ordinates corresponding to the longitude intervals 

* The meridional distances and the abscissas of the points on the developed parallels in Fig. 4 
are one twentieth of the true or tabular values. The ordinates of points on the developed paral- 
lels are the tabular values. 



Digitized by V^OOQ IC 



EXPLANATION OFV SOURCE AND USE OF TABLES. 



cm 



lo', 20', 30'. The curved line joinikg the extremities of these perpendiculars is 
the parallel required. It may be drawn by means of a flexible ruler. The other 
paraUels are constructed in the same manner. They are all concave towards the 
north or south according as the map shows a portion of the northern or southern 
hembphere. The meridians are drawn in a similar manner through the points 
{e,g.y Pj Q, M, jR, S, 7; U"in Fig. 4) having the same longitude relative to the 
middle meridian. All meridians are concave towards the middle meridian. 

A test of the graphical work which should always be applied is the approxima- 
tion to equality of corresponding diagonals in the various quadrilaterals formed. 
Thus in Fig. 4, ^T should be equal to JVy, CN to CN\ EVXoEW, etc.* 









1 


} 






as* 
sor 

Ati 


X 






I 




V 


y 






















e 




s 




4V 

id 








F 




B. 




li 


M 




E 


i 


M 


N 








D 




Q 




34' 


w 






C 




-P 


V 



Tables 25-29 give areas of quadrilaterals, bounded by meridians and parallels, 
of the earth's surface. They are taken from " Bulletin 50, U. S. Geological Sur- 
vey." The unit of length used is the English mile, and the areas are thus given 
in square miles. The method of using these tables is obvious. 

Table 30 gives data for the computation of heights, from barometric meas- 
ures, in accordance with the formula of Babinet.t This table is taken from the 
" Smithsonian Meteorological Tables " (the first volume of this series). The 
manner of using it is explained in connection with the table. 

* It should be noted that CWis not equal to EV^ A^and F referring here to points on the 
developed parallels. 
t Compies Rendus, Paris, 1850, vol. xxv. p. 309. ^^ hkI OOoIp 



Digitized by^ 



>8' 



CIV EXPLANATION OF SOURCE AND USE OF TABLES. 

Table 31 gives the mean astronomical refraction in terms of the apparent alti- 
tude of a star or other object outside the earth's atmosphere. It is taken from 
Vega's 7-place table of logarithms. Its use will be evident from the following 
example : — 

Apparent altitude of star =r 34° 17' n."; 

Refraction = i' 24/'^ — » X i."i = i 24.1 

True altitude of star =34 15 48.6 

Tables 3a and 33 facilitate the interconversion of arc and time. They are 
taken from the *' Smithsonian Meteorological Tables" (the first volume of this 
series). The following examples illustrate their use : — 

(i.) To convert 68® 29' 48."8 into time we have from Table 32 — 

68** = 4^ 32™ GO- 
29' = I 56 
48" = 3-20 
o/'8 = .OS 

Equivalent in time = 4 33 59.25 
(2.) To convert 5^ 43" 28.*8 into arc we have from Table 33 — 

5 — 75 ^^^ 00 

43" = 10 45 00 

28' = 7 00 

0/8 = 12 



Equivalent in arc = 85 52 12 

Tables 34 and 35 facilitate the interconversion of mean solar and sidereal 
time intervals. They are taken from Vega's 7-place table of logarithms. The 
mode of using them is explained in the tables themselves. 

Tables 36 and 37 give the lengths of degrees of terrestrial arcs of meridians 
and parallels expressed in metres,* statute miles (English), and geographic miles 
(distance corresponding to i' on the earth's equator). These tables are taken 
from the " Smithsonian Meteorological Tables " (the first volume of this series). 

Table 38 facilitates the interconversion of statute (English) miles and nautical 
miles. The nautical mile used is that defined by the U. S. Coast and Geodetic 
Survey, namely : the length of a minute of arc of a great circle of the sphere 
whose surface equals that of the earth (Clarke's spheroid of 1866). For formula 
for radius of such sphere see p. lii. This table is taken from the '' Smithsonian 
Meteorological Tables " (the first volume of this series). 

Table 39 gives the English and metric equivalents of other standards of 
length still in use or obsolescent. It is taken from the " Smithsonian Meteoro- 
logical Tables " (the first volume of this series). 

Table 40 gives values of the acceleration (g) of gravity, log ^, log (1/2^), log ^ig, 

* It should be observed that the metric values given in these tables depend on Clarke's value 
of the ratio of the yard to the metre, which is now known to be erroneous by about the 1/ loooooth 
part. 

Digitized by V^OOQ IC 



EXPLANATION OF SOURCE AND USE OF TABLES. CV 

and (^/w*) or the length of a seconds pendulum, for intervals of 5** of geograph- 
ical latitude. It was computed by the editor, and is based on the formula for g 
given by Professor William Harkness in his memoir '* On the Solar Parallax and 
its Related Constants." * 

Xable 41 gives the linear expansions of the principal metals. It was compiled 
by the editor from various sources. The values given for the expansion per 
degree Centigrade have been rounded (with one exception) to the nearest unit in 
the millionths place, or to the nearest micron, since different specimens of the 
same metal vary more or less in the ten-millionths place. 

Table 42 gives the fractional changes in numbers corresponding to changes in 
the 4th, 5tb, . . . 7th place of their logarithms. These fractions are often con- 
venient in showing the approximate error in a number due to a given error in 
its logarithm, or the converse. Thus, for example, referring to the remark in a 
foot-note under explanation of Tables 36 and 37 above, the error in the loga- 
rithm of Clarke's ratio of the yard to the metre is about 4 units in the sixth place 
of decimals ; the Table 4a shows, then, that the metric equivalents in Tables 
36 and 37 are erroneous by about i/ioo oooth part. 

* Washington, Government Printing Office, 1891. 



Digitized by 



GooqIc 



Digitized by VjOOQIC 



GEOGRAPHICAL TABLES 



Digitized by 



GooqIc 



Table 1 . 



FOR CONVERTING U. S. WEIGHTS AND MEASURES. 

CUSTOMARY TO METRIC. 



a= 



LINEAR. 



CAPACITY. 



1 = 

2 = 

3 = 

4 = 

1= 

7 = 

8 = 

9 = 



Inches to 

milli- 
metres. 



25-4001 
50*800 1 
76*2002 
10 1 '6002 
127*0003 
152-4003 
177-8004 
201*2004 
228*6005 



Feet to 
metres. 



0*304801 
0-009601 
0*914402 
1*219202 
I 1524003 
1*828804 
2*135604 
2*430405 
2743205 



Yards to 
metres. 



0*91, 



2*743205 
3*657607 
4572009 
5-48641 1 
6*400813 

8*2296x6 



Miles to 
kilometres. 



4-82804 

6*43739 
804674 
9*65608 

11*26543 
12*87478 
14*48412 



9 = 



Fluid 
dnms to 
millilitres 
or cubic 

centi- 
metres. 



3*70 

7*39 
11*09 

18-48 
22-18 
25-88 
29*57 
33*27 



Fluid 

ounces to 

milli. 

litres. 



29*57 

mi 

1 18*29 
147-87 

177*44 
207*02 



Quarts to 
litres. 



0*94636 
1*89272 
2*83908 
3*78543 
4*73»79 
5*67815 
6*624 u 

7*57087 
851723 



Gallons to 
litres. 



3*78543 
7-57087 

"•35630 
i5'I4«74 
18*92717 
22 7 1 261 
26*40804 
30*28348 
34*06891 



SQUARE. 



WEIGHT. 



1 = 

2 = 

3 = 

4 = 



7 = 

8 = 

9 = 



Sauare 
inches to 
square 
centi- 
metres. 



6452 
12-903 

19-355 
25-807 
32-258 
38*710 
45161 

5A'^53 

58-065 



Square 
feet to 
square 
deci- 
metres. 



Q.290 
18-581 
27*871 
37161 
46*452 

55*742 
65-032 
74*323 
83-613 



Square 
yards to 
square 
metres. 



0*836 
1-672 
2508 

3*344 
4*181 
5*017 

^4 

7*525 



Acres to 
hectares. 



0*4047 
0*8094 
1*2141 
1-6187 
2-0234 
2-4281 
28328 

3*2375 
3-6422 



1= 



Grains to 

milli- 
grammes. 



64.7989 
129*5978 
194*3968 
259-1957 
323*9946 

3»87935 
453*5924 
518*3914 
583-1903 



Ayoirdu- 

pois 
ounces to 
grammes. 



28*3495 

& 

113*3981 
141*7476 
170*0972 

198*4467 
226*7962 

255-1457 



Avoirdu- 
pois 

pounds to 
kilo- 

grammes. 



o*45359 
0*90710 
1-36078 

1*81437 
2-26796 
2*72156 

3*}75i5 
3-62874 
408233 



Troy 
ounces lo 



31*103 
62*: 

93*31044 
124-41392 
155*51740 
186*62088 

21772437 
24882785 

279*93133 



CUBIC. 



2 = 

3 = 

4 = 

1: 

7 = 

8 = 

9 = 



Cubic 
inches to 
cubic 
centi- 
metres. 



Cubic feet 
to cubic 
metres. 



16-387 
32*774 
49*161 

65*549 
81*936 

98*323 
114*710 

13 « -097 
147-484 



002832 
0-05663 
0*08495 
0*11327 
0*14158 
0*16990 
0*19822 
0*22654 
0*25485 



Cubic 

yards to 

cubic 

metres. 



0*765 
1-529 
2*294 
3*058 
3823 
4*587 

6-I16 
6-881 



Bushels to 
hectolitres. 



0*35239 
07047? 
1*05718 

1-40957 
1*76196 
2*11436 
246675 
2-81914 

3-'7i54 



I Gunter*s chaun = 20*1168 metres. 

1 sq. statute mile = 259-000 hectares. 

I fathom = 1-829 metres. 

I nautical mile = 1853*25 metres. 
I foot = 0.304801 metre, 9*4840158 log. 

1 avoir, pound = 453*5924277 gram. 

15432*35639 grains = i kilogramme. 



The only authorized material standard of customary length is the Trouehton scale belonging to this office, whose 
length at ^9^.63 Fahr. conforms to the British sUndard. The yard in use m the United States is therefore equal to 
the Britisn yard. 

The only authorized material standard of customary weight is the Trov pound of the Mint. It is of brass of 
unknown density, and therefore not suitable for a standard of mass. It was derived from the British standard Troy 
pound of 175S by direct comparison. The British Avoirdupois pound was also derived from the latter, and contains 
7t000 grains Troy. 

l ne grain 1 roy b therefore the same as the grain Avoirdupois, and the pound Avoirdupois in use in the United 
States is pqual to the British pound Avoirdupois. 

The British gallon = 4-S4346 litres. The British bushel = 36.3477 litres. 

The length of the nautical mile given above and adopted by the U. S. Coast and Geodetic Survey many yeare 
ago is defined as that of a minute of arc of a great circle of a sphere whose surface equals tha| of the^cdi (Clarke's 
Spheroid of 1866). iigitized by VjVjiJ V 

* Issued by U. S. Office of Standard Weights and Measures, and republished here by permission of Superintendent 
of Coast and Geodetic Survey. 
Smithsonian Tables. 2 



FOR CONVERTING U. 8. WEIGHTS AND MEASURES. 

METRIC TO CUSTOMARY. 



Table 2. 



LINEAR. 


CAPACITY. 














Millilitres 












Metres to 
inches* 


Metres to 
fecL 


Metres to 
yards. 


KUo- 

meires to 

miles. 




or cubic 
centi- 
metres 
to fluid 
drams. 


Centi- 
litres to 

fluid 
ounces. 


Litres to 
quarts. 


Deca. 

litres to 
gallons. 


Hecto. 
litres to 
bushels. 


I = 


39.3700 


6-56167 
9-84250 


1-003611 
2-187222 


0-62137 


,= 


0-27 


0-338 


1*0567 


2-6417 


2-8377 


2 = 


787400 


1-24274 


2 = 


Jit 


0-676 


21134 


52834 


5-6755 
8-5132 


3 = 


I18-1100 


3-280833 


186411 


3 = 


1-014 


3*1700 


7-9251 


4 = 


1574800 


^3'^^333 


4374444 


sfMl 


4 = 


i*o8 


»-353 


4-2267 


10-5668 


14-1887 


1 = 


196*8500 


16-40417 


5-468056 
6-561667 
7-655278 


5 = 


1-35 


1-691 


5-2834 


13-2085 


236*2200 


19*68500 


3-72822 


6 = 


1-62 


2-029 


63401 


IS'8502 
18-4919 


17-0265 


7 = 


275-5900 


22-96583 


4-3495? 


Iz 


1-89 


2-367 


7-3968 


198642 


8 = 


314-9600 


26-24667 


8*748889 


4-97096 


216 


2-705 


8-4535 


21-1336 


22*7019 


9 = 


354-3300 


29-52750 


9.842500 


559233 


9 = 


2-43 


3-043 


9*5101 


23-7753 


25-5397 


SQUARE. 


WEIGHT. 




Square 
cenn- 
metrcsto 
aquare 
inches. 


Square 

metres 

to square 

fecL 


Square 

metres 

to square 

yards. 


Hectares 
to acres. 




Mini- 

grammes to 

grains. 


Kilo- 

grainroes to 

grains. 


Hecto- 
grammes 
to ounces 
avuirdu- 
poU. 


Kilo- 
grammes 
to pounds 
avoirdu- 

pois. 


1 = 


0-1550 


10*764 
21-528 


1*196 


2-471 


I = 


0-01515 
0-03086 


15432-36 
30864-71 


3-5274 

7-0548 

105822 


2-20462 


2 = 


0-3100 


rf 


4-942 


2 = 


6*61387 
8*81849 


3 = 


0-4650 


32*292 


l^l 


3 = 


0-04630 


46297-07 

6172943 
77161-78 


4 = 


0.6200 


43-055 


4784 


4 = 


0*06173 
0-07716 


14-1096 


1= 


0-7750 


53-819 
64-583 


5-980 


12-J55 


1= 


17-6370 


11*02311 


0.9100 
1-0850 


7-176 
8372 


14-826 


0-09259 


92594-14 


21-1644 
2^-6918 
28-2192 


13*22773 
15-43236 


7 = 


86*111 


17-297 


1= 


0-1080^ 


108026-49 


8 = 


1-2400 


9-568 


19768 


12JJ58-85 
138891-21 


17-63698 


9 = 


»-395o 


96-875 


10-764 


22239 


9 = 


31-7466 


19*84160 


CUBIC. 


WEIGHT — (continued). 




Cnbic 
centi- 
metres to 
cubic 
inches. 


CuWc 

deci- 
metres to 

cubic 
inches. 


CoWc 

metres 

to cubic 

feet. 


Cubic 

metres to 

cubic 

yards. 




Quintals to 
pounds aT. 


Milliera or 
tonnes to 
pounds av. 


Kilogrammes 

to ounces 

Troy. 


I = 


o-o6io 


61*023 


35*314 
70-629 


1-308 


J — 


220-46 


2204-6 


32-1507 


2 = 


0*1220 


122-047 


2-616 


2 = 


440-92 


4409-2 


64-3015 


3 = 


0-1831 


183-070 


105-943 
141-258 


3-924 


3 = 


661-39 
881-85 


n^Ps 


96-4522 


4 = 


02441 


244094 


5-232 


4 = 


128-6030 


5 = 


t^l 


305*117 
366-140 


IIX 


5 = 


1102-31 


11023-1 


160-7537 


6 = 


6 = 


132277 


132277 


192-9044 


7 = 


0*4272 


427-164 


247-201 
282*516 
317-830 


9-156 


7 ^ 


1543-24 


15432-4 


225-0552 


8 = 


0*4882 


488*187 


10-464 


8 = 


1763-70 


17637*0 


257-2059 
289-3567 


9 = 


0*5492 


549*210 


11-771 


9 = 


1984-16 


19841-6 



By the concurrent action of the principal rovemments of the world an International Bureau of Weights and 
Measures has been established near Paris. Under the direction of the International Committee, two ingots were cast 
of pore pdatinum-iridium in the proportion of 9 p<«rts of the former to 1 of the latter metal. From one of these a cer- 
tain number of kilogrammes were prepared, from the other a definite number of metre bars. These standards of weight 
and length were intercompared, without preference, and certain ones were selected as International prototype stand- 
ards. The others were distributed by lot, in September, 1889, to the different governments and are called National 
prototrpe standards. Those apportioned to the United Sutes were received in 1890 and are in the keeping of this office. 

Tne metric system was legalized in the United States in 1866. 

The International Standard Metre is derived from the M^tre des Archives, and its length is defined by the dis- 
tance between two lines at aP Centigrade, on a platinum-indium bar deposited at the International Bureau of Weights 
and Measures. 

The International Standard Riloeramme is a mass of platinum-iridium deposited at the same place, and its weight 
in Tacao is the same as that of the KuoKramme des Archives. 

The litre is equal to a cubic decimetre, and it is measured by the quantity of distilled water which, at its maximum r 
density, will counterpoise the sundard kilogramme in a vacuum, the volume of such a quantity qiwMcr being, as p 
neariy as has been ascertained, equal to a cubic decimetre. igitizea Dy "^^ v^ 

SmTHSONiAN Tables. 3 



Table 3. 



VALUES OF RECIPROCALS, SQUARES. CUBES. SQUARE ROOTS, CUBE 
ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS. 


n 


1000}- 


ffi 


^ 


v« 


»« 


log.« 


1 

2 

3 

4 


1000.000 
Soaooo 

333-333 
25aooo 


I 
4 

.1 


I 

8 


I.OOOO 

14142 
I.732I 

2.0000 


1.0000 

1.2599 
1.4422 
1.5874 


OlOOOOO 

a3oio3 
a6o2o6 


5 
6 

I 

9 


166.667 

142^57 
125.000 
iii.iii 


81 


343 
512 

729 


2.2361 
3.0000 


1.7 100 
1.8171 
1.9129 
2.0000 
2.0801 


0.6^ 

0.7781S 
0.84510 
0.90309 
0.95424 


10 

II 

12 

'3 
14 


loaooo 
90.9091 
83-3333 


100 

121 

196 


1000 

'331 
1728 

2197 
2744 


3.6056 
3.7417 


2.1544 
2.2240 
2.2894 

2.3513 
2.4101 


1.00000 
1.04139 
1.07918 

i."394 
1.14013 


15 

i6 

;^ 

19 


66.6667 
62.1(000 
58.8235 
55.5556 
52.6316 


225 
350 

361 


4913 

6859 


3.8730 

4.0000 

4.I23I 
4.2426 

4.3589 


2.4662 
2.5198 

2.5713 
2.6207 
8.6684 


1.17609 
1.20412 
1.23045 
1.25527 
1.27875 


ao 

21 
22 

23 
24 


47^6190 

45-4545 


400 


8000 

9261 

10648 

12167 

13824 


4.4721 

4^990 


2.7144 
2.7589 
2.8020 


1.30103 
1.32222 
1.34242 

1.36173 
1.38021 


25 

26 

% 

29 


40.0000 

384615 

37.0370 
3448^ 


^6 
729 


15625 

9, 

21952 
24389 


5.0000 
5.0990 
5.1962 
5.2915 
5.3852 


2.9240 
2.962s 
3.0000 
3.0366 
3.0723 


1.39794 
1.41497 
M3136 
144716 
1.46240 


30 

3' 
32 
33 
34 


33.3333 
32.2581 
31.2500 
30.3030 

2941 18 


IS 

1024 
1089 
1 156 


27000 

3T6S 
35937 
39304 


5-4772 

5-8569 
5.7446 
5.8310 


3.1072 
3.1414 
3.1748 
3.2075 
3.2398 


147712 
149136 
1.50515 
1.51851 
1.53148 


35 

36 

39 


28.5714 
27.7778 

27.0270 
26.3158 
25.6410 


1296 

1369 
1444 

1521 


4665! 
50653 
54872 

59319 


5.9161 
6.0000 
6.0828 
6.1644 
6.2450 


3.27" 
3.3019 
3.3322 
3.3020 
3.3912 


1.57978 
1.59106 


40 

41 
42 
43 
44 


25.0000 
24.3902 
23.8895 

23.2558 
22.7273 


1600 
1681 
1764 
1849 
1936 


64000 
68921 
74088 


6.3246 
6.4031 
6.4807 

6.5574 
6.6332 


3.4200 
3-4482 
3.4760 
3.5034 
3.5303 


1^)0206 
1.61278 
1.62325 
«.63347 
1.64345 


45 

46 

% 

49 


22.2222 

21.7391 
21.2766 
20.8333 
2a4C»2 


202q 
21 16 
2209 

2304 
2401 


91125 

97338 

103823 
1 10592 

I 17649 


6.7082 

6.9282 
7.0000 


3.6342 
3.6593 


1.65321 
1.66276 
1.67210 
1.68124 
1.69020 


50 

SI 
52 
S3 

S4 


19.6078 

18.5185 


2809 
2916 


125000 

I3265I 

140608 
148877 
157464 


7.0711 

7.1414 
7.2111 
7.2801 
7.3485 


3.68JO 
3-7084 
3.7325 
3.7563 
3.7798 


1.69897 

1.70757 
1.71600 
1.72428 
1.73239 



Smitmsonian Tablks. 



Digitized byLjOOQlC 



Table 3. 



VALUES OF RECIPROCALS, SQUARES. CUBES. SQUARE ROOTS, CUBE 
ROOTSp AND COMMON LOGARITHMS OF NATURAL NUMBERS. 



n 


looa^^ 


ffi 


«• 


v« 


v« 


log. « 


55 

56 

59 


18.1818 

17.8571 

17-5439 
17.2414 

16.9492 


3^3^ 
3249 
3364 
3481 


175S16 

185193 
X95112 

205379 


74162 
7.4833 
7.5498 
7.6158 
7.681 1 


3.8030 

3-8709 
38930 


1.74036 
1.74819 
1.75587 
*.78343 
1.77085 


GO 

61 
62 

64 


16.6667 
16.3934 
16.1290 

15-8730 
15.6250 


3600 
§4 


216000 
226981 
238328 
250047 
262144 


7.7460 

7.8102 

7.8740 

7-9373 
8.0000 


3-9*49 
3.9365 
3-9579 
3-979* 
4.0000 


1.77815 
1.78533 
1.79239 


65 

66 

% 

69 


15.3846 
151515 
14.9254 
14.7059 
144928 


4225 
4350 

4624 
4761 


287496 
300763 
314432 
328509 


8.0623 
8.1240 

8,3066 


4.0207 
4.0412 
4-0615 
4-0817 
4.1016 


1.81291 
1.81954 
1.82607 

I'.838^S 


70 

71 
72 

73 
74 


14.2857 

■a 

13.5*35 


4900 

5041 
5184 
5329 
5476 


343000 
35791 1 
373248 
389017 
405224 


8.3666 
8.4261 
8.4853 

1-^ 


4.121J 

4.i4<» 
4.1602 

4.»793 
4.1983 


1.84510 
1.85126 
1.85733 


75 

76 

?i 

79 


13.3333 
13.1579 
12.0870 
12.8205 
12.6582 


5625 
5770 

6241 


438976 
456533 
474552 
493039 


8.6603 
8.7178 
5-Z750 
8.8318 
8.8882 


4.2172 
4-2358 
4.2543 
4.2727 
4.2908 


•3&, 

1.88649 
1.89209 
1.89763 


80 

81 
82 

'4 


12.5000 

12.3457 

12.19qi 
I2/>482 

11.9048 


6400 
6561 
6724 

7056 


512000 
531441 
551368 
571787 
592704 


8.9443 
9.0000 

90554 
9.U04 
9.1652 


4.3089 
4.3267 

4.3445 
4.3621 

4.3795 


1.90309 
1.90849 
1.9*38* 
1.91908 
1.92428 


85 

86 

u 

89 


11.7647 

11.6279 
11.2360 


7569 
7744 
7921 


636056 
6C8503 
681472 
704969 


9.2195 
9.2736 
^3274 
9.3808 
94340 


4.3968 
4.4140 
4.4310 
4.4480 
44647 


1.92942 
1.93450 
1.93952 
1.94448 
1.94939 


90 

91 
92 

93 
94 


II.IIII 

;^ 

ia7527 
ia6383 


8100 
8281 

IS 

8836 


729000 
830584 


9.4868 
9.5394 
9.5917 
9.6437 
9.6954 


44814 
4.4979 
4.5*44 

4.5468 


1.95424 
1.95904 

1-973*3 


95 

96 

99 


10.5263 
104167 

10.3093 
ia204i 
laioio 


9025 
9216 
9409 
9604 
9801 


912673 
941 192 
970299 


9.7468 

9.8995 
9.9499 


4.5629 
4.5789 
4.5947 
4.6104 
4.6261 


1.97772 
1.98227 

1.98677 
1.99*23 
1.99564 


100 

lOI 

102 
103 

104 


10.0000 
9.90099 
9.80392 
9.70874 
9.61538 


lOOOO 

I020I 

I0816 


lOOOOOO 

I03030I 
I06I208 

\1X 


IOlOOOO 

iao499 
10.0995 
10.1489 
10.1980 


4.6416 
4.6570 

4.7027 


2.00000 

2.01284 
2.01703 


105 

106 

\% 

109 


9.52381 
9-43396 
9-34579 
9.25926 

9.17431 


IIO25 
II236 

11881 


1157625 

II9IOI6 
1225043 
I2597I2 

1295029 


10.2470 
10.2956 
10.3441 
10.3923 
104403 


4.7*77 
4.7326 

4.7475 
4.7622 

4.7769 


2.021 19 
2.02531 
2.02938 
2.03342 
2.03743 



SiimiaofiiA 



Digitized byLjOOQlC 



Table 3. 

VALUES OF RECIPROCALS. SQUARES, CUBES, SQUARE ROOTS, CUBI 
ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS. 



n 


iooo.i- 


n^ 


If* 


V« 


> 


log. « 




110 

III 

112 

"3 
114 


9.09091 
877193 


12100 
12321 
12544 
12769 
12996 


1331000 
1367631 
1404928 

1442897 
1481544 


10.4881 

10.5357 
10.5830 
10.6301 
10.6771 


4.7914 

4.8059 

4A»88 


2.04139 
2.04532 
2.04922 
2.05308 
2.05690 




115 

ii6 

119 


8.69565 

8.62069 
8.54701 
847458 

840336 


13225 

13924 
14161 


1601613 
1643032 
1685159 


ia7238 

10.7703 
10.8167 
10.8628 
10.9087 


4.8629 
4.8770 
4.8910 

4.9049 
4.9187 


2.06070 
2.06446 
2.0681Q 
2.07188 
2.0755s 




120 

121 
122 

"3 

124 


8.26446 
8.19672 
8.13008 
8.06452 


15129 
15376 


1728000 

1860867 
1906624 


I0.954S 
11.0000 
11.0454 
11.0905 
"•1355 


4.9324 
4.9461 

4.9597 


2.07918 
2.08279 
2.08636 
2.08991 
2.09342 




125 

126 
129 


8.00000 

7.93651 
7.87402 
7.81250 
775»94 


1 61 29 


1953125 
2000376 
2048383 


11.1803 
11.2250 
11.2694 
"•3137 
".3578 


5.0000 

5.0133 
5.0265 


2.09691 

2.IOOy 
2.10380 
2.IO72I 
2.1 1059 




130 

131 
132 
133 
134 


7.69231 
7-63359 
7-57576 

7.46269 


16900 
17161 
17424 

17956 


2352637 
2406104 


114018 

"4455 
11.4891 
11.5326 
11.5758 


5.0916 

5.1045 
5.1 172 


2.U394 
2.11727 
2.12057 
2.12385 
2.1 2710 




135 

136 

139 


7.40741 
7.35294 

7.19424 


18225 

1I769 
19044 
19321 


2460375 
2515456 

2628072 
2685619 


1 1. 6190 
11.6619 
11.7047 


5.1299 
5.1426 

5.»55i 
5.1676 
5.1801 


2.13033 
2.J3^ 

2.13988 

2.I430I 




140 

141 
142 
143 
144 


7.14286 
7.09220 
7.04225 
6.99301 
6.94444 


19600 
19881 
20164 

20449 
20736 


2744000 
2803221 
2863288 
2924207 
2985984 


11.8322 

11.8743 
11.9164 

".9583 
12.0000 


5.1925 
5.2048 

5.2171 
5.2293 
5.2415 


2.I46I3 
2.14922 
2.15229 

2^15^36 




145 

146 

\% 
149 


6.89655 
6.84932 
6.80272 
6.75676 
6.71 141 


21023 
21318 
21609 
21904 
22201 


3048625 
3112136 

3176523 
3241792 

3307949 


12.0416 
12.0830 

12.1244 


5.2656 

in 

5.3015 


2.I6I37 

2.1643s 
2.16732 

2.17026 

2.I73I9 




150 

152 
153 

IS4 


6.66667 
6.62252 
6.57893 
6.53595 
649351 


22500 
22801 
23104 

23409 
23716 


3375000 

3442951 
351 1808 

3581577 
3652264 


12.3288 

12.3693 
12.4097 


5.3*33 

5.3485 
5.3601 


2.I760Q 
2.17898 

2. 181 84 
2.18469 
2.T8752 




155 

156 

1 59 


6.45161 
6.41026 

6.36943 
6.3291 1 
6.28931 


2402J 

24336 
24649 

25281 


3723875 
3796416 

3869893 
3944312 
4019679 


12.4499 
12.4900 

12:5698 
12.6095 


5.3717 
5.3832 
5.3947 
5.4061 

5.4175 


2.19033 
2.I9312 

2.20140 




160 

161 
162 
163 
164 


6.25000 
6.2U18 
6.17284 
6.13497 
6.09756 


25600 


4096000 
4173281 
4251528 

4330747 
4410944 


12.6491 
12.6886 
12.7279 


5.4288 
54401 

5.4626 
5.4737 


2.20412 
2.20683 
2.20952 
2.21 219 
2.21484 





Smithsonian Tablcs. 



Digitized byLjOOQlC 



Table 3. 

VALUES OF RECIPROCALS. SQUARES, CUBES, SQUARE ROOTS. CUBE 
ROOTS, AND COMMON \.OCARITHMS OF NATURAL NUMBERS. 



165 

i66 
167 
168 
169 

170 

171 
172 

173 
174 

175 

176 

178 
179 

180 

181 
182 

184 

185 

186 
187 
188 
189 

190 

191 
192 
»93 
194 

195 

196 

198 
199 

200 

201 
202 

203 
204 

205 

206 
207 
208 
209 

210 

211 
212 
213 
214 

215 

216 

l\l 

219 



lOOOs^ 



6.06061 

6.02410 
5.98802 

5-95238 
5.9I7I6 

5-88235 
5-84795 
5-81395 
5-78035 

5-74713 

5.71429 
5.68182 
5.64972 

5.61798 
5-58659 

5-55556 
5.52486 

5-49451 
5.46448 
5-43478 

5-40541 
537634 

5-34759 
5-31915 
5.29101 

5.26316 
5-23560 
5-20833 
S-«8i35 



»i35 
5464 



5.12821 
5.10204 
5.07614 
5.05051 
5-02513 

5.00000 
4.97512 
4.95050 
4.9261 1 
4.90196 

4.87805 

4-85437 
4-83092 
4.80769 
4.78469 




27225 

^7550 
27889 
28224 
28561 

28900 
29241 
29584 

29929 
30276 

30625 
30976 



32041 

32400 
32761 
33124 
33489 
33856 

34225 
34596 
34969 
35344 
35721 

36100 
36481 
36864 
37249 
37636 

38025 
38410 



39204 
39601 

40000 
40401 
40804 
41209 
41616 

42025 
42436 
42849 
43264 
43681 

44100 
44521 
44944 
45369 
45796 

46225 
46656 
47089 

47524 
47961 



4492125 
4574296 
4657463 
4741632 
4826809 

4913000 
50002 I I 
5088448 
51777 17 
5268024 

5359375 
5451770 
5545233 
5639752 
5735339 

5832000 

6128487 
6229504 

6331625 
6434856 
6539203 

6644672 

6751269 

6859000 
6967871 
7077888 
7189057 
7301384 

7414875 
7529536 

7045373 
7762392 
7880599 

8000000 
81 20601 
8242408 

8365427 
8489664 

8615125 
874I8I6 

8869743 

8998912 
9129329 

9261000 

9393931 
9528128 

9063597 
9800344 

9938375 

10077696 
I02I83I3 
10360232 

10503459 



v« 



12.8452 
12.8841 
12.9228 
12.9615 
13.0000 

130384" 
13.0767 

i3-"49 
13-1529 
13-1909 

13.2288 
13-2665 
13-3041 
13-3417 
>3-379i 

13.4164 
13-4536 
13-4907 
13-5277 
13-5647 

13.6015 
13.6382 
13.6748 
i3-7"3 
13-7477 

13-7840 
13.8203 
13.8564 
13-8924 
13-9284 

13.9642 
14.0000 

14.0357 
14.0712 
14.1067 

14.1421 

14.1774 
14.2127 
14.2478 
14.2829 

14.3178 
14.3527 
14.3875 
14.4222 
14.4568 

14.4914 
14.5258 
14.5602 

14.5945 
14.6287 

14.6629 
14.6969 
14.7309 
14.7648 
14.7986 



9« 



5.4848 

5-4959 
5.5060 

5.5288 

5-5397 
5.5505 
5.5013 
5-5721 
5.5828 

5.5934 
5.6041 
5.6147 
5.6252 
56357 

5.6462 

5.6980 
5-7083 
5.718s 

l:5g 

5-7489 
57590 
5.7690 
5.7790 
5.7890 

IP 

5.8186 

5!285 
5.8383 

5.8480 
5.8578 
5.8675 
5.8771 
5.8868 

5-8964 
5-9059 
5.9155 
5.9250 

5-9345 

5-9439 
59533 
5.9627 
5.9721 
5.9814 

5-9907 
6.0000 
6.0092 
6.0185 
6.0277 



log. « 



2.21748 
2.220Z z 
2.22272 
2.22531 
2.22789 

2.23045 
2.23300 

2.23553 
2.23805 
2.24055 

2.24304 

2.2455' 
2.24797 
2.25042 
2.25285 

2.25527 
2.25768 
2.26007 
2.26245 
2.26482 



2.26717 
2.26951 
2.2718^ 
2.27416 
2.27646 



2.27875 
2.28103 
2.28330 
2.28556 
2.28780 

2.29003 
2.29226 
2.29447 
2.29667 
2.29885 

2.30103 
2.30320 

2.30535 
2.30750 
2.30903 

2.31175 
2-31387 
2.31597 
2.31806 
2.32015 

2.32222 
2.32428 
2.32634 
2.32838 
2.33041 

2.33244 
2-33445 
2.33640 
2.33846 
2.34044 



Digitized by V^OOQIC 



SiirrNaoNiAN Tables. 



Table 3. 



VALUE8 OF RECIPROCALS, SQUARES, CUBES. SQUARE ROOTS, G 
ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS 



CUBE 



lOOO^ 



^n 



J« 



log* 



220 

221 
222 
223 
224 

225 

226 
227 
228 
229 

230 

232 

234 

235 

236 

*37 
238 
239 

240 

241 
242 

243 
244 

245 

246 

247 
248 

249 

250 

251 
252 
253 
254 

255 

256 

'4 

259 

260 

261 
262 
263 
264 

265 

266 
267 
26S 
269 

270 

271 
272 

273 
274 



4.5454s 
4.52489 

4-50450 
4.48431 
4.46429 




4.34783 
4.32900 

4.3»034 
4.29185 

4-27350 

425532 
4.23729 
4.21941 
4.201 68 
4. 184 10 

4.16667 
4.14938 
4.13223 
4.H523 
4.09830 

4.08163 
4.061504 
4.04858 
4.03226 
4.01606 

4.00000 
3.98406 
396825 
3-95257 
3-93701 

3-92157 
3-90625 
3.89105 

3-87597 
3.86100 

3-84615 
3.83142 



3.8022 
3.78788 

3-77358 
3-75940 
3-74532 
3-73«34 
3-71747 

3-70370 
3.69004 
3.67647 
3.66300 
3.64964 



48400 
48841 
49284 

49729 
50176 

50625 
51076 
5' 529 
S1984 
52441 

52900 
53361 
53824 
54289 
54756 

56169 

56644 
57121 

58081 
58564 
5904? 
59536 

60025 
6051S 
61009 
61504 
62001 

62500 
63001 

635Q4 
64009 
64516 

6502c 

67600 
68121 

68644 
69169 
69696 

70225 
70756 
71289 
71824 
72361 

72900 

73441 
73984 
74529 
75076 



0648000 
0793861 
0941048 
1089567 
1239424 

1390625 
1543176 
1697083 
'85235 



2167000 
2326391 
2487168 

2649337 
2812904 

2977875 
3144256 

3312053 
3481272 
3651919 

3824000 
3997521 
4172488 

4348907 
4526784 

4706125 
4886936 
5069223 
5252992 
5438249 

5625000 
5813251 
6003008 
6194277 



)i94 
>387^ 



6387064 

6581375 

6777216 

6974593 
7173512 

7373979 

7576000 
7779581 
7984728 

8191447 
8399744 

8609625 
8821096 
9034163 
9248832 
9465109 

9683000 

9902511 

20123648 

20346417 

20570824 



14.8324 
14.8661 
14.8997 

15.0000 

15-0997 
15-1327 

15.1658 
15.1987 

15-2315 
15.2643 
15.2971 

15-3297 
15-3623 

15-3948 
15-4272 
15-4596 

15-4919 
15.5242 

\m 

15.6205 

15.7162 
15.7480 
15-7797 

15.8114 
15-8430 
15.8745 
15.9060 

15-9374 



16.0000 
16.0312 
16.0624 
16.093s 

16.1245 

\tM 

16.2173 
16.2481 

16.2788 
16.3095 
16.3401 
16.3707 
16.4012 

16.4317 
16.4621 
16.4924 
16.5227 
16.5529 



6.0368 
6.0459 
6.0550 
6.0641 
6.0732 

6.0822 

6x>9i2 
6.1002 
6.1001 
6.1 180 

6.1260 

6.1446 
6.1622 
6.1710 

tlWs 
6^1972 
6.2058 

6.2145 

6.2231 

6.2317 
6.2403 
6.2488 

6.2 

6.; 

6.2743 
6.2828 
6.2912 

6.2996 
6.3080 
6.3164 
6.3247 
6-3330 

6.3743 

6.3825 

5-3907 
6.3988 
64070 
6.4151 

64232 
6-4312 
6.4393 
6.4473 
6.4553 

64633 
64713 
64792 
6.4872 
64951 



2.34242 
2.34439 
234635 
2.34830 

235025 

2.35218 
2.35411 
2.35603 
2.35793 
2.35984 

2.36173 
2.36361 

2.36549 
2.36736 
2.36922 

2.37107 
2.37291 

2.37475 
2.37658 
2.37840 

2.38021 
2.38202 
2.38382 
2.38561 
2.38739 

2.38917 
2.39094 
2.39270 

2.39445 
2.39620 

2.39794 
2.39967 
240140 
240312 
240483 

240654 
240824 

240993 
2.41 162 

241330 

241497 
241664 
241830 
241996 
242160 

242325 
2.4248S 
242651 
242813 
242975 

243136 
2.43297 

243457 
2.43616 

243775 



SmTHsoNiAN Tables. 



Digitized byLjOOQlC 



TABUC3. 

VALUES OF RECIPROCALS, SQUARES. CUBES. SQUARE ROOTS, CUBE 
ROOTS, AND COMMON LOCARITHWiS OF NATURAL NUMBERS. 



looa- 



v« 



h 



log. « - 



275 

276 

%l 

279 

280 

281 
282 

284 

285 

286 
287 
288 



290 

291 
292 
293 
294 

295 

296 



299 

300 

30« 

303 
304 

305 

306 

309 

310 

3" 
312 
313 
314 

315 

316 

318 
319 

320 

321 
322 
323 
324 

325 

326 
327 
328 
329 



363636 

3-62319 
5.61 01 1 
3-59712 
3-58423 

3-57143 
3-55872 
3.54610 
3-53357 
3-521 13 

3-50877 
3-49650 

3-48432 

3-47222 

3.46021 

344828 

3-43643 
3.42460 
3-41297 
3.40136 

3-3 

3.378. 

3-36700 

3.35570 

3-34448 

3-33333 
3.32226 
3.31 1 26 
3-30033 
3-28947 

3.27869 
326797 
3-25733 
3-24675 
3.23625 

3.22581 

3.21543 
3-20513 

3-19489 
3.18471 

3.17460 
3.16456 
3-15457 
3-14465 
3.»348o 

3.12500 
3-" 527 
3-I0559 
3.09598 
3.08642 

3.07692 
3-06748 
3-05810 
3-04878 
3-0395* 



76176 
76729 
77284 
77841 

78400 
78961 
79524 



80656 

81225 
81796 
82369 
82944 
83521 

84100 
8468Z 
f5264 

87025 
87616 
88209 
88804 
89401 

90000 

90601 
91204 
91809 
92416 

93636 
94249 
94864 
95481 

96100 
96721 

97344 

& 

100489 
101124 
101761 

102400 
X03041 
103684 
104329 
104976 

105625 
106276 
106929 
107584 
108241 



20796875 
21024576 
21253933 
21484952 
21717639 

2191J2000 
22188041 
22425768 
22665187 
22906304 

23149125 

23393650 

23039903 
23887872 

24137569 

24389000 
24642 17 I 
24897088 

25153757 
25412184 

25672375 
25934330 
26198073 
26463592 
26730899 

27000000 
27270901 
27543608 
2781 81 27 
28094464 

28772625 
28652610 

28934443 
29218112 
29503629 

29701000 



- 0231 
30371328 
30664297 
30959144 

31255875 
3» 554490 
31855013 
32157432 
32461759 

32768000 
3307 61 61 
33386248 
33698267 
34012224 

34328125 
34645976 
34965783 
35287552 
3561 I 289 



6.5831 
6.6132 
6.6433 

6-6733 
6.7033 

6.7332 
6.7631 
6.7929 
6.8226 
6.8523 

6.8819 
6.91 1 5 
6.941 1 
6.9706 
7.0000 



73205 
7-3494 
7.3781 
7.4069 

7-4356 

7.4642 
7.4929 
7.5214 
7-5499 
7.5784 

7.6068 
7-6352 
76635 
7.6918 
7.7200 

7.7482 
7-7764 
7.8045 

7-8885 
79165 

7-9444 
7.9722 
8.0000 

8.0278 

i°555 
8.0831 
8.1108 
8.1384 



6.5030 
6.5108 

6.5265 
6.5343 

6.5421 
6.5499 

6.5654 
6.5731 

6.5808 
6.5885 

6.6039 
6.61 1 5 

6.61 91 
6.6267 
6.6343 
66419 

6.6494 

6.6569 
6.6644 
6.6719 

I® 

6.6943 
6.7018 
6.7092 
6.7166 
6.7240 

6.7313 
6.7387 
6.7460 

tl^ 

6.7679 
6.7752 
67824 

6.7969 

6.8041 
6.81 13 
6.8185 
6.8256 
6.8328 

6.8399 
6.8470 

6.8612 
6.8683 

6.8894 
6.8964 
6.9034 



2.43933 
2.44091 
2.44248 

2.44404 
2.44560 

2.44716 
2.44871 
2.45025 
2.45179 
2-45332 

2.45484 

2.45637 
2-45788 

2.45939 
2.46090 




2.46982 
2.47129 
2.47276 
2.47422 
2.47567 

2.47712 
2.47857 
2.48001 
2.48144 
2.48287 

2.48430 
2.48572 
2.48714 



1.48855 
;.48996 

2.49136 
2.49276 
2.49415 
2.49554 
2.49693 

2.49831 
2.49909 
2.50106 
2.50243 
2.50379 

2.50515 
2.50651 
2.50786 
2.50920 
2.5^055 

2.51 188 
2.51322 

2.51455 
2.51587 
2.51720 



Ljoogle 



SlIITMaONIAN TaSLBS. 



Digitized by 



Table 3. 



VALUES OF RECIPROCALS, SQUARES, CUBES. SQUARE ROOTS, C 
ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS. 



CUBE 



v« 



?« 



log. If 



331 
332 
333 
334 

335 

336 
337 
3fi 
339 

340 

341 
342 
343 
344 

345 

346 

348 
349 

350 

3SI 

352 
353 
354 

355 

356 

359 

360 

361 
362 
363 
364 

365 

3g 

^S 
369 

370 

371 
372 
373 
374 

375 

376 
377 
378 
379 

380 

382 

^^ 
384 



3.03030 

3.021 1 5 
3.01205 
3.00300 
2.99401 



2. 
2.971 



.98507 
.97619 
2.96736 
2.95858 
2.9498s 

2.941 18 

2-93255 
2.92398 
2.91C4C 
2.90698 

2.89855 
2.89017 
2.88184 
2.87356 
2.86533 

2^5714 
2.84900 
2.84091 
2.83286 
2.82486 

2.81690 
2.80899 
2.801 1 2 

2.79330 
2.78552 

2.77778 
2.77008 
2.76243 
2.75482 
2.74725 

2.73973 
2.73224 
2.72480 

271739 
2.71003 

2.70270 
2.69542 
2.68817 

2.67380 

2.66667 

2.65957 
2.65252 

2.64550 
2.63852 

2.631 

2.624( 

2.61780 
2.61097 
2.60417 



08900 

09561 

10224 
10889 
"556 

12225 
12896 

13569 
14244 
I492I 

15600 
I628I 
16964 
17649 
18336 

19025 
19710 

20409 

21 104 
2180I 

22500 
23201 

23904 
24609 
25316 

2602c 
26736 

27449 
28164 
28881 

29600 
30321 
31044 
31769 
32496 

33225 



35424 
3616I 

36900 
37641 
38384 
39129 
39876 

40625 
41370 
42129 
428S4 
43641 

44400 
45161 



47456 



36594368 
36926037 
37259704 

37595375 
37933050 
38272753 
38614472 
38958219 

39304000 
3965 I 82 I 
40001688 
40353607 
40707584 

41063625 
41421736 
41781923 
42144192 
42508549 

42875000 

43243551 
43614208 

43986Q77 
44361864 

44738875 
45118016 

45499293 
45882712 
46268279 

46656000 
47045881 
47437928 
47832147 
48228544 

48627125 
49027896 
49430863 
49836032 
50243409 

50653000 
51064811 
51478848 
51895117 
52313624 

52734375 
53157376 
53582633 
5401 01 52 
54439939 

54872000 
55306341 
55742968 
56181887 
56623104 



18.1659 
18.1934 
18.2209 
18.2483 
18.2757 

18.3030 
18.3305 

'f-357o 
18.3848 
18.4120 

18.4391 
18.4662 
18.4932 
18.5203 
18.5472 

18.5742 
18.601 1 
18.6279 
18.6548 
18.68x5 

18.7083 
18.7350 
18.7617 
18.7883 
18.8149 

18.8414 
18.8680 
18.8944 
18.9209 
18.9473 

18.9737 
19.0000 
19.0265 
19.0520 
19.0788 

19.1050 
19.1311 
19.1572 

19.1833 
19.2094 

19.2354 
19.2614 
19.2873 
19.3132 
19.3391 

19.3649 

19.3907 
19.4165 
19.4422 
19.4679 

19.4936 
19.5192 
19.5448 
19.5704 
19.5959 



6.9104 
6.9174 
6.9244 

6.9313 
6.9382 



7.0136 
7.0203 
7.0271 

7.0338 
7.0406 

7.0473 
7.0540 
7.0607 

7.0674 
7.0740 

7.0807 

7.0873 
7.0940 
7.1006 
7.1072 

7.1138 
7.1204 
7.1269 

7.1335 
7.1400 

7.1466 
7.1531 

7.1726 

7.I79I 
7.1855 
7.1920 
7.1984 
7.2048 

7.21 12 
7.2177 
7.2240 
7.2304 
7.2368 

7-2432 
7.2495 
7.2558 
7.2622 
7.2685 



2.518a 

2.51983 
2.521 14 
2.52244 
2.52375 

2.52504 
2.52634 
2.52763 
2.52892 
2.53020 

2.53148 
2.53275 
2.53403 
2.5352? 
2.53656 

2.53782 
2.53908 
2-54033 
2.54158 
2.54283 

2.54407 
2.54531 
2.54654 
2.54777 
2.54900 

2.55023 

2.55145 
^•55267 
2.55388 
2.55509 

2.55630 
2.55751 
2.55871 

2.55991 
2.561 10 

2.56220 
2.56348 
2.56467 
2.56585 
2.56703 

2.56820 
2.56937 

2.57054 
2.5717I 
2.57287 

2.57403 
2.57519 
2.57634 
2.57749 
2.57864 

2.57978 
2.58092 
2.58206 
2.58320 
2.58433 



Smithsonian Taslcs. 



Digitized byLjOOQlC 



Table 3. 
VAL.UE8 OF RECIPROCALS, 8QUARE8, CUBES. SQUARE ROOTS, CUBE 
ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS. 



n 


1000.^ 


«« 


if» 


v« 


> 


log. If 




385 

389 


259740 

2^57732 
2.57069 


IS 

149769 
150544 
15I32I 


57066625 
575^0 

5841 1072 

58863869 


19.6214 

19.6469 
19.6723 

19.6977 
19.7231 


7.2748 
7.281 1 
7.2874 
7.2936 
7.2999 


2.58|46 
2-58659 

2.58995 




390 

391 
392 
393 
394 


2.56410 

2-55754 
2.55102 

2.54453 
2.53807 


I 52100 
I 52881 

'53664 

154449 
155236 


59319000 

61 162984 


19.7484 

19-7737 
19-7990 
19.8242 
19.8494 


7.3061 

7.3124 
7.3186 
7.3248 
7-3310 


2.59106 
2.59218 
2.59329 
2.59439 
2.59550 




395 

396 

399 


2.53165 
2.52C25 
2.51889 
2.51256 
2.50627 


156025 
I 56816 
157609 
158404 
I5920I 


61629875 
62099136 

62570773 
63044792 
63521 199 


19.8746 
19.8997 
19.9249 

J9-9499 
19.9750 


7.3372 
7.3434 
7-3496 
7.3558 
7.3619 


2.59660 
2.59770 
2.59879 




400 

401 
402 

403 
404 


2.50000 

2.49377 
2.48756 
2w|8i39 
247525 


160000 
I6080I 
161604 
162409 
I632I6 


64000000 

64481 201 
64964808 
65450827 
65939264 


20.0000 
2ao25o 

20.0499 
20.0740 
2ao998 


7.3681 
7-3742 
7-3803 
7.3864 
7-3925 


2.60206 
2.60314 
2.60423 

2160^38 




405 

406 

409 


246914 
246305 
245700 
245098 
244499 


164025 

164836 

;&' 

I6728I 


66430125 
66923416 

674I9143 
679173I2 
68417929 


20.1246 

20.1494 
20.1742 
20.1990 
20.2237 


7.3986 

7.4047 
74108 
7.4169 
74229 


At 

2.61 172 




410 

4" 

412 

413 
414 


2.43902 

243309 
242718 

242131 
241546 


I68IOO 
I6892I 

169744 
170569 
I7I396 


68921000 
69426531 
69934528 
70444997 
70957944 


20.2485 
20.2731 
20.2978 
20.3224 
20.3470 


74290 
7-4350 
7.4410 
7.4470 
74530 


2.61278 
2.61384 
2.61490 
2.61595 
2.61700 




415 

416 

419 


2.40964 


172225 

174724 
I7556I 


71473375 
71991296 
725II713 
73034632 
73560059 


20.3755 
20.3961 
20.4206 
20.4450 
20.4695 


7.4590 
7.4650 
7.4710 
7.4770 
7.4829 


2.61805 
2.61909 
2.62014 
2.621 18 
2.62221 




420 

421 
422 

423 
424 


2.38095 

2.36967 
2.36407 
2.35849 


176400 

178084 
178929 
179776 


74088000 
74618461 

76225024 


20.4939 
20.5183 
20.5426 
20.5670 
20.5913 


7-4880 
7.4948 
7.5007 
7.5067 
7.5126 


2.62428 
2.62531 
2.62634 
2.62737 


- 


425 

426 

429 


2.35294 
2.34742 
2.34192 

2.33645 
2.33100 


180625 
I8I476 
182329 
I83I84 
I8404I 


7676^625 

77854483 
78402752 

78953589 


20.6155 
20.6398 

20.7123 


7.5185 

7-5244 
7-5302 
7-5361 
7.5420 


2.62839 
2.62941 
2.63043 




430 

431 
432 
433 
434 


2.32558 
2.32019 
2.31481 
2.30947 
2.30415 


184900 
I8576I 
186624 

;» 


79507000 

806215^8 
81 182737 
81746504 


20.7364 
20.7605 
20.7846 
20.8087 
20.8327 


7-5478 
7-5537 
7.5595 
7.5654 
7.5712 


2.63347 
2.63448 
2.63548 
2.63649 
2.63749 




435 

436 

439 


2.29885 

2.28311 
2.27790 


189225 
190096 
190Q69 

191844 
192721 


82312875 
82881856 

83453453 
84027672 

84604519 


20.8567 
20.8806 

20.9045 
20.9284 
20.9523 


7^5828 
7.5886 

7.5944 
7.6001 


2.63849 
2.63949 
2.64048 

2.64246 






Taslks. 








Digitize 


d by V^OO^ 


le 



II 



Table 3. 

VALUES OF RECIPROCALS, SQUARES, CUBES. SQUARE ROOTS, CUI 
ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS. 



v« 



?« 



log. » 



440 

441 
442 
443 
444 

445 

446 
447 
448 
449 

450 

451 
452 
453 
454 

455 

456 

458 
459 

460 

461 
462 

464 

465 

s 

469 

470 

471 
472 
473 
474 

475 

476 

^77 
478 
479 

480 

481 
482 
483 
484 

485 

486 
487 
488 
489 

490 

491 
492 

493 
494 



2.27273 

2.26757 
2.26244 

2-25734 
2.25225 

2.24719 
2.24215 
2.23714 
2.23214 
2.22717 

2.22222 
2.21730 
2.21239 
2.20751 
2.2 



2.20751 
2.20264 



2.19780 
2.19298 
2.18818 
2.1834I 
2.17865 

2.I739I 
2.16920 

2.i64i;o 
2.15983 
2.155*7 

2.15054 
2.14592 
2.14133 
2.1367s 
2.13220 

2.12766 
2.12314 
2.1186A 
2.11416 
2.10970 

2.10526 
2.10084 
2.09644 
2.09205 
2.08768 

2.08333 
2.07900 
2.07469 
2.07039 
2.066x2 

2.06186 
2.05761 

2-05339 
2.04918 

2.04499 

2.04082 
2.03666 
2.03252 
2.02840 
2.02429 



193600 
194481 
195364 
196249 

I97>36 

198025 
19801S 
199809 
200704 
201601 

202500 
203401 

204304 
205209 
2061 10 

207025 

209764 
210681 

21 1600 
21252Z 
213444 

214369 
215296 

216225 
217156 
218089 
219024 
219961 

220QO0 
22 I 841 
222784 
223729 
224677 

225625 
226578 
227529 
228484 
229441 

230400 
231361 
232324 
233289 
234256 

235225 
236196 
237169 
238144 
239121 

240100 
241 08 I 
242064 
243049 
244036 



85184000 
857661 2 I 
86350888 
86938307 
87528384 

8812112 

89314623 

8991;; 

90518 



887 16< 



^ 



91 1 25000 

91733851 
92345408 

92959677 
93576664 

94818816 

95443993 
96071912 
96702579 

97336000 
97972181 
98611128 
99252847 
99897344 

100544625 
loi 194696 
101847563 
102503232 
1031 61709 

103823000 
104487111 
I 05 I 54048 
105821817 
106496424 

107171875 
1 078501 76 
108531333 
109215352 
109902239 

I I 0592000 
1 1 128464 1 
111980168 
I I 2678587 
"3379904 

I I 40841 25 
I I 4791 256 

"5501303 
116214272 
116930169 

117649000 
II 837077 I 
I 19095488 
"9823157 
120553784 



2a9762 
21.0000 
21.0238 
2ix>476 
21.0713 

21.0900 
21.1187 
21.1424 
21.1660 
21.1896 

21.2132 
21.2368 
21.2003 
21.2838 
21.3073 

21.3307 
21-3542 
21.3776 
214009 
21.4243 

214476 
21.4709 
214942 
21.5174 
21.5407 

21.5639 
21.5870 
21.6102 
21.6333 
21/ 



£.6353 
1-6564 



21.6795 
21.7025 
21.7200 
21.7486 
21.7715 

21.7945 
21.8174 
21.8403 
21.8632 
21.8861 

21.9089 
21.9317 
21.9545 

21.9773 
22.0000 

22.0227 

22.0454 
22.0681 
22.0907 
22.1133 

22.1359 
22.1585 
22.1811 
22.2036 
22.2261 



7.6059 
7.6117 
7.6174 
7.6232 
7.6289 

7.6346 
7-6403 
7.6460 
7.6517 
7-6574 

7-6631 



7.6857 

7.6914 
7-6970 
7.7026 
7.7082 
77138 

7.7194 
7.7250 
7-7306 
7.7362 
7-7418 

7.7473 
7-7529 
7.7584 
7.7539 
7.7695 

7-7750 
7.7805 
7.7860 

7-7915 
7-7970 

7.8025 
7-8079 

& 

78243 

7.8297 
7-8352 
7.8406 
7.8460 
7.8514 

7.8568 
7.8022 
7.8676 

7.87^ 

7-^37 
7.8891 

7!944 
7-8998 
7.9051 



2.64345 
2.64444 
2.64542 
2.64640 
2.64738 

2.64836 

2.64933 
2.65031 
2.65128 
2.65225 

2.65321 
2.65418 
2.65514 
2.65610 
2.65706 

2.65801 
2.65896 

la 

2.66181 

2.66276 
2.66370 
2.66464 
2.66558 
2.66652 

2.6^39 
2.66932 
2.67025 
2.67117 

2.67210 
2.67302 

2.67^ 
2.67578 

2.67669 
2.67761 
2.67852 

2.67943 
2.68034 

2.68124 
2.68215 
2.68305 

t&l 

2.68574 
2.68664 

2^68842 
2.68931 

2.69020 
2.69108 

2.69197 
2.69285 

2.69373 



Smithsonian Tablcs. 



12 



Digitized byLjOOQlC 



VALUES OF RECIPROCALS, SQUARES. CUBES. 80UARE ROOTS, C 
ROOTS, AND COMMON LOhARITHMS OF NATURAL NUMBERS. 



Table 3. 
CUBE 



495 

496 

498 
499 

500 

501 

502 

503 
504 

505 

506 



509 

510 

5" 
512 

5»3 

514 

515 

S16 



5»9 

520 

521 
522 
523 
524 

525 

526 

529 

530 

531 
532 
533 

534 

535 

536 

539 

540 

541 
542 

543 
544 

545 

546 

548 
549 



2.02020 
2X)i6i3 
2.01207 
2.00803 
2.00401 

2.00000 
.99601 
3 



98413 

.98020 
.97628 

.97239 
.968^0 
.96484 

.96078 

•95695 
•95312 
•94932 
•94553 

.94175 
•93798 
•93424 
•93050 
.92678 

.92308 

•91939 
.91571 
.91205 
.90840 

.90476 
.90114 
89753 



.89031 

.88679 
.88324 
37970 
.87617 
.87266 

.86916 
.86567 
.86220 
.85874 
•85529 

.85185 

.84843 
.84502 
.84162 
.83824 

.83486 
•!3150 
.82815 
.82482 
.82149 



245025 
246016 
247009 
248004 
249001 

250000 
251001 
252004 

253009 
254016 

255025 
256036 

257049 
258064 
259081 

260100 
261 121 
262144 
263169 
264196 

265225 
2662 JO 
267289 
268324 
269361 

270400 
271441 
272484 

273529 
274576 



277729 
278784 
279841 

280900 
281961 
283024 
284089 
285156 

286225 
287296 
288369 

289444 
290521 

291600 
292681 
293764 
294849 
295936 

297025 
2981 16 
299209 
300304 
301401 



121287375 
122023936 

122763473 
123505992 
124251499 

125000000 
I 25751 501 
120506008 
127263527 
128024064 

128787625 
I 295542 I 6 

X30323843 
131090512 
131872229 

I 3265 I 000 

133432831 
134217728 
X 35005697 
135790744 

138188413 
138991832 
139798359 

140608000 
141420761 
142236648 
143055667 
143877824 

144703125 
145531576 
146363183 
147197952 
148035889 

148877000 
149721291 
150568768 
X5'4i9437 
152273304 

153x30375 
X 53990656 

X 548541 53 
155720872 
I 56590819 

157464000 
1 58340421 



160103007 
160989184 

161878625 
X62771336 
X 63667323 
164566592 
165469149 



V« 



22.2486 
22.2711 
22.2935 
22.3159 
22.3383 

22.3607 
22.3830 
22.4054 
22.4277 

22.4499 

22.4722 
22.4944 
22.5167 
22.5389 
22.5610 

22.5832 
22.6053 
22.6274 

22.6495 
22.C 



2.6716 



22.6936 
22.7156 
22.7376 
22.7596 
22.7816 

22.8035 
22.8254 
22.8473 
22.8692 
22.8910 

22.9129 

22.9347 
22.9565 
22.9783 
23.0000 

23.0217 

23.0434 
23.0651 
23.0868 
23.1084 

23.130X 
23x5x7 
23-X733 
23.1948 
23.2164 

232379 
23-2594 
23.2809 
23.3024 
23-3238 

23.34|2 
23.3666 
23.3880 
23.4094 
23.4307 



^n 



7-9x05 
7.9158 
7.9211 
7.9264 
793x7 

7-9370 
7.9420 
7-9476 
7.9528 
7.9581 

^:» 

7.9739 
7-979X 
7.9843 

7.9896 
7.9948 
8.0000 
8.0052 
8.0104 

8.0156 
8.0208 
8.0260 
8.0311 
8.0363 

8.0415 
8.0466 
8.0517 
8.0569 
8.0620 

8.0671 
8.0723 

8.0774 
8.0825 
8.0876 

8.0927 
8.0978 
8.1028 
8.1079 
8.1130 

8.1180 
8.1231 
8. 1 281 



X332 
1382 

8.1483 



8. 



8.1583 
8.1633 



8.1683 
8.1733 

8.17 

X833 
8.1882 



8. 



.17»3 

4^3 



log. » 



2.69461 
2.69548 
2.69636 
2.69723 
2.69810 

2.69807 
2.69984 
2.70070 

2.70157 
2.70243 

2.70329 

2.704x5 
2.70501 
2.70586 
2.70672 

2.70757 
2.70842 
2.70927 
2.71012 
2.71096 

2.71181 
2.71265 
2.7x349 
2.7x433 
2.715x7 

2.71600 
2.71684 
2.71767 
2.71850 
2.7x933 

2.72016 
2.72009 
2.72181 
2.72263 
2.72348 

2.72428 
2.72509 
2.72591 
2.72873 
2.72754 

2.72835 
2.72916 
2.72997 
2.73078 
2.73x59 

2.73239 
2.73320 
2.73400 
2.73480 
2.73560 

2.73640 
2.73719 

2.73799 
2.73878 
2-73957 



Smitmsoiiian Tables. 



13 



Digitized by V^OOQ IC 



Tablk 3. 



VALUES OF RECIPROCALS, SQUARES. CUBES. SQUARE ROOTS, C 
ROOTSp AND COMMON LOGARITHMS OF NATURAL NUMBERS. 



CUBE 



v« 



v^ 



log. « 



550 

551 
552 
553 
554 

555 

556 

'3 

SS9 
560 

563 

S65 

569 

570 

571 
572 
573 
574 

575 

576 



579 
580 

^^ 
584 



5^ 

588 
589 

590 

591 
592 
593 
594 

595 

596 

599 

600 

601 
602 
603 
604 



.81818 
.81488 

•f"59 
.80832 
.80505 

.80180 
.79856 
•79533 

.78571 
•78253 

•77930 
.77620 

•77305 

.76678 
•76367 
.76056 
•75747 

•75439 
•75131 
.74825 
.74520 
.74216 

•73913 
.73611 

•73310 
.73010 
.72712 

.72414 
.72117 
.71821 

•71527 
•71233 

.70940 
.70648 

■& 

•69779 

.69492 
.69205 
.68919 
.68634 
.68350 

.68067 
.67785 
.67504 
.67224 

.66945 
.66667 

■^, 



308025 

309136 
310249 

3II364 
31 2481 

313600 
31472I 

318096 

319225 
320350 
321489 
322624 
323761 

324900 
326041 
327184 
328329 
329476 

330625 

33*770 
332929 
334084 
335241 

336400 
337561 
338724 
339889 
341056 

342225 
343390 
344569 
345744 
346921 

348100 
349281 
350464 
351649 
352836 

354025 
355216 
356409 
357604 
358801 

360000 
361 201 
362404 
363609 
364816 



66375000 
67284151 
68196608 
691 I 2377 
70031464 



72808693 
7374" 1 2 
74676879 

75616000 
76558481 
77504328 
78453547 
79406144 

80362125 
81321496 
82284263 
83250432 
84220009 

85193000 
86169411 
87149248 
88132517 
891 19224 

90109375 
91 102976 
92100033 
93100552 
94104539 

951 1 2000 
961 22941 
97137368 
98155287 
99176704 

200201625 
201230056 
202262003 
203297472 
204336469 

205379000 
206425071 
207474688 
208527857 
209584584 

2T0644875 
21 1708730 
2 I 27761 73 
213847192 
214921799 

216000000 

217081801 
218167208 
219256227 
220348864 



234521 
234734 
23-4947 
23.5160 
23-5372 

23-5584 
23-5797 
23.6008 
23.6220 
236432 

23.6643 
23.6854 
23.7065 
23.7276 
23^7487 

23.7697 
23.7908 
23.8118 
23.8328 
238537 

23-8747 
23.8956 
23.9165 
23.9374 
23-9583 

23.9792 

24.0000 
24.0208 
24.0416 
24.0624 

24.0832 
24.1039 
24.1247 
24.1454 
24.1661 

24.1868 
24.2074 
24.2281 
24.2487 
24.2693 

24.2899 
24.3105 

24-33" 
24.3516 
24.3721 

24-3926 
24-4131 
24.4336 
24.4540 

244745 

24.4949 

24.5153 

24.5357 
24.5561 

24-5764 



§•'932 
8.1982 
8.2031 
8.2081 
8.2130 

8.2180 
8.2229 
8.2278 
8.2327 
8.2377 

8.2426 
8.2475 
8.2524 
8.2573 
8.2621 

8.2670 

8.2816 
8.2865 

8.2913 
8.2962 
8.3010 

8.3059 
8.3107 

8.3155 
8.3203 
8.3251 
§•3300 
8.3348 

8.3396 

8.3443 
8.3491 

IS! 

8.3730 

5-3777 
8.3825 

8.3872 
8.3919 

8.3967 
84014 
8.406Z 

8.4108 

8.4155 
84202 

84249 
8.4296 

843*3 
8.4390 
8.4437 
8.4484 

8.4530 



2.74036 
2.741 1 5 
2.74194 
2.74273 
2.74351 

2.74429 
2.74507 
2.74586 
2.74663 
2.74741 

2.74819 
2.74896 
2.74974 
2.75051 
2.75128 

2.75205 
2.75282 

2.75358 
2.75435 
2-755" 

2.75587 
2.75664 
2.75740 
2.75815 
2.75891 

2.75967 

2.76042 

2.761x8 

2. 

2.71 

2.76343 
2.76418 
2.76492 
2.76567 
2.76641 

2.76716 
2.76790 
2.76864 
2.76938 
2.77012 

2.77085 
2.77159 
2.77232 
2.77305 
2.77379 

2.77452 
2-77525 
2-77597 
2.77070 
2.77743 

2.77815 
2.77887 
2.77960 
2.78032 
2.78104 



SmTHSONIAN TaBLKS. 



H 



Digitized byLjOOQlC 



Table 3. 



VALUES OF RECIPROCALS, SQUARES. CUBES. SQUARE ROOTS, CUBE 
ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS. 



v» 



v« 



log. If 



605 

606 



609 

eio 

611 
612 

614 

ei5 

616 
617 
618 
619 

620 

621 
622 

624 

625 

626 
627 
628 
629 

630 

632 

633 
634 



636 

53Z 
638 

639 

640 

641 
642 

645 

646 

648 
649 

650 

652 

654 

655 

656 

t^ 

659 



1.65289 
1. 6501 7 
1.64745 
1.64474 
1.64204 

1-63399 
1.63132 
1.62866 

1.62602 
1.62338 
1.62075 
1.61812 
1.61551 

1. 61 290 
1.61031 
1.60772 
1. 60514 
1.60256 




i-#730 
1.^79 
1.58228 
1.57978 
1-57729 

1.57480 
1.5723 



1.56740 
1.56495 

1.56250 
1.56006 
1-55763 
1.55521 
1.55280 

1-55039 
1-54799 
1.54560 
1.54321 
1-54083 

1-5:^46 
1.53610 
1-53374 
i-53«39 
1.52905 

1.52672 

1-52439 
1.52207 
1.5x976 
1-51745 



366025 
367236 
368449 

370881 

372100 
373321 
374544 
375769 
376996 

378225 
379456 



381924 
383161 

384400 



388129 
389376 

390625 
391876 
393129 
394384 

395641 

396900 
398161 

399424 
400689 
401956 

403225 
404496 
405769 
407044 
408321 

4^9600 
410881 
412164 
413449 
414736 

416025 
417316 
418609 

419904 
421201 

422500 
423801 
425104 
426409 
427716 

429025 
430336 

4310 
432, . 
434281 



8iim«oNiAii Tablks. 



221445125 
22254 coi 6 
223648543 
224755712 
225866529 

226981000 
228099131 
229220928 
230346397 
231475544 

232608375 

233744890 
234885113 
236029032 
237176659 

238328000 
239483061 
240641848 
241804367 
242970624 

244140625 
245314370 
246491883 
247673152 
248858189 

250047000 

25123959' 
252435968 

253636137 
254840104 

256047875 

257259456 
258474853 
259694072 
260917 I 19 

262144000 
263374721 
264609288 
265847707 
267089984 

268336125 
269586136 
270840023 
272097792 
273359449 

274625000 

275894451 
277167808 
278445077 
279726264 

281011375 
282300410 

283593393 
284890312 
286191179 



^5 



24.5967 
24.6171 
24.6374 
24.6577 
24.6779 

24.6982 
24.7184 
24.7386 
24.7588 
24.7790 

24.7992 
24.8193 
24.8395 
24.8596 
24.8797 

24.8998 
24.9199 

24.9399 
24.9600 
24.9800 

25.0000 
25.0200 
25.0400 
25.0599 
25.0799 

25-0998 
25.1197 

25-1396 

25-1595 
25.1794 

25.1992 
25.2190 
25.2389 
25.2587 
25.2784 

25.2982 
25.3180 
25-3377 
25-3574 
25.3772 

25.3969 
25.4165 
25.4362 
25-4558 
25-4755 

25.4951 
25.5147 
25-5343 
25.5539 
25-5734 

25.5930 
25.6125 
25.6320 
25.6515 
25.6710 



8.4577 
8.4623 
8.4670 
8.4716 
8.4763 

8.4809 
8.4856 
8.4902 
8.4948 
8.4994 

8.5040 
8.5086 
!'5i32 
8.5178 
8.5224 

8.5270 
8.5316 

1-5362 
8.5408 

8.5453 

8.5499 
8.5544 



8.5726 

$•5772 
8.5817 
8.5862 
8.5907 

8.5952 

8.5997 
8.6043 
8.6088 
8.6132 

8.6177 
8.6222 
8.6267 
8.6312 
8.6357 

8.6401 
8.6446 
8.6490 
8.6535 
8.6579 

8.6624 

8.6668 
8.6713 

t^l 

8.684s 
8.6890 

f^ 

8.7022 



2.78176 
2.78247 
2.78319 
2.78390 
2.78462 



2.78533 
2.78604 
2.78675 
2.78746 
2.78817 



2.5 

2.78958 

2.79029 

2.79099 

2.79169 

2.79239 
2.79309 

2.79379 
2.79449 
2.79518 

2.79934 
2.79657 
2.79727 
2.79796 
2.79865 

2.79934 
2.80003 
2.80072 
2.80140 
2.80209 

2.80277 
2.80346 
2.80414 
2.80482 
2.80550 

2.80618 
2.80686 

2.80889 

2.80956 
2.81023 
2.81090 
2.81158 
2^1224 

2.81291 
2.81358 
2.81425 
2.81491 
2.81558 

2.81624 
2.81690 

^•5*257 
2.81823 

2.81889 



Digitized by^OOQlC 



Table 3. 

VALUES OF RECIPROCALS, SQUARES. CUBES, SQUARE ROOTS. CUBE 
ROOTS, AND COMMON \.OCARITHMS OF NATURAL NUMBERS. 



looa- 



v« 



«« 



log. If 



660 

66i 
662 
663 
664 

665 

666 
667 
668 
669 

670 

672 

674 

675 

676 

677 
678 
679 

680 

681 
682 
683 
684 

685 

686 

688 
689 



692 
694 
695 

699 

700 

701 
702 
703 
704 

705 

706 
707 
708 
709 

710 

7" 
712 

713 
714 



i!5i286 
1.51057 
1.50830 
1.50602 

1.50376 
1. 501 50 
M9925 
1. 49701 
M9477 

1.49254 

149031 
m88io 
148588 
148368 

1.48148 
147929 
147710 
M7493 
M727S 

147059 
146843 
146628 
M6413 
146199 

14598s 
145773 
145560 

145349 
145138 

144928 
144718 
144509 
1.44300 
1.44092 

143885 
1.43678 

143472 
143266 
143062 

142857 
142653 
142450 
1.42248 
1.4204s 

141844 
141643 
141443 
141243 
141044 

140845 
1.40647 

140449 
1.40252 
140056 



435600 
436921 
438244 
4395' 



442225 

444^ 
446224 

447561 

448900 
450241 

451584 
452929 
454276 



462400 
463761 
465124 
466489 
467856 

469225 
470590 
471969 
473344 
474721 

476100 
477481 
478864 
480249 
481636 

483025 
484416 
485809 
487204 
4S8601 

490000 
491 401 
492804 
494209 
495616 

497025 
498436 

499849 
501264 
502681 

504100 
505521 
506944 
S08369 
509796 



287496000 
288804781 
2901 17528 
291434247 
292754944 

294079625 
295408296 
296740963 
298077632 
299418309 

300763000 
3021 I 17 I I 
303464448 
304821 217 
306182024 

307546875 
308915776 
310288733 
31 1665752 
313040839 

314432000 
315821241 
317214568 
318611987 
320013504 

321419125 
322828856 
324242703 
325660672 
327082769 

328509000 
329939371 



331373888 
33281 25C7 

334255384 



335702375 



340068392 
341532099 

343000000 
344472101 
345948408 
347428927 
348913664 

350402625 
351895816 

353393243 
354894912 
356400829 

357911000 

359425431 
360944128 
362467097 
363994344 



256905 
257099 
257294 
25.7488 
25.7682 

25.7876 
25.8070 
25.8263 

25.8457 
25.8650 

25.8844 
25-9037 
25.9230 
25.9422 
25.9615 




26.0768 
26.0960 
26.1151 
26.1343 
26.1534 




26.2679 
26.2869 
26.3059 
26.3249 
26.3439 



26.3818 
26.4008 
264197 
264386 

264575 
264764 
26.4953 
26.5141 
26.5330 

26.5518 
26.5707 

26.6271 

26.6458 
26.6646 
26.6833 
26.7021 
26.7208 



8.7066 
8.7 1 10 
5-7'54 
8.7198 
87241 

8.7^5 
8.7329 
87373 
8.741D 
8.7460 

8.7503 
8.7547 
8.7590 
8.7634 
8.7677 

8.7721 

8.7850 

87893 

IE 

8.8066 
8.8108 

8.8152 
8.8194 

8^82^ 
8.8323 

8.8366 
8.8408 
8.8451 

IS 

8.8578 
8.8621 
8.8663 
8.8706 
8.8748 

8.8790 
8.8833 
8.8875 
8.8917 
8.8959 

8.900X 

!-9°53 

8.9085 
8.9127 
8.9169 

8.921 1 

8.9253 
8.9295 

5-9337 
8.9378 



2.81954 
2.82020 
2.82086 
2.821 51 
2.82217 

2.82282 
2.82347 
2.82413 
2.82478 
2.82543 

2.82607 
2.82672 
2-82737 
2.82802 
2.82866 

2-82930 
2.82995 
2.83059 

2-53123 
2.83187 

2^3251 
2-53315 
2.83378 

2.83442 
2.83506 

2^3569 
2.83632 
2.83696 

2.83759 
2.83822 

2.83885 
2.83948 
2.8401 1 
2.8407; 
2.84 

2.84198 
2.84261 
2.84323 
2.84386 
2.84448 

2.84510 
2.84572 
2A^634 
2.84696 
2.84757 

2.84819 
2.84880 
2.84942 
a.85003 
2.85065 

2.85126 
2.85187 
2.85248 
2.85309 
2^5370 



^3! 



Smithsonian Tables. 



16 



Digitized byLjOOQlC 



Table 3. 



VALUES OF RECIPROCALS. SQUARES, CUBES, SQUARE ROOTS, CUBE 
ROOTS, AND COMMON \.OCARITHM8 OF NATURAL NUMBERS. 



v« 



v« 



log. If 



715 

716 

718 
719 

720 

721 

722 
723 
724 

725 

726 

728 
729 

730 

731 

732 
733 
73* 

735 

736 
737 
738 
739 

740 

741 
742 
743 
744 

745 

746 

748 
749 

750 

751 
752 
753 
754 

755 

756 

759 

760 

761 
762 

763 
764 

765 

766 

7^ 
769 



•39665 
•39470 
.39276 
.39082 



.38696 
-38504 
.38313 
,38122 

•3793« 
•37741 
37552 
37303 
37174 

.36986 

36799 
.36612 
.36426 
.36240 

.36054 

.35501 
■35318 

■3513s 
•34953 
•34771 
•3*S90 
■34409 

.34228 
•34048 
•33869 
■33690 
•335" 

•33333 
33156 
32979 
.32802 
,32626 

•32450 

■32275 
,32100 
3*926 
31752 

31579 
.31406 

31234 
.31062 
.30890 

■30719 
30548 
■30378 
.30208 

30039 



5II22| 
51 2656 
514089 



518400 
5I984I 
52x284 
522729 
524176 

525625 
527076 
528529 
529984 

53*441 

532900 
534361 
535824 
537289 
538756 

540225 
541696 

543*69 
544644 
5461 21 

547600 
549081 
550564 
552049 
553536 

555025 
556510 
558009 

559504 
561001 

562500 
564001 
565504 

568516 

570025 
571530 
573049 
574564 
576081 

577600 



582169 
583696 

586756 
588289 
589824 
59*361 



36552587s 
367061696 
368601813 
370146232 
371694959 

373248000 
374805361 
376367048 
377933067 
379503424 



381078125 
382657178 
384240583 



385828352 
387420489 

389017000 
390617891 
392223168 
393832837 
395446904 

398688256 
400315553 
401947272 
4035834*9 

405224000 

4085^8488 
410172407 
41 1830784 

413493625 
41 5160936 
416832723 
418508992 
420189749 

421875000 

42356475* 
425259008 

tx^ 

430368875 
432081 216 

433798093 
4355*95*2 
437245479 

438976000 
440711081 
442450728 
444194947 
445943744 

447697125 
449455090 
451 217663 
452984832 
454756609 



26.7305 
26.7582 
26.7769 

26.7955 
26.8142 

26.8328 
26.8514 
26.8701 
26.8887 
26^9072 

26.9258 
26.9444 
26^9629 
26.9815 
27.0000 

27.0185 
27.0370 

27.055s 
27.0740 
27.0924 

27.1109 
27.1293 

27-*477 
27.1662 
27.1846 

27.2029 
27.2213 

272397 
27.2580 
27.2764 

27.2947 
27-3*30 
2733*3 
27-3490 
27-3679 

27.3861 
274044 
274226 
274408 
27-459* 

27-4773 
27-4955 
27-5*30 
27-53*8 
27.5500 

27.5681 
27.5862 
27.6043 
27.6225 
27.6405 

27.6586 
27.6767 
27.6948 
27.7128 
27.7308 



8.9420 
8.9462 

8-9503 
8.954s 
8.9587 

8.9628 
8.9670 
8.9711 
8.9752 
8.9794 

8.9876 
8.9918 

8.9959 
9.0000 

9.00AI 
9.0082 
9.0*23 
9.0164 
9.0205 

9.0246 
9.0287 
9.0328 

9-0369 
9.0410 

9.0450 
9.0491 

9^0532 
9.0572 
9.0613 

9.0654 
9-0694 
9-0735 
90775 
9.0816 

9.0856 
9^)896 
9-0937 
9-0977 
9.1017 

9.1057 
9.1098 
9,1138 
9.1178 
9.1218 

9.1258 
9.1298 
9-*338 
9-*378 
9.1418 

9.1458 
9.1498 

9-* 537 
9-* 577 
9.1617 



2^543* 
2.85491 
2.85552 
2.85612 

2^5673 

2.85733 
2.85794 

2.85854 
2.85914 
2.85974 

2.86034 
2.86094 
2.86153 
2.86213 
2.86273 

2.86332 
2.86392 
2.86451 
2.86510 
2.86570 



2.86864 

2.86923 
2.86982 
2.87040 
2.87099 
2.87157 

2.87216 
2.87274 
2.87332 
2.87390 
2.87448 

2.87506 
2.87564 
2.87622 
2.87679 
2.87737 

2.87795 
2.87852 
2.87910 
2.87967 
2.88024 

2.88081 
2.88138 
2.88195 
2.88252 
2.88309 

2.88366 
2.88423 
2.88480 
2.88536 
2.88593 



SniTHaONIAN TaSLBS. 



17 



Digitized by VjOOQlC 



Tables. 

VALUES OF RECIPROCALS, SQUARES. CUBES. SQUARE ROOTS. CUBE 
ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS. 



v« 



^ 



log. « 



770 

771 

773 
774 

775 

776 
777 
778 
779 

780 

782 
784 

785 

786 
787 
788 
789 

790 

791 
792 
793 
794 

795 

796 

797 
798 

799 

800 

801 
802 

804 

805 

806 



809 

810 

811 

8l2 

814 

815 

816 
817 
818 
819 

820 

821 
822 

?^3 
824 



29870 
29702 

^^ 

29199 



.28700 
►28535 
28370 

28205 
28041 
27877 

27714 
27551 

2738? 
,27226 
,27065 
26904 
26743 

26582 
,26422 
26263 
26103 
25945 

25786 
25628 
25471 

25313 
25156 

25000 
2484 



24533 
24378 

24224 
24069 
23916 
23762 
23609 

23457 
23305 
23153 
23001 
22850 

22699 
22549 

22399 
.22249 
22100 



21051 
21803 
.21655 
.21507 
21359 



592900 
594441 
595984 
597529 
599076 

600625 
602 17D 
603729 
605284 
606841 

608400 
609961 
61 1 524 
613089 
614656 

616225 
617796 
619369 
620944 
622521 

624100 
625681 
627264 
628849 
630436 

632025 
633616 

535209 
636804 
638401 

640000 
641601 
643204 
644809 
646416 

648025 
649636 
651249 
652864 
654481 

656100 
657721 

"& 

662596 



672400 

674041 
675684 
677329 
678976 




465484375 
467288576 

469097433 
470910952 

472729139 

474552000 

476379541 
47821 1768 
480048687 
481890304 

485587656 
487443403 
489303872 
491 169069 

493039000 

494913671 
496793088 

498677257 
500566184 

50245987 



5043583: 
506261573 
508169592 
510082399 

512000000 
513922401 
515849608 
517781627 
5197 18464 

52x660125 
523606616 

525557943 
527514112 
529475129 

531441000 

533411731 
535387328 
537367797 
539353144 

541343375 
543338490 
545338513 
547343432 
549353259 

551368000 
553387661 
555412248 
557441767 
559476224 



27.7489 
27.7669 
27.7849 
27.8029 
27.8209 

27.8388 
27.8568 

27.8747 
27.8927 
27.9106 

27.9285 
27.9464 

27-9643 
27.9821 
28.0000 

28.0179 
28.0357 
28.0535 
28.0713 
28.0891 

28.1069 
28.1247 
28.1425 
28.1603 
28.1780 

28.1957 
28.2135 
28.2312 
28.2489 
28.2666 

28.2843 
28.3019 
28.3196 
28.3373 
28.3549 

28.3725 
28.3901 

28.4077 
28.4253 

28.4429 

28.4605 
28.4781 
28.4956 
28.5132 
28.5307 

28.5482 

^•5f57 
28.5832 



28.6182 

28.6356 
28.6531 
28.6705 
28.6880 
28.7054 



9.1696 

91736 

9-1775 
9.1815 

9.1855 
9.1894 
91933 
9-1973 
9.2012 

9.2052 
9.2091 
9.2130 
9.2170 
9.2209 

9.2248 
9.2287 
9-2326 
9-2365 
9.2404 

9-2443 
9.2482 
9.2521 
9.2560 
92599 

9-2638 
9.2677 
9.2716 

9-2754 
92793 

9.2832 
9.2870 
9-2909 
9.2948 
9.2986 

9-3025 
9-3063 
9.3102 
9-3140 
9-3179 

9-3217 
9-3255 
9-3294 
9-3332 
9-3370 

9-3408 
9-3447 
9-3485 
9-3523 
9-3561 

9-3599 
9-3§37 
9-3675 
9-3713 
93751 



2.88649 
2.88705 
2.88762 
2.88818 
2.88874 

2^; 



2.89042 
2.89098 
2^154 

2.89209 
2.89265 
2.89321 
2.89376 
2.89432 

2.89487 
2.89542 
2.89597 
2.89653 
2^708 

2^73 
2.89982 

2.90037 
2.90091 
2.90146 
2.90200 
2.90255 

2.90309 
2-90363 
2.90417 
2.90472 
2.90526 

2.90580 
2.90614 
2.90687 
2.90741 
2.90795 

2,90849 
2.90902 
2.90956 
2.91009 
2.91062 

2.91 1 16 
2.91 169 
2.91222 

2.91275 
2.91328 

2.91381 
2.91434 
2.91487 
2.91540 

2-91593 



SmTHsoNiAN Tables. 



18 



Digitized byLjOOQlC 



Tables. 



VALUES OF RECIPROCALS, SQUARES, CUBES. SQUARE ROOTS, CUBE 
ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS. 



000.^ 



v« 



v« 



log. « 



825 

826 
827 
828 
829 

830 

834 

835 

836 
837 
838 

839 

840 

841 
842 

843 
844 

845 

846 
847 
848 

849 

850 

P' 
852 

854 

855 

856 

857 
858 
859 

860 

861 
862 
863 
864 

865 

866 
867 
868 
869 

870 

P' 
872 

P^ 
874 

875 

876 

877 
878 

879 



,21212 
21065 
20919 

20773 
20627 

20482 
20337 
20192 
20048 
19904 

19760 
19617 
19474 
19332 
19190 



I8765 
18624 
18483 

18343 
18203 
18064 
17925 
17786 

17647 
17509 
17371 
17233 
17096 

1^22 
16686 
16550 
16414 

16279 
16144 
16009 
15875 
1 5741 

15607 

15473 
'5340 
15207 

15075 

14943 
14811 
14670 
14548 
14416 

14286 

141 55 
14025 



680625 
682276 
683929 

685584 
6S7241 

688900 
690561 
692224 
693889 
695556 



700569 
702244 
703921 

705600 
707281 
708964 
710649 
712336 

71402c 
715710 
717409 
719104 
720801 

722500 
724201 

725904 
727609 
729316 

731025 
732730 
734449 
736164 
737881 

739600 
741321 
743044 
744769 
746496 

748225 
749950 
751689 

753424 
755161 

756900 
758641 
760384 
762129 
763876 

765625 
767370 
769129 
770884 
772641 



561515625 
563559970 
565609283 
567663552 
569722789 

571787000 
573856191 
575930368 
578009537 
580093704 

582182875 
584277056 
586376253 
588480472 
590589719 

592704000 

599077107 

60I2II584 

6o335"2| 
605495730 
607645423 
609800192 
61 1960049 

614x25000 
61 629505 I 
618470208 
620650477 
622835864 

625026375 
627222016 
629422793 
63 I 6287 I 2 
633839779 

636056000 
638277381 
640503928 

642735647 
644972544 

647214625 
649461896 

651714363 
653972032 
656234909 

658503000 
600770111 
663054848 
665338617 
667627624 

669921875 
672221370 



6791 51439 



28.7228 
28.7402 
28.7576 
28.7750 
28.7924 

28.8097 
28.8271 

28.8444 
28.8617 
28.8791 

28.8964 
28.9137 
28.9310 
28.9482 
28.9655 

28.9828 
29.0000 
29.0172 

29-0345 
29.0517 

29.0689 
29.0861 
29.1033 
29.120^ 
29.1370 

29.1548 
29.1719 
29.1890 
29.2062 
29.2233 

29.2404 
29.2575 
29.2746 
29.2916 
29.3087 

29.3258 
29.3428 
29.3598 
29.3769 
29-3939 

29.4109 

29-4279 
29.4440 
29.4618 
29.4788 

29.4958 
295127 
29.5296 
29.5466 
29-5635 

29.5804 

29-5973 
29.6142 
29.6311 
29.6479 



9-3789 
9-3827 
9-3865 
9-3902 
9-3940 

93978 
94016 

9-4053 
9.4091 
9.4129 

9.4166 
94204 
9.4241 
9.4279 
94316 

9.4354 
94391 
9-4429 
9.4466 

9-4503 

9.4541 
9-4578 
9.4615 
9.4652 
9.4690. 

9.4727 
94764 
94801 
9-4838 
9-4875 

9.4912 

9.4949 
9.4986 

9-5023 
9-5060 

9.5097 
9-5134 
9-5171 
9.5207 

9-5244 

9.5281 
9.5317 
9.5354 
9-5391 
9-5427 

9-5464 
9.5501 

9-5537 
9-5574 
9.5610 

9-5647 
9.5683 
9-5719 
9-5756 
9-5792 



2.91645 
2.91698 
2.91751 
2.91803 
2.91855 

2.91908 
2.91960 
2.92012 
2.92065 
2.921 17 

2.92169 
2.92221 
2.92273 
2.92324 
2.92376 

2.92428 
2.92480 
2.92571 

2.( 
2.C 

2.92686 

2.92737 
2.92788 
2.92840 
2.92891 

2.92942 
2.92993 
2.93044 
2.93095 
2.93146 

2.93197 
2.93247 
2.93298 
2.93349 
2.93399 

2.93450 
2.93500 

2.93551 
2.93601 
2.93651 

2.93702 

2.93752 
2.93802 
2.93852 
2.93902 

2.93952 
2.94002 
2.94052 
2.94IOI 
2.941 51 

2.94201 
2.94250 
2.94300 
2.94349 
2.94399 



Digitized by V^OOQ 



SiiiTHSONiAN Tables. 



19 



Table; 



VALUES OF RECIPROCALS, SQUARES, CUBES. SQUARE ROOTS, CUBE 
ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS. 



880 

88i 
882 

883 
884 

885 

886 

888 



890 

^' 
892 

593 
894 



896 



899 

900 

901 
902 

903 
904 

905 

906 



909 

910 

911 
912 
913 
9H 

915 

916 

918 
919 

920 

921 
922 

923 
924 

925 

926 
927 
928 

929 

930 

931 
932 
933 
934 



looa^ 



1.13636 
1-13507 
i-«3379 
1.13250 
1.13122 

l!l2l 

I.I2740 
I.I26I3 
I.I2486 

I.I2360 
I.I2233 

I.I2I08 
1.11982 

I.I 1857 

I.II732 
I.I 1607 
I.I 1483 
i-"359 
I.I 1235 

i.iiiii 
1.10988 
1. 10865 
1. 10742 
1.10619 

1.10497 
I-I037S 
1.10254 
1.10132 

I.IOOII 

1.09890 

1.09769 

1.09649 
1.09529 
1.09409 




1.08696 
1.08578 
1^)8460 
1.08342 
1.08225 

I.08I08 

1.07091 
1.07875 
1.07759 
1.07643 

1.07527 

1. 0741 1 
1.07296 
I.07I8I 
1.07066 



774400 

776I6I 

777924 
779689 
781456 

78322c 
784996 
786769 
788544 
790321 

792100 

793881 
795664 

797449 
799236 

801025 
802816 
804609 
806404 
808201 

810000 
811801 
813604 
815409 
817216 

819025 
820836 
822649 
824464 
826281 

828100 
829921 
831744 
833569 
835396 

837225 

1^ 

842724 
844561 

846400 
848241 
850084 
851929 
853776 

855625 
857476 

?|9329 
861184 
863041 

864900 
866761 
868624 
870489 
872356 



681472000 

683797841 
686128968 
688465387 
690807104 

6931 54125 
695506456 
697864103 
700227072 
702595369 

704969000 

707347971 
709732288 
712121957 
714516984 

716917375 
719323136 
721734273 
724150792 
726572699 

729000000 
73432701 
733870808 

736314327 
738763264 

741 217625 
743677416 

746142643 
748613312 
751089429 

753571000 
756058031 
758550528 
761048497 
763551944 

766060875 
768575296 
771095213 
773620632 
776151559 

778688000 
781 229961 
783777448 
786330467 



791453125 
794022776 

796597983 
799178752 
801765089 

804357000 
806954491 



812106237 
814780504 



v» 



29.6648 
29.6816 

29-6985 
29-7153 
29-7321 


9.5828 

9-5865 
9-5901 
9.5937 

9-5973 


29.7480 
29.7658 
29.7825 
29-7993 

29.8161 


9.6010 

9.61 18 
9.6154 



29.8329 
29.8496 
29.8664 
29.8831 
29.8998 

29.9166 

29-9333 
29-9833 

3aoooo 
30.0167 

30.0333 
30.0500 
30.0066 

30.0832 
30.0998 
30.1164 
30-1330 
3ai496 

30.1662 
3ai828 
30.1993 
30-2159 
30.2324 

30.2490 
30.2655 
30.2820 
30.2985 
30-3150 

30.3315 
30.3480 

30.3645 
30.3809 
30.3974 

30.4138 
30.4302 
30.4467 
30.4631 

30.4795 

30.4959 
30-5123 
30.5287 
30,5450 
30.5614 



?« 



9.6190 
9.6226 
9.6262 
9.6298 
9-6334 

9.6370 
9.6406 
9.6442 
9.6477 
9-6513 

9.6549 
9.6585 
9.6620 
9.6656 
9.6692 

9.6727 
9-6763 
9.6799 
9-6834 
9.6870 

9.6905 

9.6976 

9.7012 
9-7047 

9.7082 
9.71 18 

9.7188 
9.7224 

9.7259 
9.7294 
9.7329 
9-7364 
9.7400 

9-7435 
9-7470 
9-7505 
9.7540 
9-7575 

9.7610 

9.7645 
9.7680 

9-7715 
9-7750 



log. H 



2.94448 
2.94498 
2.94547 
2.94596 
2.94645 

2.94694 
2.94743 
2.94792 
2.94841 
2.94890 

2.94939 
2.94988 
2.95036 
2.95085 
2.95134 

2.95182 
2.95231 
2.95270 
2.95328 
2.95376 

2.95424 
2.95472 
2.95521 
2.95569 
2.95617 

2.95665 

2.95713 
2.95761 
2.95809 
2.95856 

2.95904 
2.95952 
2.95999 
2.96047 
2.96095 

2.96142 
2.96190 
2.96237 
2.96284 
2.96332 

2-9637? 
2.96426 

2.96473 
2.96530 
2.96567 

2.96614 
2.96661 
2.96708 

2.96755 
2.96802 

2.96S48 
2.96895 
2.96942 
2.96988 
2-97035 



Smithsonian Tables. 



20 



Digitized by V^OOQlC 



Table 3. 

VALUES OF RECIPROCALS, SQUARES. CUBES. SOUARE ROOTS, CUBE 
ROOTS, AND COMMON LOCARITHMS OF NATURAL NUMBERS. 



lOOO^ 



v« 



l« 



log. « 



935 

936 
937 
938 
939 

940 

941 
942 

943 
944 

945 

946 
947 
948 
949 

950 

951 
952 

953 
954 

955 

956 

957 
958 

959 
9G0 

964 

965 

966 



969 

970 

971 
972 

973 
974 

975 

976 



979 

980 

^' 
982 

^3 
984 



986 

i 

989 



1.06952 
1.06838 
1.06724 
1.06610 
1.06496 

1.06383 
1.06270 
1. 061 57 
1x3604s 
1.05932 

1.05820 
1.05708 
1.05507 
1.05485 
1-05374 

1.05263 
1-05152 
1.05042 
1.04032 
1. 04022 

1.047 1 2 
1.04603 
1.04403 
1.04384 
1.04275 

1.04167 
1.04058 
1.03050 
1.03832 
1-03734 

1.03627 
1.03520 
1.03413 
1.03306 
1-03199 




1.02564 

I-02459 
1.02354 
1.02249 
ix)2i45 

IU3204I 

1.01037 
1. 01833 
I. 01 7 29 
1. 01 626 

1.01523 
1. 01420 
1.01317 
1.01215 
1^1112 



874225 
876096 

877969 
879844 
881721 

883600 
885481 
887364 
889249 
891 136 

89302c 
894Q16 



898704 
900601 

902500 
904401 
906304 
908209 
910116 



915849 

917764 
919681 

921600 
923521 
925444 
927369 
929296 

931225 
933»S6 
935089 
937024 
938961 



942841 

944784 
946729 
948676 

950625 
952576 
954529 



958441 

960400 
962361 
964324 
966289 
968256 

970225 
972196 
974169 
976144 
978121 



SaiTNaoiiiAN Tables. 



817400375 
820025850 
822658953 
825293672 
827936019 

830584000 
833237621 

838561807 
841232384 

843908625 

840590536 
849278123 

851971392 
854670349 

857375000 
860085351 
862801408 
865523177 
868250664 

870983875 
875722816 

876467493 
8792 I 791 2 

881974079 

884736000 
887503681 
890277128 

893056347 
895841344 

898632125 
901428696 
904231063 
907039232 
909853209 

91 267 wo 

9I54986II 
918330048 
92II673I7 

924010424 

926859375 
9297 141 76 
932574833 
935441352 
938313739 

941 192000 

944076I4I 
946066168 

949862087 

952763904 

955671625 
958585256 
961504803 
964430272 
967361669 



21 



30-5778 
30.5941 
30.6105 
30.6268 
30.6431 

30-6594 
30.6757 
30.6920 
30.7083 
30.7246 

30.7409 
30.7571 
30.7734 
30.7896 
30.8058 

30.8221 
30.8383 
30.8545 
30.8707 
30.8869 

30.9031 
30.9192 
30.9354 
30.9516 
30.9677 

30.9839 
31.0000 
3I.O161 
31.0322 
31-0483 

31-0644 
31.0805 
31.0966 

^;:;^ 

31.1448 
31-1609 

3i-»769 
31.1929 
31.2090 

31.2250 
31.2410 
31.2570 
31.2730 
31.2890 

31-3050 
31.3209 

31-3362 

31-3847 
31.4006 
31-4166 

31-4325 
31.4484 



9-7785 
9.7819 

^7854 
9.7889 

9-7924 

9-7959 
9-7993 
9.8028 
9.8063 
9.8097 

9.8132 
9.8167 
9.8201 
9.8236 
9.8270 

9-8305 
9-8339 
9-8374 
9.8408 

98443 

9-8477 
9.8511 
9.8546 
9.8580 
9.8614 

9.8648 
9-8683 
9.8717 

9-8785 

9.8819 
9§85 



9.8922 
9.8956 

9-8990 
9.9024 
9.9058 
9.9092 
9.9126 

9.9160 
9.9194 
9.9227 
9.9261 
9-9295 

9-9329 
99363 
9-9390 
•9-9430 
9.9464 

9-9497 
99531 
9-9565 
9-9598 
9-9032 



2.97081 
2.97128 
2.97174 
2.97220 
2.97267 

2.97313 
2-97359 
2.97405 
2.97451 
2.97497 

2.97543 
2.97589 

2.97635 
2.97681 
2.97727 

2.97772 
2.97818 
2.97864 
2.97909 
2.97955 

2.98000 
2.98046 
2.98091 
2.98137 
2.98182 

2.98227 
2.98272 
2.98318 

t$S 

2.98453 
2.98498 

2.i " 



2.985s 
2.9S032 

2.98677 
2.98722 
2.98767 
2.9881 1 
2.98856 

2.98900 
2.98945 
2.98989 

2.99034 
2.99078 

2.99123 
2.99167 
2.992 1 1 
2.99255 
2.99300 

2.99344 
2.99388 
2.99432 
2.99476 
2.99520 



Digitized by LjOOQ 



Table 3. 



VALUES OF RECIPROCAL81 SQUARES. CUBES. SQUARE ROOTS. GUI 
ROOTS, AND COMMON LOGARITHMS OF NATURAL NUMBERS. 



n 


looa^ 


«« 


«« 


v« 


> 


log. « 


990 

991 
992 
993 
994 

995 

996 

999 
1000 


1.01010 
1.00908 
1.00806 
1.00705 
1.00604 

1.00503 
1.00402 
1.00301 
1.00200 
1.00100 

1.00000 


980100 
982081 

990025 
992016 
994009 
996004 
998001 

lOOOOOO 


970299000 
973242271 

976I9I488 

979146657 
982107784 

^5074875 
988047936 
991026973 
99401 1992 
997002999 


31-4643 
314802 
31.4960 

3i-5"9 
31.5278 

31-5436 
31-5595 
31-5753 
31-59" 
31-6070 

31.6228 


9.9666 
9-9699 
9-9733 
9.9766 
9.9800 

» 

9.9900 
9-9933 
9-9967 

10.0000 


2.99564 
2.99607 
2.99651 
2.99695 
2-99739 

2.99782 
2.99826 
2.99870 
2.99913 
2.99957 

3.00000 


lOOOOOOOOO 



SiiiTH«ONiAN Tables. 



22 



Digitized by 



GooqIc 



CIRCUMFERENCE AND AREA OF CIRCLE 
DIAMETER d. 



IN 



Table 4. 
TERMS OF 



d 


Md 


iw^ 


d 


'Wd 


\'wd^ 


d 


wd 


\'wd^ 


10 

II 

12 


3I-4I6 
34.558 
37-899 


78.5398 
95-0332 
113.097 


40 
41 
42 


125.66 
128.81 
131.95 


1256.64 
i32a25 
1385.44 


70 
71 
72 


219.91 
223.05 
226.19 


3848.45 
3959.19 
4071.50 


'3 
IS 


40.841 

43-982 
47.124 


132.732 
153-938 
176.715 


43 
44 
45 


141.37 


1452.20 
1520.53 
1590.43 


73 
74 
75 


229.34 
232.48 
235.62 


4185.39 
4300.8A 
4417.86 


i6 


50.265 
53-407 
56.549 


201.062 
226.980 
254.469 


46 


144.51 
147.65 
150.80 


1661.90 
1809.56 


76 


238.76 
241.90 
245.04 


4656!63 
4778.30 


19 

20 
21 


65-973 


283.529 
346.301 


49 
50 
51 


153-94 
157.08 
160.22 


1885.74 
1963-50 
2042.82 


§2 

81 


248.19 
251-33 
254.47 


4901.67 
5026.55 
5» 53-00 


22 
23 

24 


69.115 
72.257 
75.398 


38ai35 
415.476 
452.389 


52 
53 
54 


163.36 
166.50 
169.65 


2123.72 
2206.18 
2290.22 


82 


257.61 


5281.02 
5410.61 
5541.77 


27 


84^23 


490.874 
530.929 
572.555 


57 


172.79 

175-93 
179.07 


2375.83 
2463.01 
2551.76 


11 

87 


267.04 
270.18 
27332 


5944.68 


28 
29 

30 


87.965 
91.106 
94.248 


615.752 
660.520 
706^58 


58 


182.21 


2642.08 

2733-97 
2827.43 


88 

89 
90 


^ 


6082.12 
6221.14 
6361.73 


31 
32 
33 


97.389 

loaja 

103.67 


804.248 
855.299 


61 
62 
63 


191.64 
194.78 
197.92 


2922.47 
3019.07 
3"7.25 


91 
92 

93 


285.88 
289.03 
292.17 


6503.88 
6647.61 
6792.91 


34 


106.81 
109.96 

113.10 


907.920 
1017.88 




201.06 
204.20 
207.35 


3216.99 

3318.31 
3421.19 


94 


295.31 
298.45 
30159 


^1! 
7238.23 


39 


116.24 

119.38 

122.52 


1075.21 
1134-11 
1194.59 


% 

69 


210.49 
213.63 

216.77 


3739.28 


99 


307'i8 
311.02 


7389^ 
7097-09 



BamtMHMN Tabus. 



n 



Digitized by 



GooqIc 



Table 5. 





LOGARITHMS OF NUMBERS. 










N. 


12 3 4 


5 6 7 3 9 


Prop. Parts. 
123 456 789 








10 

II 

12 

13 
M 


0000 0043 0086 0128 0170 
0414 0453 0492 0531 0569 
0792 0828 0864 0899 0934 
"39 ^^73 1206 1239 1271 
1461 1492 1523 1553 1584 


0212 0253 0204 0334 0374 
0607 0645 0682 0719 0755 
0969 1004 10^8 1072 I 100 
1303 1335 ^^7 1399 1430 
1614 1644 1673 1703 1732 


4 8 12 
4 8 II 
3 710 
3 6 10 
369 


17 21 25 

15 19 23 
14 17 21 
13 16 10 
12 15 18 


293337 
263034 
242831 
23 26 29 
21 2427 


15 

i6 

\l 

19 


1761 1790 1818 1847 1875 
2041 2068 2095 2122 2148 
2304 2330 235s 2380 2405 
2553 2577 2601 2625 2648 
2788 2810 2833 2856 2878 


1903 1931 1959 1987 2014 
2175 2201 2227 2253 2279 
2430 2455 2480 2504 2529 
2672 2695 2718 2742 2765 
2900 2923 2945 2967 2989 


368 
3 5 8 
257 
257 
247 


II 14 17 
II 13 16 
10 12 15 
9 12 14 
911 13 


20 22 25 
18 21 24 
17 20 22 
16 19 21 
16 18 20 


20 

21 
22 
23 

24 


3010 3032 30S4 3075 3096 
3222 3243 3263 3284 3304 
3424 3444 3464 3483 3502 
3617 3636 365s 3674 3892 
3802 3820 3838 3856 3874 


31 18 3139 3160 3181 3201 
3324 3345 3365 3385 3404 
3522 3541 3560 3579 3598 
37" 3729 3747 3766 3784 
3892 3909 3927 3945 3962 


2 4 6 
2 4 6 
2 4 6 
2 4 6 
2 4 5 


8 
8 
8 
7 
7 


" 13 

10 12 

10 12 

911 

911 


15 17 IQ 
14 16 18 
14 15 17 
13 15 17 
12 14 16 


25 

26 
29 


3979 3997 4014 4031 4048 
4150 4166 418 J 4200 4216 

4314 4330 4340 4362 4378 
4472 4487 4502 4518 4533 
4624 4639 4654 4069 4683 


4065 4082 4099 4116 4133 
4232 4249 4265 4281 4298 
4393 4409 4425 4440 4456 
4548 4564 4579 4594 4609 
4698 4713 4728 4742 4757 


235 
2 3 5 
235 
2 3 5 
I 3 4 


7 

I 

6 
6 


1 

8 
8 
7 


10 
10 
9 
9 
9 


12 14 15 

"I315 
II 13 14 
II 12 14 
10 12 13 


30 

31 
32 
33 
34 


4771 4786 4800 4814 4829 
4914 4928 4942 4955 4969 
5051 506? 5079 5092 5105 
5185 5198 5211 5224 5257 
53' 5 5328 5340 5353 5366 


4843 4857 4871 4886 4900 
4983 4997 50" 5024 5038 
5119 5132 5145 5159 5'72 
5250 5263 5270 5289 5302 
5378 5391 5403 5416 5428 


I 3 4 
I 3 4 
I 3 4 
I 3 4 
I 3 4 


6 
6 


7 

7 

I 

6 


1 

8 
8 
8 


10 II 13 
10 II 12 
9 II 12 

9 10 12 

910 II 


35 

36 

39 


5441 5453 5465 5478 5490 
5563 5575 5587 5599 56" 
5682 5694 5705 S7J7 5729 
5798 5809 5821 5832 5843 
59" 5922 5933 5944 5955 


5S02 5514 5527 5539 5551 
5623 563s 5647 5658 5070 
5740 5752 5763 5775 5786 
5855 5866 5877 5888 C899 
5966 5977 5988 5999 0010 


I 2 4 
I 2 4 
I 2 3 
I 2 3 
I 2 3 




6 
6 
6 
6 

5 




9 10 II 
8 ion 
8 9 10 
8 9 10 
8 9 10 


40 

41 
42 

43 
44 


6021 6031 6042 6053 6064 
6128 6138 6149 6160 6170 
6232 6243 6253 6263 6274 
6335 6345 6355 6365 6375 
6435 6444 6454 6464 6474 


<5o75 6085 6096 6107 6117 
6180 6191 620X 6212 6222 
6284 6294 6304 6314 6325 
6385 6395 6405 641S 6425 
6484 6493 6503 6513 6522 


I 2 3 
I 2 3 
I 2 3 
I 2 3 
I 2 3 






6 
6 
6 
6 
6 


8 9 10 
789 
789 
789 
789 


45 

46 

% 
49 


6532 6542 6551 6561 6571 
6628 6637 6646 6656 6665 
6721 6730 6739 6749 6758 
6812 6821 6830 6839 6848 
6902 6911 6920 6928 6937 


6580 6500 6599 6609 6618 
6075 6684 6803 6702 6712 

6946 6955 6964 6972 6981 


I 2 3 
I 2 3 
I 2 3 
I 2 3 
I 2 3 






6 

6 

5 
5 
5 


780 

I 7 ! 

678 
678 
678 


50 

51 
52 
53 
54 


6990 6908 7007 7016 7024 
7076 7084 7093 7101 7 no 
7160 7168 7177 7185 7193 
7243 7251 7259 7267 7275 
7324 7332 7340 7348 7350 


703; 7042 7050 70597067 
7118 7126 7135 7143 7152 
7202 7210 7218 7220 7235 
7284 7292 7300 7308 7310 
7364 7372 7380 7388 7396 


I 2 3 
I 2 3 
122 
122 

I 2 2 


3 
3 
3 




5 
5 
5 
5 

5 


678 
678 

^ I 7 
667 

667 


N. 


12 3 4 


5 6 7 3 9 


12 3 


4 


5 


6 


7 8 9 



Shitn«onian Tables. 



24 



Digitized by 



Google 



Table 5. 



LOGARITHMS OF NUMBERS. 



55 

56 

59 

60 

61 
62 

64 

65 

66 

67 
68 

69 

70 

71 
72 
73 
74 

75 

76 

7I 

79 

80 

81 
82 

t3 
84 

85 

86 
87 
88 

89 

90 

91 
92 

93 
94 

95 

96 

97 
98 
99 



7404 7412 7419 7427 7435 
7482 7490 7497 7505 7513 
7SS9 7566 7574 7582 7589 
7634 7642 7649 7657 7664 
7709 7716 7723 7731 7738 



7782 7789 7796 7803 7810 
7853 7860 - 



7853 7§66 78^ 7875 7882 

7924 7931 7938 7945 7952 
7993 8000 8007 8014 8021 
8062 8069 8075 8082 8089 

8129 8136 8142 8149 8156 
8195 8202 8209 8215 8222 
8261 8267 8274 8280 8287 
8325 8331 8338 8344 8351 
8388 8395 8401 8407 8414 

8451 8457 8463 8470 8476 
8513 8519 8525 8531 8537 



8921 8927 8932 8938 894; 
8976 8982 8987 8993 899b 

9031 9036 9042 9047 9053 
9081; 9090 9096 9101 9106 

9138 9143 9149 9154 9159 
9191 9196 9201 9206 9212 
9243 9248 9253 9258 9263 



9294 9299 9304 9309 93JS 
9345 9350 9355 93^© 93^5 
9395 9400 9405 9410 9415 
9445 9450 9455 946o 9465 
9494 9499 9S04 95^9 95^3 

9542 9547 9552 9557 95^2 
9590 9595 9500 9605 9609 
9S38 9043 9647 9652 9657 



, ^5 9689 9694 9699 9703 
9731 9736 9741 9745 9750 

9777 9782 9786 9791 9795 
9823 ^27 9832 9836 9841 
98^ 9872 9877 9881 9886 
9912 9917 9921 9926 9930 
9956 9961 9965 9969 9974 



8 9 



7443 7451 7459 7466 7474 
7520 7528 7536 7543 7551 
7597 7004 7012 7619 7027 
7672 7679 7686 7694 7701 
7745 7752 7760 7767 7774 

7818 7825 7832 7839 7846 
7889 7896 7903 7910 7917 
7959 7966 7973 7980 7987 
8028 8035 8041 8048 8055 
8096 8102 8109 8116 8122 

8162 8169 8176 8182 8189 
8228 8235 8241 8248 8254 
8293 8299 8306 8312 8319 
8357 8363 8370 8376 8382 
8420 8426 8432 8439 8445 

8482 8488 8494 8500 8506 
8543 8549 8555 8j6i 8^67 
8603 8609 8615 8621 8627 
8663 8669 8675 8681 8686 
8722 8727 8733 8739 8745 

8779 8785 8791 8797 8802 
8837 8842 8848 8854 8859 
8893 8899 8904 8910 8915 
8949 8954 8960 8965 8971 
9004 9009 9015 9020 9025 

9058 9063 9069 9074 9079 
9112 9x17 9122 9128 9x33 
9165 9170 9175 9180 9186 
9217 9222 9227 9232 9238 
9269 9274 9279 9284 9289 

9320 9325 9330 9335 9340 
9370 9375 9380 9385 9390 
9420 9425 9430 9435 9440 
9469 9474 9479 9484 948q 
9518 9523 9528 9533 9538 

9566 9571 9576 958 X 9586 
96x4 96x9 9624 9628 9633 
966X 9666 967X 9675 9680 
9708 9713 97x7 9722 9727 
9754 9759 9763 9768 9773 

9800 9805 9809 9814 98x8 

9845 9850 9854 9859 9863 
9890 9894 9899 9903 9908 
9934 9939 9943 9948 9952 
9978 9983 9987 9991 9996 



Prop. Farts. 



12 3 4 

3 
3 
3 
3 
3 



2 2 
2 2 
2 2 

2 
2 

2 

2 
2 
2 
2 

2 
2 
2 
2 
2 

2 
2 
2 
2 
2 

2 
2 
2 
2 
2 

2 
2 
2 
2 
2 

2 

2 



3 4 4 

3 4 4 

3 3 4 

3 3 4 

3 3 4 

3 3 4 

3 3 4 

3 3 4 

3 3 4 
234 



8 9 

6 7 



4 5 

4 5 

4 4 

4 4 

4 4 



6 6 

6 6 

6 6 

5 6 



4 4 

4 4 

4 4 

4 4 

4 4 



12 3 



6 7 8 9 



123 456 789 



8HmMoiiiAN Tables. 



2S 



Digitized by 



Google 



Table 6. 



ANTILOCARITHMS. 



. 


12 3 4 


5 6 7 8 9 


Prop. Parts. 
123 456 789 








.00 


1000 1002 looq 1007 1009 

1023 1026 1025 1030 1033 

1047 1050 1052 1054 ioi;7 
1072 1074 1076 1079 looi 
1096 1099 X102 I 104 I 107 


10x2 1014 1016 1019 1021 





] 








2 2 2 


.01 

.02 

•03 
.04 


1035 1038 1040 1042 1045 
ioj9 1002 1064 1067 1069 
1084 10S6 1089 1091 1094 
1109 1112 1114 1117 1119 








] 
] 

] 

1 1 








2 2 2 
2 2 2 
2 2 2 
2 2 2 


.05 

.06 


1122 1125 1127 1130 1132 
1148 1151 1153 11156 IIW 
1175 "78 "00 '^83 1186 
1202 1205 1208 1211 1213 
1230 1233 1236 1239 1242 


1135 1138 1140 1143 1146 
1161 1164 1167 1169 1172 












2 
2 


2 2 2 
2 2 2 


•09 


1189 1191 1194 1197 1199 
1216 1219 1222 1225 1227 
I24S 1247 1250 1253 1256 













2 
2 
2 


2 2 2 

223 
223 


J.0 

.11 

.12 
.14 


I2j9 1262 1265 1268 1271 
1288 I29I 1294 1297 1300 

I3I8 I32I 1324 1327 1330 
1349 1352 1355 1358 I36I 

1380 1384 1387 1390 1393 


1274 1276 1279 1282 1285 
1303 1306 1309 1312 1315 
1334 1337 1340 1343 1340 
1365 1368 1371 1374 1377 
1396 1400 1403 1406 1409 















2 
2 
2 

2 
2 


223 
223 
2 2 3 
2 3 3 
233 


.15 

.16 

.19 


1413 1416 1419 1422 1426 
1445 1449 1452 I4S5 1459 
1479 14^3 i486 1489 1493 
1514 1517 1521 1524 1528 
1549 1552 1556 1560 1563 


1429 1432 1435 1439 1442 
1462 1466 1469 1472 1476 
1496 1500 1503 1507 1510 

1531 1535 1538 1542 1545 
1567 1570 1574 1578 1581 













2 
2 
2 
2 
2 


2 
2 
2 
2 
2 


233 
233 
233 
233 

3 3 3 


.20 

.21 
.22 

•23 
.24 


1585 1589 1592 1596 1600 
1622 1626 1629 1633 1637 
1660 1663 1667 1671 1675 
1698 1702 1706 1710 1714 
1738 1742 1746 1750 1754 


1603 1607 161 I 16x4 1618 
1641 1644 1648 1652 X656 
1679 1683 X687 1690 1694 
1718 1722 1726 1730 1734 
1758 1762 X766 1770 1774 











[ I 

[ 2 
[ 2 

[ 2 
[ 2 


2 
2 

2 
2 
2 


2 
2 

2 
2 
2 


3 3 3 
3 3 3 
3 3 3 
3 3 4 
3 3 4 


.25 

.26 

.29 


1778 1782 1786 1791 1795 
1820 1824 1828 1832 1837 
1862 1866 1871 1875 1S79 
1905 1910 1914 1919 1923 
1950 1954 1959 1963 1968 


1799 1803 X807 x8ii 1816 
1841 1845 X849 1S54 1858 
1884 1888 1892 X897 1901 
X928 1932 1936 X941 1945 
X972 X977 1982 1986 1991 











2 
2 

: 2 
2 

[ 2 




2 
3 
3 
3 
3 


3 3 4 
3 3 4 
3 3 4 
3 4 4 
3 4 4 


.30 

•31 
•32 
•33 
•34 


1995 2000 2004 2009 2014 
2042 2046 2051 2056 2061 
2080 2094 2099 2104 2109 
2118 2143 2148 2153 2158 
2188 2193 2198 2203 2208 


20x8 2023 2028 2032 2037 
2065 2070 2075 2080 20J4 
2XX3 2118 2123 2128 2x33 
2163 2168 2173 2178 2183 

2213 22X8 2223 2228 2234 







I 




2 
2 
2 
2 
t 2 


2 
2 
2 
2 
3 


3 
3 
3 
3 
3 


3 4 4 
3 4 4 
3 4 4 

3 4 4 

4 4 5 


.35 

.36 

:^3^ 
•39 


2239 2244 2249 2254 2259 
2291 2296 2301 2307 2312 
2344 2350 23SS 2360 2366 
2399 2404 2410 2415 2421 
2455 2460 2466 2472 2477 


2265 2270 2275 228a 2286 
2317 2323 2328 2333 ^339 
2371 2377 2382 2388 2393 
2427 2432 2438 2443 2449 
2483 2489 2495 2500 2506 






t 2 

I 2 
t 2 
t 2 
t 2 


3 
3 
3 
3 
3 


3 
3 
3 
3 
3 


4 4 5 
4 4 5 
4 4 5 
4 4 5 
4 5 5 


.40 

.41 
•42 
•43 
.44 


2512 2518 2523 2529 2535 
2570 2576 2582 2588 2594 
2630 2636 2642 2649 2655 
2692 2698 2704 2710 2716 
2754 2761 2767 2773 2780 


2000 2006 26x2 2018 2624 
266X 266> 2673 2679 2685 
2723 2729 2735 2742 2748 
2786 2793 2799 2805 28x2 






t 2 
I 2 
I 2 
i 3 
^ 3 


3 
3 
3 
3 
3 


4 
4 
4 
4 
4 


4 5 5 

4 5 f 
4 5 6 
4 5 6 


.45 

.46 

its 

.49 


2818 2825 2831 2838 2844 
2884 2891 2897 2904 291 1 
2951 2958 2965 2972 2970 
3020 3027 3034 3041 3048 
3090 3097 3105 3"2 31 19 


2851 2858 2864 2871 2877 
29x7 2924 2931 2938 2944 
2985 2992 2999 3006 30x3 
305s 3062 3069 3076 3083 
3126 3x33 3x41 3148 3155 






i 3 
*• 3 
*' 3 
i 3 
*' 3 


3 
3 
3 

4 
4 


4 
4 
4 
4 

4 


5 5 6 
5 5 6 

ut 

566 


la. 


12 3 4 


5 6 7 8 9 


1 


2 £ 


I 4 


5 


6 


7 8 9 



8mitn«onian Tabus. 



26 



Digitized by 



Google 



ANTILOGARITHM8. 



Table 6. 



.50 

•51 
•52 
•53 
•54 

.55 

.56 

:^ 
•59 

.60 

.61 
.62 

.64 

.65 

.66 
.67 
.68 
.69 

.70 

•71 

•72 
•73 
•74 

.75 

.76 

.78 
79 

30 

.81 
.82 

.84 

.85 

.86 

i 
.89 

30 

•91 
.92 

•93 
•94 

.95 

•96 
•97 
-98 
•99 



3162 3170 3177 3184 3192 
3236 3243 32S1 3258 3266 
33" 3319 3327 3334 3342 
3388 3396 3404 3412 3420 
3467 3475 3483 3491 3499 

3548 3556 3565 3573 3581 
3031 3039 3048 3050 3664 
3715 3724 3733 3741 3750 
3802 381 I 3810 3828 3837 
3890 3899 3908 39»7 3926 

3981 3900 3999 4009 4018 
4074 4083 4003 4102 41 I I 
4169 41 78 4188 4198 4207 
4266 4276 4285 4295 4305 
4365 4375 4385 4395 44o6 

4467 4477 4487 4498 4508 
4013 



4571 4581 4i 
4677 4688 4( 
4786 
4898 



86 4797 



192 4603 
4710 4721 
4819 4831 



4909 4920 4932 4943 



5012 5023 5035 5047 5058 

512Q 5140 5152 5164 5176 

5248 5260 5272 5284 5297 

5370 5383 5395 5408 5420 

5495 5508 5521 5534 5546 

5623 5636 5649 5662 567s 
5754 5768 5781 5794 5808 
5888 5902 5916 5929 5943 
6026 oo'j9 6053 6067 6081 
6166 6180 6194 6209 6223 

6310 6324 6339 6353 6368 
6457 6471 6486 6501 6516 
6607 6622 6637 6653 6668 
6761 6776 6792 6808 6823 
6918 6934 6950 6966 6982 

7079 7096 7112 7129 7145 
7244 7261 7278 7295 731 1 
7413 7430 7447 7464 7482 
7586 7603 7621 7638 7656 
7762 7780 7798 7816 7834 

7943 7962 7980 7998 8017 
8128 8147 8166 8185 8204 
8318 8337 8356 8375 8395 
851 I 8531 8551 8570 8590 
8710 8730 8750 8770 8790 

8913 8933 8954 8974 8995 
9120 91 41 9162 9183 9204 

9333 9354 9376 9397 94i9 
9550 9572 9594 9616 9638 
9772 9795 9817 9840 9863 



3199 3206 3214 3221 3228 
3273 3281 3289 3296 3304 
3350 3357 3365 3373 338i 
3428 3436 3443 3451 3459 
3508 3516 3524 3532 3540 

3589 3597 3606 3614 3622 
3673 3681 3690 3698 3707 
3758 3767 3776 3784 3793 
3846 3855 3864 3873 3882 
3936 3945 3954 3963 3972 

4027 4036 4046 4055 4064 
41 2 I 4130 4140 4150 4159 
4217 4227 4236 4246 4256 

4315 4325 4335 4345 4355 
4416 4426 4436 4446 4457 

4519 4529 4539 4550 4560 
4624 4634 4645 4656 4667 
4732 4742 4753 4764 4775 
4842 4853 4864 4875 4887 
4955 4966 4977 4989 5000 

5070 5082 5093 5T05 51 17 

5188 5200 5212 5224 5236 

5309 5321 5333 5346 5358 

5433 5445 5458 547© 5483 

5559 5572 5585 5598 5610 



5689 5702 5715 5728 5741 




6237 6252 6266 6281 6295 



6383 6397 6412 6427 6442 
65;}! 6546 6561 6577 6592 
6683 6699 6714 6730 6745 
6832 6855 6871 6887 6902 
7015 7031 7047 7063 

7161 7178 7194 7211 7228 
7328 7345 7362 7379 7396 
7499 7516 
7674 7691 7709 7727 7745 



7534 7551 7568 

o «' 77097727 7745 

7852 7870 7889 7907 7925 

8035 8054 8072 8091 81 10 
8222 8241 8260 8279 8299 
8414 8433 8453 8472 8492 
8610 8630 8650 8670 8690 
8810 8831 8851 8872 8892 

9016 9036 9057 9078 9099 
9226 9247 9268 9290 931 I 
9441 9462 9484 9506 9528 
9661 9683 9705 9727 9750 
9886 9908 9931 9954 9977 



Prop. Farts. 



12 3 4 5 6 



1 2 

2 2 
2 2 
2 2 
2 2 

2 2 

2 3 

2 3 

2 3 

2 3 

2 3 

2 3 

2 3 

2 3 

2 3 

2 3 

2 3 

2 3 

2 3 

2 3 



3 4 

3 4 

3 4 

3 4 

3 4 



246 
246 

2 4 7 
247 

257 



456 
456 
456 
4 5 6 
456 

456 
456 

^ k 7 
467 

567 



6 7 

6 7 

6 7 

6 8 

6 8 



8 10 

8 10 

8 10 

9 10 
911 
911 



7 911 

8 911 
8 10 12 
8 10 12 
8 10 12 

8 10 12 
8 II 13 
9" 13 
9" 13 
911 14 



789 

7 910 

8 9 10 
8 9 10 
8 9 10 

8 911 

8 10 II 

9 10 II 
9 10 II 
9 10 12 

9 10 12 

9 II 12 

10 II 12 

10 II 13 

10 II 13 

10 12 13 

11 12 14 
II 12 14 

11 13 14 
" 13 15 

12 13 15 
121315 
12 14 16 

12 14 16 

13 14 16 

13 15 17 

13 "517 

14 15 17 
14 10 18 

14 16 18 

15 17 19 
15 17 19 

15 17 20 

16 18 20 
16 18 20 



I.. 012 34 5 6 78 9 123456789 



8iiiTH«ONiAN Tables. 



27 



Digitized by 



Google 



Table 7. 



NATURAL 8INE8 AND C08INE8. 
Natural Sines. 



MMg^ 


or 


icr 


2xy 


3or 


4or 


SO' 


€or 


Aaate. 


ter., 


(P 




.002909 


.0058 18 


.008727 


.011615 
.02908 


.014544 


.0174 52 


89» 


2.9 


I 


.0174 52 


.020-J6 
.0378 1 


.0232 7 


.0261 8 


•03199 


.03490 


88 


2.9 


2 


^3490 


.04071 


.04362 


.04653 


•°i?J3 




ll 


2.9 


3 
4 


^76 


.07266 


.05814 
•07556 


.06105 
.07846 


.08136 


.06685 
.08426 


86 
85 


2.9 
2.9 


5 


.08716 


•09005 


.09295 


•09585 


•09874 


•'°i^5 


.10453 
.12187 


84 


2.9 ! 


6 


.10453 
.12187 


.10742 


.11031 
.12764 


.11320 


.11609 


.11898 


l^ 


2.9 


7 


.1247 6 


.13053 

.1478 

.1650 


•1334 


•'530 
.1708 


.1392 


82 


2.9 


8 
9 


:;is 


.1421 
•1593 


.1449 
.1622 


.1507 
.1679 


.1564 
.1736 


8i 
80 


2.9 
2.9 


10 


.1736 


.1765 


.1794 


.1822 


.1851 


.1880 


.1908 


79 


2.9 


II 


.1908 


•'937 
.2108 


\f^ 


•1994 


.2022 


.2051 


.2079 


78 


:j 


12 


.2079 


.2164 


•2193 


.2221 


.2250 


77 


13 


.2250 


.2278 


.2306 


•2334 


.2363 


•2391 


^^ 


76 


2.8 


14 


.2419 


.2447 


.2476 


.2504 


.2532 


.2560 


75 


2Z 


15 

i6 


.2588 

.2756 


.2616 
•2784 


.2644 
.2812 


.2672 
.2840 


.2700 

.2868 


.2728 


.2756 
.2924 


74 

73 


2.8 
2.8 


\l 


.2924 


.2952 


.2979 


.3007 


.3035 


.3062 


.3090 


72 


2.8 


•3090 


.3118 


.3145 


:^33^ 


.3201 


.3228 


.3256 


71 


2.8 


19 


•3256 


.3283 


•33" 


.3365 


•3393 


.3420 


70 


2.7 


20 

21 


.3420 
•3740 


.3448 
.3611 


■m 


:^5 


•^9 


•3557 


•3584 
.3746 


69 

68 


2.7 
2.7 


22 


•3773 


.3800 


.3827 


^3854 


.3907 


^ 


2,7 


23 


•3957 


•3934 


•3961 


•3987 


.4014 


.4041 


•4067 


66 


2.7 


24 


.4067 


•4094 


.4120 


•4147 


•4173 


4200 


4226 


65 


2.7 


25 


.4226 


•4253 


•4279 


•4305 


:J^ 


•4358 


.4384 


64 


2.6 


26 


4384 


4410 


.4436 


.4462 


'¥ 


.5000 


63 


2.6 


^Z 


'£ 


4566 


•4592 


.4617 


•4643 


62 


2.6 


28 
29 


4720 
•4874 


•4746 
•4B99 


.4772 
4924 


.4797 
•4950 


.4823 
•4975 


61 
60 


2.6 

2.5 


30 


.5000 


•5025 


.5050 


•5075 


.5100 


.5125 


.5150 


59 


2.5 


31 


.5150 


•517s 


.5200 


.5225 


.5250 


•5275 


.5299 
.5446 


58 


2.5 


32 


•5299 


•5324 


•53*8 


•5373 


•5398 


•5422 


57 


2.5 


33 


.5446 


.5471 


•5495 


:i^ 


:l^ 


.5568 


.5592 


56 


24 


34 


•5592 


.5616 


.5640 


.5712 


•5736 


55 


2.4 


35 


•573f 


.5760 


.5783 


.5807 


.5831 


•5854 


.6157 


54 


2.4 


36 


.6018 


*g?} 


'K\ 


;^ 


•5972 
.6111 


•5995 
.6134 


53 
52 


2.3 
2.3 


.6157 


!6i8o 


.6202 


.6225 


.6248 


.6271 


g'J 


51 


2.3 


39 


.6293 


.6316 


■6338 


.6361 


•6383 


.6406 


50 


2-3 


40 

41 


.6428 

.0091 
.6820 


M 


S 


.6494 
.6626 


s 


.6670 


.6561 
.6691 


49 

48 


2.2 
2.2 


42 
43 




•6734 
.6862 


:a 


.6777 
.6905 


.6799 
.6926 


.6820 
.6947 


% 


2.2 
2.1 


44 


.6947 


.6988 


.7009 


•7030 


.7050 


.7071 


45 


2.1 




W 


w 


W 


30^ 


20^ 


lor 


a 


Aigla 





8HiTHa6NiAN Tables. 



Natural Cosines. 
28 



Digitized by 



Google 



Tamx 7. 



NATURAL SINES AND COSINES. 

Natural Sines. 



AaglA. 


cr 


lor 


2or 


ao' 


4or 


w 


w 


Aigia 


furl/. 


45<> 


.7071 


.7092 


.7112 


•7133 


•7153 


•7173 


•7193 


44« 


2J0 


46 


•7193 


.7214 


.7234 


•7254 


•7274 


.7294 


.7314 


43 


2J0 


^l 


.7314 


•7333 


•7353 


•7373 


.7392 


.7412 


.7431 


42 


2,0 


48 
49 


.7431 
.7547 


■^% 


.7470 
•7585 


.7604 


•7509 
.7623 


■i& 


:^l£ 


41 

40 


1.9 

1-9 


50 

51 


.7660 
•7ZZ' 


.7679 


•7^ 
.7808 


:^^ 


7844 


m 


v& 


39 

38 


;i 


52 
S3 


.7880 

.7986 


.7916 

A)2I 


•7934 
•8039 


:gp 


•7969 
.8073 


.7986 
.8090 


36 


1.8 

1-7 


54 


.8090 


^107 


.8X24 


.8x41 


.8158 


.8175 


^192 


35 


1-7 


55 


^192 


SzdS 


.8225 


.8241 


.8258 


.8274 


^290 
-8387 


34 


1.6 


56 


.8290 

•f?7 


•8307 


Sf^ 


•8339 


.8355 


•8371 


33 


1.6 


59 




.8434 


.8450 


.8465 


^480 


32 


1.6 


^480 
^572 


1^ 


•851 1 


.8526 

iei6 


K 


:S 


& 


31 
30 


1-5 
15 


eo 

61 
62 


.8660 


.8S43 


.8689 


^704 
.8870 


^718 
^2 
.8884 


.8897 


.8910 


29 

28 
27 


1.4 
14 
14 


f3 


^l^ 


.8923 


.8936 


•8949 


^2 


•8975 


.89S8 


26 


13 


64 


.8988 


.9001 


•9013 


.9026 


•9038 


•9051 


•9063 


25 


13 


65 


•9063 


•9075 


.9088 


.9100 


.9112 


.9124 


•9135 


24 


1.2 


66 


•9135 


•9147 


•9159 
.9228 


.9171 


.9182 


.9194 


.9205 


23 


1.2 


g 


•9205 


.9216 


•9239 


.9250 


.9261 


.9272 


22 


I.I 


.9272 


.9283 
•9340 


•9293 
.9358 


•9304 


•9315 


.9325 


•9336 


21 


I.I 


69 


•9336 


•9367 


•9377 


•9387 


.9397 


20 


1.0 


70 


•9397 


.9407 


.9417 


.9426 


•9436 


•9446 


•9455 


19 


1.0 


71 


•9455 


.9465 


•9474 


.9483 


.9492 


.9502 


•95" 


18 


0.9 


72 


.9511 


.9520 


.9528 




•9546 


•9^5 


•9563 
•9513 
.9659 


17 


0.8 


73 
74 


•9563 
•9513 


•9572 


:^ 


:^ 


•9596 
•9044 


.'9652 


16 
15 


75 


•9659 


.9667 


•9^4 


.9681 


.9689 


.9696 


•9703 


14 


0.7 


76 


•9703 


•9710 


•9717 


•9724 


•97^ 


•9737 


•9744 


13 


0.7 


77 


•9744 


.97|o 


.9757 


•9763 


•9775 


•9781 


12 


0.6 


78 
79 


tl 




•9799 
.9833 


•983^ 


.9811 
•9843 


.9816 
.9848 


II 
10 


0.6 
0.5 


80 

81 


.9848 
•9877 


®? 


:» 


.9863 
•9890 


.9868 

.9894 
.9918 


.9872 
•9899 


.9877 
•9903 


9 

8 


0.5 
0.4 


82 


•9903 


.9907 


•99" 


.9914 


.9922 


.9925 


I 


04 


P 


•9925 


.9920 


•9932 


•9936 


•9939 


.9942 


•9945 


6 


0.3 


84 


•9945 


.9948 


•9951 


•9954 


•9957 


•9959 


.9962 


5 


03 


85 


.9962 


•9964 


•9967 


•9969 


•9971 


•9974 


■^ 


4 


0.2 


86 


« 


•9978 


.9980 


.9981 


•9983 


•9985 


3 


0.2 


fs 


.9988 


•9989 


.9990 


•9992 


•9993 
.9998 


•9994 


2 


0.1 


88 


•9994 
.9998 


•9995 


.9996 


•9997 


•9997 


•9998 


I 


0.1 


89 


•9999 


•9999 


X.0000 


1.0000 


1.0000 


1.0000 





0.0 




eor 


50^ 


40^ 


30" 


2xy 


lO' 


or 


Aafto. 





SamMONiAN Tables. 



Natural Cosines. 
29 



Digitized by 



Google 



TAMX8. 



NATURAL TANGENTS AND COTANGENTS. 

Natural Tangents. 



icr 



W 



da 



w 



5or 



eor 



Aagla 



Pnp. Fnti 
fori'. 



29 



IS 

39 




.00000 
.01746 
.03492 
.0524 I 
•06993 

.08749 
.1051 o 
.12278 
.1405 
.1584 

•1763 

.1944 
.2126 
•2309 
•2493 

.2679 
.2867 
•3057 
•3249 
•3443 

.3640 

•3839 
.4040 

•4245 
•4452 

.4663 
.4877 
•5095 
•5317 
•5543 

(774 



.6249 
.6494 
.6745 

.7002 
.7265 
.7530 
•7813 



•8^3 
.9004 



.00291 
.020 J 6 
•03783 
•05533 
•07285 



GOT 



•1793 
•1974 
.2156 

•2339 
•2524 



•9713 



SOT 



Smithsonian Tabus. 



.00582 
.02328 
.04075 
.05824 
.07578 

•09335 
1099 
2869 
1465 
1644 

1823 
2004 
2186 
2370 
2555 

2742 

2931 
3121 

3314 
3508 

3706 
3906 
.4108 
43»4 
•4522 

4734 
.4950 
5169 
5392 
5619 



•6330 

:^^ 

7089 

•7355 
7627 

•7907 

•8195 

.8491 
.8796 
.9110 

•9435 
.9770 



4€r 



.00873 

U326i 9 
.04366 
.0611 6 
.07870 

JO9629 

"394 
I3>6 5 

1495 
1673 

1853 
2035 
2217 
2401 
2586 

2773 
2962 

3153 
3340 
3541 

3739 
3939 
4142 

4348 
4557 

,4770 
4986 
5206 

5^30 
5658 



128 

6171 
,6619 

.6873 

7133 
7400 

7673 
7954 
8243 

.9163 
.9490 
.9827 



da 



.01 16 4 

.0291 o 
.04658 

.06408 
.08163 

.09923 

.11688 

.1346 

.1524 

•1703 

.1883 

.2065 

.2247 
.2432 

.2617 

.2805 
.2994 
.3185 
.3378 

•3574 

•3772 
•3973 
.4176 

•4383 
•4592 

.4806 
.5022 

•5243 
.5467 
.5696 

m 
.6412 
.6661 
.6916 

•7177 
•7445 
.7720 
.8002 
.8292 

•?59' 



.9217 

•9545 



.0145 5 
.0320 I 
.04949 
.06700 
.0845 6 

.1021 6 

.11983 

.1376 

•«554 

•1733 

.1914 
.2095 
.2278 
.2462 
.2648 

.2836 
.3026 
.3217 
•34" 
•3607 



.40 
.4210 
.4417 
.4628 

4841 



5505 
5735 



208 

6453 
.6703 
,6959 

7221 
7490 
7766 
.8050 
.8342 

.8642 
.8952 
9271 
9601 
994a 



.01746 
•03492 
.0524 I 
.06993 
•08749 

1051 o 

12278 

1405 

1584 

1763 

1944 
2126 
2309 
2493 
2679 

2867 
3057 
3249 
3443 
,3640 

3839 
,4040 

4245 
4452 
.4663 

4877 
5095 
5317 
5543 
5774 

.6009 
.6249 
6494 

6745 
7002 

7265 
753S 

& 

8391 

8693 
9004 
9325 
9057 



87 
86 

85 
84 

P 
82 

81 

80 

79 

78 

7^^ 
75 

74 

73 
72 
71 
70 



68 
67 
66 

65 
64 

62 
61 
60 

59 

58 

II 
55 

54 

S3 
52 
51 
SO 

49 

48 
47 
46 

45 



2a 



la 



Aagtk, 



2.9 
2.9 
2.9 
2.9 
2.9 

2.9 

2-9 

>o 
3-0 
3^0 

3-0 
3-0 
3-1 

3-« 

3-1 
3-2 
3^2 
32 
3-3 

3-3 
34 
3-4 
3-5 

3-5 

3^8 

3-9 
4.0 

4.1 
4-2 
4-3 

4-4 

n 

4-7 
49 

S^o 
5-2 
5^4 
55 
5-7 



Natural CoUngentt. 
30 



Digitized by 



Google 



NATURAL TANGENTS AND COTANGENTS. 

Natural Tangents. 



Table S. 



t^fit. 


cr 


lor 


2or 


dor 


%or 


50^ 


6a 




PZ0P. Ptzti 


45° 


1.0000 


1.0058 


1. 0117 


1. 01 76 


1.0235 


1.0295 


1-0355 


44« 


^? 


46 


I-035S 


1.0416 


1.0477 


1.0538 


1.0599 


1.0661 


1.0724 


43 


% 


1.0724 


1.0786 


1.0850 


1.0913 


1.0977 


1.1041 


1.1106 


42 


it 


I.I 106 


1.1171 


1.1237 


1.1303 
1.1708 


1.1369 
1.1778 


1.1436 


1.1504 


41 


49 


1.1504 


1.1571 


1. 1640 


1.1847 


1.1918 


40 


6.9 


50 


1.1918 


1.1988 


1.2059 


1.2131 


1.2203 


1.2276 


1-2349 


39 


7-2 


51 


1.2349 


1.2876 


1.2497 


1.2572 


1.2647 


1.2723 


1.2799 


38 


7-5 


52 


1.2799 


1.2954 


1.3032 


1.311 1 


;:i^ 


1.3270 


37 


1% 


53 


1.3270 


\M 


1-3432 


1-3514 


1-3597 


1.3764 


36 


54 


1-3764 


1-3934 


1.4019 


1.4106 


MI93 


1.4281 


35 


8.6 


55 


1.4281 


M370 


1.4460 


1.4550 


1.4641 


1-4733 


1.4826 


34 


9.1 


56 


1.4826 


1.4919 


1.5013 


1.5108 


1.5204 


1.5301 


1-5399 
1.6003 

1.6643 


33 


9.6 


P 


1-5399 
1.6003 


1.5497 
1. 61 07 


1-5597 
1.6212 


1.5697 
1.6319 


1.6426 


1.5900 
1-6534 


32 
31 


10.1 
10.7 


59 


1.6643 


1-6753 


1.6864 


1.6977 


1.7090 


1.7205 


1.7321 


30 


"-3 


60 


1.7321 


1.8 165 


1.7556 


1.8418 


1.7796 


1-7917 


1.8040 


29 


12.0 


61 




1.8291 


1,8546 


1.8676 


1.8807 


28 


12.8 


62 


\^ 


1.8940 


1.9074 


1.9210 


1.9347 


1.9486 


1.9626 


^l 


13.6 


§ 


1.9626 
2.0503 


1.9768 
2.0655 


1.9012 
2.0809 


2-0057 
2.0965 


2.0204 
2.1123 


2.0353 
2.1283 


2.0503 
2.1445 


26 

25 


14.6 
1 5-7 


65 


2.1445 


2.1609 


2.I77S 
2.2817 


2.1943 
2.2998 


2.2113 


2.2286 


2.2460 


24 


16.9 


66 


2.2460 


2.2637 


2.3183 


2.3369 


2-3559 


23 


18.3 


S 


2.3559 


2.37g 


2.3945 


2.4142 


2.4342 
2.5605 
2.6985 


2.4545 


2.4751 


22 


19.9 


68 


2.4751 
2.6051 


2.5172 


iS 


2.5826 


2.6051 


21 


21.7 


69 


2.6279 


2.65 1 1 


2.7228 


2.7475 


20 


23.7 


70 


2-7475 


2.7725 


2.7980 


ia 


2.8502 


2.8770 


2.9042 


19 




71 


2.9042 


2.9319 


2.9600 


3.0178 


3047s 


3-0777 


18 




72 


3-0777 


3.1084 


3-I397 


3.I7I6 


3.2041 


3-2371 


32709 


»7 




73 


3-2709 


3-3052 


3-3402 


3.3759 
3.6059 


3-4124 


3-4495 


3-4874 


16 




74 


3-4874 


3.5261 


3-5656 


3-6470 


3.6891 


3.7321 


15 




75 


3-7321 


3.7760' 


3.8208 


3.8667 


3-9136 


3.9617 


4.0108 


14 




76 


4.0108 


4-0611 


4.1126 


4.1653 


4-2193 
4-5736 


4-2747 


4.33' 5 
4.7046 


13 




7I 


4.331 5 
4.7046 


4.3897 


4-4494 


4.5107 


5-5764 


12 




4.7729 


4-8430 


4.9152 


4-9894 


5.1446 


11 




79 


5.1446 


5.2257 


5.3093 


5-3955 


5.4845 


5.6713 


10 




80 

81 


^"313^ 


7.2687 


& 


& 


1^^ 


t3° 


6.3x38 
7.1154 


9 

8 




82 


7.1154 


7-4287 


nt 


7-7704 


7-9530 


8.1443 


7 




53 


8.1443 


ir^. 


8-5555 
10.0780 


9.0098 


9-2553 


9.5144 


6 




84 


9.5144 


10.3854 


10.7119 


11.0594 


11.4301 


5 




85 


11.4301 


11.8262 


12.2505 
15.6048 
21-4704 


12.7062 


13.1969 


13.7267 
18.0750 
26.4316 


14.3007 


4 




86 
89 


14.3007 
19.081 1 
28.6363 
57.2900 


14-9244 
20.2056 


16.3499 
22.9038 

38.1885 
114.5887 


17.1693 
24.5418 


19.0811 
28.6363 


3 

2 




31.2416 
08.7501 


^^9398 


42.9641 
171.8854 


49.1039 
343-7737 


57.2900 

QD 


I 







€or 


50' 


4€r 


ao' 


20^ 


jjor 


0' 


Aigla 





SarmaoNiAii Tables. 



Natural Cotangents. 
31 



Digitized by 



Google 



Table 9. 



TRAVERSE TABLE. 
DIFFERENCES OF LATITUDE AND DEPARTURE. 



.1 


8 

i 

S 


OP 


1 





2° 


8 

1 


1 














^ 


Q 


TAt. 


Dep. 


Lat. 


Dep. 


Lat 


Dep. 


P 


i 




1 


1.00000 




0.99984 


0.01745 


0.99939 
1.99878 


0.03490 
0.06980 


1 






2 


2.00000 


aooooo 


1.99969 


0.03490 


2 






3 


3.00000 


0.00000 


2-99954 


ao5235 
0.06980 


2.99817 


a 10470 


3 






4 


4.00000 


0.00000 


3-99939 


3-99756 


a 13960 


4 




o 


1 
I 


q.ooooo 
6.00000 
7.00000 


0.00000 


4-999^ 


0.08726 


4.99695 


0.17450 


5 


60 




aooooo 
0.00000 


0.1047 1 
0.12216 


5.99634 
6-99573 


a2094o 
0.24430 


6 
7 






8.00000 


0.00000 


0.13961 


7.99512 
8.99451 


a2792o 


8 






9 


9.00000 


0.00000 


8.99862 


0.15707 


a3i4io 


9 






1 


0.99999 


aoo436 


0.99976 


ao2i8i 


0.99922 
2.99768 


0.03925 
007851 
0.11777 


1 






2 
3 


1-99998 
2.99997 


aoo872 
0,01308 


1-99952 
2.99928 


0.04363 
0.06544 


2 
3 






4 


399996 


0.01745 


t^ 


0.08725 


3-99691 


0.15703 


4 




«S 


1 

7 


4.99995 


0.02 18 1 


0.10907 


4.99614 


019629 


1 
I 


45 




5-99994 
0.99993 


0.02617 
0.03054 


^•99833 


0.13089 
0.15270 


6.99460 


0.23555 
0.27481 






8 


7.99992 


0.03490 


8199785 


0.17452 
0.19633 


7.99383 


0.31407 






9 


8.99991 


0.03926 


8.99306 


0.35333 


9 






1 


0.99996 


0.00872 


0.99965 


ao26i7 


0.99904 
1.99809 


004361 


1 






2 


1.99992 


0.01745 


I-9993I 


0.05235 


0.08723 


2 






3 


2.99988 


0.02617 


2.99897 


0.07853 


2.99714 


0.13085 


3 






4 


399984 


0.03490 


3.99862 


0.10470 


3.99619 


0.17447 
0.21809 


4 




30 


1 

7 


4.99981 


0.04363 


4.99828 


ai3o88 


4.99524 


1 

7 


30 




5-99977 
8.99973 


0.05235 
0.06108 


5-99794 
6.99760 


0.15706 
0.18323 


5.99428 

6.99333 
7-99238 


0.2617 1 
0.30533 
0.34895 






8 


8.99965 


0.06981 
0.07853 


i:K 


0.20941 


8 






9 


0.23559 


8.99143 


0.39257 


9 






1 

2 


-999gi 


0.01308 
ao26i7 


0.99953 


0.03053 
0.00107 


0.99884 
1.99769 


0.04797 
0.09595 


1 

2 






3 


2.99974 


0.03926 


2.99060 


0.09161 


2.99654 


0.14393 


3 




45 


4 

I 

9 


399965 
4-99957 
S.99948 
6.99940 


0.05235 

0.06544 
0.07853 
ao9i62 


4.99766 
5-99720 

6-99673 
7.99626 
8.99580 


ai22i5 
a 15269 
0.18323 
a2i376 


3-99539 
4-99424 
5-99309 
6.99193 


019191 

0.28786 

038382 
0.43180 


4 

I 

9 


15 




7-99931 
8.99922 


0.1047 1 
0.1 1780 


0.24430 
a27484 




1 


•3 


Dep. 


T^it. 


Dep. 


Lat. 


Dep. 


Lat 


g 


5- 


§ 














& 


9 


P 


a 


y> 


a 


3P 


8 


70 


• 


• 



Smitnsonian Tables. 



32 



Digitized by 



GooqIc 



Table 9. 
TRAVERSE TABLE* "■—— -»■ 

DIFFERENCES OP LATITUDE AND DEPARTURE. -Continued. 



J 


i 

1 


3° 


4° 


5° 


i 


1 


Tat. 


Dep. 


Lat. 


Dep. 


Lat. 


Dep. 


o 
IS 
30 
45 


1 

2 

3 
4 

8^ 
9 

1 

2 

3 

4 

I 
I 

9 

1 
2 
3 

4 

I 

9 

1 
2 
3 

4 

1 
I 

9 


0.99863 
1.99726 
2.99589 
3-99452 
4.99315 

8.'98767 

0.99839 
1.99678 
2.99517 
3-99356 
4.99195 

5:98552 

0.99813 
1.99620 
2.99440 
3-99253 

# 

7.^507 
8.98321 

0.99785 
1.99571 
2.99357 
3.99143 
4.98929 
S-9871S 
6.98501 
7.98287 
8.98073 


0.05233 
0.10407 
0.15700 

0.26168 
a3i40i 

a4i868 
a47i02 

0.17007 

0.22677 

a28346 
0.34015 
0.39684 
0.45354 
0.51023 

0.06104 
ai2209 
0.18314 
0.24419 
o.30|24 
a36629 

tm 

0.54943 

0^36540 
0.13080 

a 19620 
a26i6z 
0.32701 

0.45782 

a58^62 


0.99756 
1.99512 
2.99269 

i^ii 

5.98538 
6.^94 

i'97807 

0.99725 
1.99450 
2.99175 

4^^625 

6^98075 
7.97800 
8.97525 

0.99691 
1-99383 

4.^458 
C.98150 
6.97842 

7-97533 
8.97225 

0.99656 

'M 

3.98626 
4.98282 

5-97939 
6.97595 
2-97252 
8.96908 


0.06975 
0.13951 
0.20926 
0.27Q02 
0.34878 
041853 
0.48829 

a6278o 

0.07410 
ai482i 

a22232 

0.29643 
0.37054 
0.44465 
0.51875 

0.07845 
ai569i 
0.23537 
0.31383 
a39229 

047075 
a5492i 
a62767 
a7o6i3 

0.08280 
0.16561 
0.24842 
0.33123 
0.41404 
049684 

0.66246 
0.74527 


0.9961 Q 

2.9I858 
3-98477 
4.98097 
5-97716 
6.97336 

8.96575 

0.99580 
1.9Q160 
2.98741 
3-98321 
4.97902 
5.97482 
6.97063 

7.96643 
8.96224 

0.99539 

^:» 
3-98158 
4-97698 

6^96777 
8.95856 

0.99496 
1.98993 
2.98490 
3-97987 

^^^ 
6.96477 
7.95974 
8.95471 


0.08715 

0.17431 
0.26146 
0.34862 

043577 
0.52293 
0.61008 
0.60724 
0.78440 

0.09150 
0.18300 
0.27450 
0.36600 
045750 
0.54900 
a6405i 
0.73201 
a8235i 

0.09584 
0.19169 

^3833^ 
a47922 

0.57507 
a67092 
0.76676 
0.86261 

aiooi8 
a20037 
0.30056 
040075 
0.50094 
0.601 1 2 
0.70131 
0.80150 
0.90169 


1 
2 
3 
4 

1 

I 
9 

1 
2 
3 
4 

I 

9 

1 
2 
3 
4 

1 
I 

9 

1 
2 
3 

4 

I 
9 


60 
45 
30 




1 


Dep. 


Lat. 


Dep. 


Lat 


Dep. 


Lat 


i 


1 


B6P 


85° 


84° 



SMiTNaoiiiAN Tables. 



33 



Digitized by 



GooqIc 



■ ""■■ "■ TRAVERSE TABLE. 

DIFFERENCES OF LATITUDE AND DEPARTURE. -CONTINUCD. 



1 

.s 

IS 


in 

s 


6° 


70 


SO 


8 

c 
ft 

.3 


1 


Lat. 


Dep. 


TAt. 


Dep. 


Lat. 


Dep. 




1 


0.99452 


ai0452 


0.99254 


0.12186 


0.99026 

1-98053 
2.97080 


0.13017 
0.27834 
0.417^ 


1 






2 

3 


2:98^6 
3.97808 


a20905 

0.31358 
0.41811 


1.98509 
2.97763 
3.97018 


0.24373 
0.36560 


2 
3 






4 


0.48747 


3.96107 


a69586 


4 




o 


1 
I 


4.97261 


0.52264 
0.62717 
0.73169 


4-96273 


0.60934 


4.95"34 
5.94160 
6.93187 


1 

7 


60 




6.96165 


5-95519 
6.94782 


0.85308 


0-83503 
0.97421 






7.95617 


0.83622 


7.94038 
8.93291 


ri^i 


7.92214 


1.11338 


8 




• 


9 


8.95069 


0.94075 


8.91 241 


1.25255 


9 






1 


r.p^?? 


0.10886 


0.90200 
1.98400 


0.12619 


0.9896s 


1:11^ 


1 






2 


0.21773 


0.25239 


1.97930 


2 






3 


2.98216 


0.32660 


2.97601 


0.37859 


2.96895 


0.43047 


3 






4 


3.97622 


0.43546 


3-96801 


0.50479 
0.63099 


3-95860 


0-57397 


4 




15 


1 

7 


4.97028 


0.54433 
0.65320 
0.76206 


4.96002 


4.94825 


0.71746 


1 
I 


45 




6.95839 


5.95202 
6.94403 


0.75719 
0.88339 


5-93790 
6.92755 


0.86095 
1.00444 






8 


795245 


0.87093 
0.97980 


7-93603 


1.00959 


7.91721 


1.14794 






9 


8.94650 


8.92804 


1-13579 


8.90686 


1.29143 


9 






1 
2 


0.99357 
X.98714 


0.1 1 320 
0.22040 


r^iu 


o.no52 
0.20105 


0.98901 
1.97803 


0.14780 
0.29561 


1 

2 






3 


2.98071 


0.33960 


2.97433 


0-39157 


2.96704 
3.95606 


0.44342 


3 






4 


3.97428 


0.45281 
0.56601 
0.07921 
0.79242 


396577 


0.52210 
0.05263 
0.78311 
0.91368 


0.59123 


4 




30 


1 

7 


4.96786 


4.95722 


4.94508 


0.73904 
0.88685 
1.0-1460 
1.18247 


1 
I 


30 




5-96143 
6.95500 
7.94857 


5.94866 
6.9401 1 


593409 
6.9231 1 






8 


0.90562 
1.01882 


7-93' 55 


1.04420 


7.91212 
8.901 14 






9 


8.94214 


8.92300 


I-I7473 


X.33028 


9 






1 

2 


r^s 


01 1753 
0.23507 


a99o86 
1-98173 


0.13485 
0.26970 


0.98836 
1.97672 


0.1 5212 
0.30424 


1 

2 






3 


2.97920 


0.35261 


2.97259 


0.40455 


2.96508 


0.45637 


3 






4 


3.97227 


0.47014 


396346 


0.53940 
0.67425 


3-95344 




4 




45 


1 
5 


4-96534 
5.95841 
6.95147 


0.58768 


4-95432 


4.94180 


0.76061 


i 


15 




0.70522 
0.82276 


6!936o6 


0.80910 

0.94395 
1.07880 


5-93016 
6.9i8q3 

8.89525 


t» 






8.93761 


0.94029 


7.92692 


1.21698 






9 


1.05783 


8.91779 


1.21365 


1.369" 


9 




S 

r 
? 




1 


Dcp. 


Lat 


Dep. 


Lat. 


Dep. 


Lat 


1 


c 

5 


B3P 


820 


a 


10 



SMiTHaoMUM Table*. 



34 



Digitized by 



GooqIc 



Table Q. 
TRAVERSE TABLE. 
DIFFERENCES OP LATITUDE AND DEPARTURE. 'Continued. 



ii 




9^ 


lOP 


110 


Q 


.1 

IS 


Lat. 


Dcp. 


Lat. 


Dcp. 


Lat. 


Dep. 




1 


a98768 


0.31286 


0.98480 


0.17364 


0.98162 


0.19081 
0.38162 


1 






2 


1-97537 


1.96961 


0.34729 


219448^ 


2 






3 


2.96306 


0.46930 


2.95442 


0.52094 
0.69459 


0.57243 


3 






4 


3-95075 


0.62573 


393923 


3.92650 


0.76324 


4 




o 


1 


4.93844 
q.92612 
6.91 38 1 


0.78217 
0.93860 
1.09504 




0.86824 
1.04188 

II38918 


6^87139 




1 

I 


60 




8.^19 


1.25147 


7;87M 


7.85301 






9 


1.40791 


8.86327 


1.56283 


8.83464 


1.71729 


9 






1 

2 


a98699 

i3 


ai6o74 
0.32148 


t^ 


0.17794 
0.35588 


a98o78 
1.96157 


0.19500 
0.30018 
0.58527 


1 

2 






3 


0.48222 


2.95212 


0.53383 


2.94235 


3 






4 


3-94798 


0.64297 


3-93616 


0-71177 


3.92314 


0.78036 


4 




IS 


1 


493498 


a8o37i 


4.92020 


0.88971 


6.8654Q 
7.84628 


0-97545 


1 

7 


45 




5.92197 
6.00897 


0.96445 
1.12519 


iiss^ 


1.06766 
1.24560 


1.17054 
1-36563 






7-89597 


1.44668 


8185636 


1.42354 


1.56072 


8 






9 


8.88^ 


1.60149 


8.82706 


1.75581 


9 






1 


a98628 


0.16504 


0-98325 


a 18223 


0.97992 
1.95984 


0.19936 
0.39873 


1 






2 


2*95885 


0.33009 


1.96650 


0.36447 


2 






3 


0-49514 


2.94976 


0.54670 


2-93977 


0.59810 


3 






4 


394514 


0.66019 


3-93301 
4.91627 


0.72894 


& 


0.79747 


4 




30 


1 


4.93142 


0.82521 
a99028 

I.I 5533 
1.32038 


0.91117 


0.99683 


1 
I 


30 




5-9I77I 
7.89028 


8.84929 


1.09341 
"•^7564 
1.45788 


5.87954 
6.85947 
7.83939 


1. 19620 
1.39557 
1.59494 






9 


8.87657 


148542 


1.64011 


8.81932 


1.79431 


9 






1 


0-98555 


0.16035 


0.98245 


0.18652 


0.97904 
1.95809 


0.20364 


1 






2 


1.97111 


0.33870 


1.96490 


0.37304 


0.40728 


2 






3 
4 


2.95666 
3.94222 


0.50805 
0.67740 


2-94735 
3.92980 


0-55957 
0.74609 


2.93713 
3.91618 
4.89522 


a6i092 
0.81456 


3 
4 




45 


1 

7 


4.92778 


a84675 


4.91225 
5-89470 
6.87715 


0.93262 


1. 01820 


1 

7 


15 






1.01610 
1-18545 


1.11914 
1.30566 


5.87427 
0.85331 


1.22185 
1.42549 






8 


7.80444 


1.35480 


7.85960 


1.49219 


7.83236 


1. 6291 3 


8 






9 


8.87000 


1.52415 


8.84205 


1.67871 


8.81140 


1-83277 


9 




3' 

c 

8 


1 


Dep. 


Lat 


Dcp. 


Lat. 


Dep. 


Lat. 


f 


f 


90P 


790 


7 


dP 



SWTIMOMIAM Ta.U.. 



35 



Digitized by 



GooqIc 



Table Q. 

TRAVERSE TABLE* 
DIFFERENCES OF LATITUDE AND DEPARTURE. -CONTINUED. 



i 

3 

•S 

IS 


1 


12° 


13° 


14° 


1 

.a 


1 

a 
.2 


Lat 


Dep. 


Tat. 


Dep. 


Trfit. 


Dep. 




1 


0.97814 


0.20791 
0.41552 


0.97437 


0.22495 


0.97029 


a48384 


1 






2 


1.95629 


1.94874 


0.44990 
0.67485 


1.94050 
2.01088 
3.88118 


2 






3 


2.93444 


0.62373 


2.Q2311 


0.72576 


3 






4 


3.91259 

8.84703 
7.82518 
8.80332 


0.83164 


0.89980 


a96768 


4 







5 


I-03955 


isf^s 


1.12475 


4.85147 


1. 20961 


1 


60 




6 


1.24747 


j.84622 
6.82059 


1.34970 


6.79206 


MSI 53 






2 


I-4S538 
1.66329 


1.57465 
1.79960 


1.69345 
1.93537 


I 






9 


1.87 1 20 


2.02455 


2.17729 


9 






1 


0.97723 
1.95446 


0.21217 


0.97337 
1.94075 


a22920 


t&l 


a246i5 


1 






2 


0.42435 


0.45840 


0.49230 


2 




15 


3 

4 


2.93169 

^^ 

6.84061 


0.63653 
0.84871 
1.06088 




0.91680 
1. 14600 


3.p92 
4|46ij 


0.^461 
1.23076 


3 
4 

I 
I 


45 




1.27306 
1.48524 


0SI365 


1.77520 


6.78461 


1.47691 
1.72307 






7.81784 
8.79507 


1.69742 


7.78703 


ii^iS 


7.75384 
8.72307 


1.96922 






9 


1.90959 


8.76041 


2.21537 


9 






1 


a97629 




0.97237 


tM 


a968i4 


0.25038 


1 






2 




1.94474 


1.93629 


a50O76 


2 






3 

4 


2.917 1 1 

3.88948 


0.93378 
1. 16722 


2.Q0444 
3.87259 


o.75"4 

IX)OI52 


3 

4 




30 


1 
I 

9 


1.08220 


4.86185 


6.77703 
7.74518 
8.71332 


1.25190 


1 
I 

9 


30 




5.85777 
6.83407 


1.29864 
1.51508 


6S0659 


1.40067 

i!8^56 
2.10100 


1.50228 
1.75266 






7.81036 
8.78666 


1.7315? 
1.94796 


7.77896 
8.75133 


2.00304 
2.25342 






1 


0.97534 
1.95068 


a22o69 


0.97134 
Z.94268 


0.23768 


0.96704 


a2546o 


1 






2 


044139 


0.47537 


1.93409 


0.50920 


2 






3 
4 


2.92602 
3.90136 
4.87671 


a6620Q 
0.88278 


2.9x402 

3.18536 
4^5671 


0.71305 


3^\i 


a7638o 
1.01840 


3 

4 




45 


1 
1 


1.10348 


4-83523 


1.27301 


1 
I 


15 




5.85205 
6.82739 


1.32418 
1.54488 


5.82805 
0.79939 


1.42611 
1.66380 


6.76932 


1.52761 
1.78221 






l^'^ 


\^^ 


7.77073 
8.74207 


1.90148 


7.73636 


2.03681 






9 


2.13917 


8.70341 


2.29141 


9 




1 


a 


Dep. 


Lat. 


Dep. 


Lat 


Dep. 


Lat 


d 


I" 


770 


76° 


750 



Smithsonian Tablcs. 



36 



Digitized by 



GooqIc 



Table Q. 
TRAVERSE TABLE* 
DIFFERENCES OF LATITUDE AND DEPARTURE. -Continued. 



s 

3 
C 


.3 

Q 


15° 


160 


170 


8 

1 
.a 

Q 


1 

.s 


Lat. 


Dep. 


Lat. 


Dep. 


Lat. 


Dep. 




1 
2 
3 


0.96502 
1.93185 
2-89777 


0.25881 
0.51763 
0.77645 


0.96126 
'•2"52 
2.88378 


0.27563 
0.8269X 


0.95630 
1. 91 200 
2.86891 


0.29237 
0.58474 
0.877 II 


1 
2 
3 






4 




1.03527 


« 


1.10254 


3.82521 


1.16948 


4 







1 
I 


4^82962 


1.29409 


1.37818 
1.65382 
1.92946 


4.78i|2 
6I69413 


1.46185 


1 

7 


60 




mi'd 


1.55291 
1.81173 


n% 


1.75423 
2.04660 






7.72740 


2.07055 


7.69009 
8.65135 


2.20509 


&l 


2.33897 


8 






9 


8.69333 


2.32937 


248073 


2.63134 


9 






1 


a96478 


0.26303 
a526o6 
0.78909 


0.96005 


0.27982 


0.95502 


0.29654 


1 






2 
3 


IS 


1.92010 
2.88015 


a«96q 
0.83948 


1.91004 
2i65o6 


2 
3 






4 


3-85914 


1.05212 


3.84020 


1.11931 


3.82008 


1.18616 


4 




15 


1 


4.82793 
5.78872 
6.75351 

8.6830^ 


'•3i5«5 
1.57818 


4.80025 
5.76030 
6.7^ 




4.77510 

mi 


148270 
X.77924 


^ 


45 




1 

9 


1.84121 


1.95800 


2.07579 


I 

9 






2136728 


8164045 


2.51846 


7.64016 
8.59518 


t^^ 






1 
2 
3 


0.96363 


a26723 

0.53447 
0.801 7 1 


0.95882 
2.87646 


0.28401 
0J5204 


0.95371 

1.90743 
2.86115 
3.8i48§ 


0.30070 
a6oi4i 
0.902 1 1 


1 
2 
3 






4 


3-55552 


1.06895 


3^3528 


1.13606 


1.20282 


4 




30 


1 


4.81815 


Jg6i9 
1^7^ 


4.79410 


1.42007 


4.76858 


1.50352 
1.80423 


1 


30 




5.78178 
6.74541 


5.75292 
6.71174 


1.70409 


6.67601 






1 


1.98810 


2.10494 


I 






8.67267 


2.13790 


8.62938 


2.27212 


8:58345 


2.40564 
2.70635 






9 


2.40514 


2.55613 


9 






1 


0.96245 


a54288 
0.81432 


0.95757 


0.28819 


0.95239 


0.30486 
0.00972 
0.91459 


1 






2 
3 


3.84982 


1.Q1514 
2.87271 


l'& 


1.Q0479 
2.85718 


2 
3 






4 


1.08576 


3.83028 
4.78785 


1.15278 


3-80958 


1.21945 


4 




45 


1 


4.81227 


1.35720 


1.44098 


4.76197 


'•52432 
1.82918 


1 


15 




5.77473 
6.73718 


5.74542 
6.70299 


X.72917 


i^l 






1 


1.90008 


2.01737 


2.13405 


7 






7.69964 
8.66209 


2.X7152 


7.66057 


2.30557 


7.61916 


2.43891 


8 






9 


244296 


8.61814 


2.59376 


8.57156 


2.74377 


9 




1 


5- 


Dep. 


Lat. 


Dep. 


Lat. 


Dep. 


Lat. 





1 


ff 










ff 


8 


^ 


740 


730 


72 


r> 


i 


8 



BamwoNiAN Tables. 



37 



Digitized by 



GooqIc 



' *"** *■ TRAVERSE TABLE* 

DIFFERENCES OF LATITUDE AND DEPARTURE. -CONTINUED. 



j 


i 


lff> 


13P 


20P 


5 


i 


i 


Q 


Lat. 


Dep. 


Lat. 


Dep. 


' Lat 


Dep. 


i 




1 
2 


0.95105 
1.00211 
2.85316 
3.80422 


0.61803 


0.94551 
1.89103 


0.32556 
0.65113 


1.87938 


0.34202 
a68404 


1 

2 




3 
4 


?:f^ 


2.83655 
3.78207 


0.97670 

1.62784 
1.95340 
2.27897 


2.81907 
3-75^77 


1.02606 
1.36808 


3 

4 




o 


1 
I 


475528 
5.70633 
0-65739 


1.54508 
1.8 5410 
2. 1 631 1 


4.72759 
6!6i863 


4.69846 
5.63815 
6.57784 


1.71010 
2.05212 
2.39414 


1 
I 


60 




7-60845 


2.47213 


1:$^ 


2.60454 


7.51754 
8.45723 


2.73616 






9 


8.55950 


2.781 1 5 


2.9301 1 


3.07818 


9 






1 

2 


0.04969 
1.89939 


0.31316 
0.62632 


?« 


0.32960 
0.65938 
0.98307 
1.31876 
1.64845 


t& 


ai46ii 
a69223 


1 

2 






3 
4 


2.84909 
3-79»79 


0.93949 
1.25265 
1.56581 
1.87898 
2.19214 


2.83226 
3.77635 


2.81457 
3.75276 


i^3^6 


3 

4 




15 


1 

7 


4.74849 


4.72044 


4-69095 


1.73058 


1 

7 


45 




6;64789 


i^ 


1.97814 
2.30783 
2.65752 
2.96721 


5.62914 
6.56733 


2.07670 






8 
9 


7-59759 
8.54729 


2.81847 


11^ 


7-50553 
8.44372 


2.76893 
3-11505 


8 
9 






1 

2 


ris 


0.31730 
a6346o 


?a 


a6676i 


0.93667 
1.87334 


a35020 
0.70041 


1 

2 






3 


2.84497 


0.95191 
1.26921 


2.82792 


1. 00142 


2.81001 


ix>5o62 


3 






4 


3-79329 


377056 


'■^2 


3.74668 


1.40082 


4 




30 


1 
I 

9 


4.74161 


1.58652 
1.90382 
2.221 13 


4-71320 




4.68336 


1.75103 


7 


30 






5.65584 
6.59849 


2.00284 
2.33664 
2.67045 
3.00426 


5.62003 
6.55670 


2.10124 

2.80165 
3.15186 






8.53491 


2.53843 
2.85574 


^377 


7.49337 
8.43004 


8 
9 






1 

2 


t& 


0.32143 


^^17^ 


a3379i 
0.67583 


0.93513 
1.87027 


H 


1 

2 






3 


2.84079 


0.96431 


2.82352 


J-o'37| 

i!^58 
2.02750 
2.36541 


2.80540 


3 




4S 


4 
9 


3-78772 
4.7^65 


1.28575 
1.60719 
1.92863 
2.25007 


3.76470 
4.70588 


3.74054 
4-67 5S7 
5.61081 
0.545^ 


1.41716 
1.77145 
2.12574 
2.48003 


A 

I 
9 


IS 




7.57544 
8.52237 


2.57151 
2.S9295 


7.52940 
8.47058 


2.70333 
3.04125 


841621 


» 




s 


P 


Dep. 


Lat. 


Dep. 


Lat. 


Dep. 


Lat. 


a 


S 


g 


5 














^ 


f 


5 


7 


V* 


70P 


eap 


f 



Smithsonian Taslcs. 



38 



Digitized by 



Google 



Tabu Oa 
TRAVERSE TABLE* 
DIFFERENCES OF LATITUDE AND DEPARTURE. -CONTINUCD. 



8 

.s 


8 


21° 


220 


23» 


8 

S 


Minutes. 


Lat 


Dep. 


Lat. 


Dep. 


Lat 


Dep. 


o 
IS 
30 

45 

3: 

1 


1 

2 

3 

4 

9 

1 
2 
3 

4 

1 

9 

1 
2 
3 
4 

I 

9 

1 
2 
3 

4 

I 

9 


2.80074 

4.66790 
5.60148 

840222 

0.93200 
1. 86401 

3^72803 
4.66004 
5.59204 

2.79125 

& 

5.58250 
6.51292 
7-44334 
8.37375 

0.02881 
1.85762 

2.78643 
3-71524 
4.64405 

6.50167 
7.43048 
8.35929 


0.35836 
0.71673 
1. 07 510 

1-43347 
1-79183 
2.15020 

i& 

3-2253* 

0.36243 
0.72487 
1.08731 

x-44975 
1.81219 
2.17462 

3.26194 

0.36650 
0.73300 

;« 

1.83250 
2.19900 
2.56550 
2.93200 
3.29851 

0.37055 
0.74111 
1.11167 
1.48222 
1.85278 
2.22334 
2.59390 
2.96445 
3-33501 


0.92718 
1.85436 
2.78155 

3-70873 
4.63591 
5.5S310 
6.49028 

7.41747 
8.34465 

0.02554 
1.85108 
2.77662 
3.70216 
4.62770 

6;47878 

0.92388 

ii4776 
2.77164 
3-69552 
4.61940 

6.46716 
7-39104 
8.31492 

0.92220 

3.68880 

4.61 100 

5-53320 
6.45540 

8.29980 


0.37460 
0.74921 
1.12^81 

1.87303 
2.24763 
2.62224 

2-99685 
3-37145 

0.37864 
0.75729 
1-13594 
1-S1459 
1-89324 
2.27189 
2.65054 
3.02918 
3-40783 

a38268 
0.76536 
X.14805 

1-53073 
1.91341 
2.29610 
2.67878 
3.06146 
3-44415 

0.38671 
0.77342 
1.16013 
1.54684 

1-93355 
2.32026 

3-'^368 
3-48039 


0.02050 
1. 84100 
2.761 51 
3.68201 
4.60252 
552302 
6.44353 

8!28454 

3.67516 
4.59395 
5-51274 
8-43153 

8.26912 

aoi7o6 
1.83412 

4-58530 
5.50236 

8-25354 

5.49186 
6.40718 

7-32249 
8.23780 


0.7814S 
1.17219 
1.56292 
1-95365 
2.34438 
2.735" 
3.12584 
3-51657 

0.39474 
o.789;|8 
1.18423 
1.57897 
1-97372 
2.36846 
2.76320 

3-15795 
3-55269 

0.39874 

0.79749 
1.19624 

1-59499 
x-99374 
2.39249 

2.79124 
3-58874 

0.40274 

0.80549 
1.20824 
1. 61098 

IW 

2.81922 
3.22197 
3.62472 


1 

2 

3 
4 

1 
I 

9 

1 
2 
3 
4 

1 
I 

9 

1 
2 
3 
4 

1 
1 

9 

1 
2 
3 
4 

1 
I 

9 


60 
45 
30 
15 


g 


Dep. 


Lat. 


Dep. 


Lat. 


Dep. 


Lat. 


a 

i 


f 


€SP 


6T> 


6&> 



BaiTHaoNM 



39 



Digitized by 



GooqIc 



Table 9« 
^^^^ TRAVERSE TABLE* 

DIFFERENCES OF LATITUDE AND DEPARTURE. 'CONTINUCD. 



1 

.s 


8 


240 


a5<> 


2GP 


3 


S 

c 














^ 


Q 


Lat. 


Dep. 


Lat 


Dep. 


Lat 


Dep. 


Q 


i 




1 

2 


0.01354 
1.82709 


0.40673 
0.81347 


Tdi 


0.42261 
a84523 


0^79 


0.43837 
0.87674 


1 

2 






3 


2.74063 
3-65418 
4.5^772 


1.22020 


2.71892 


1.26785 


2.69638 


1.31511 


3 






4 


1.62694 
2.03368 


3-62523 


1.69047 


3.59517 


1.75348 


4 




o 


1 

9 


4-53153 
5.43784 
6.34415 
7.25046 

8.15677 


2.1 1309 


4^9397 


2.19185 


1 

7 


60 




5.48127 
6.39481 


2.44041 
2.84715 


2.53570 
2.9^832 


5.39276 
6.29155 


2.63022 
3.0&59 






7.30836 
8.22190 


l& 


3^356 


i-^i 


3.50696 
3-94533 


8 
9 






1 
2 


a9ii76 
1.82352 


a4i07r 
0.82143 


«? 


0.42656 
0.85313 


0.89687 
1.79374 


a44228 


1 

2 






3 


2.73528 


1.23215 


l^X 


1.27970 


2.60061 

3.5»749 


3 






4 


3.64704 


1.64287 


1.70627 


1.76915 


4 




15 


1 

7 


4.55881 


2.05359 
2.46431 
2.87503 


4.52227 


2.13284 


4.48436 


2.21 144 


1 

9 


45 




5.47057 
6.38233 


6.331 18 


2."9^598 


5.38123 
6.27810 


2.65373 
3.09002 






8 
9 


7.29409 
8.20585 


1® 


7.23564 
8.14009 


3.41254 
3.8391 1 


8.07185 


3-53830 
3.98059 






1 

2 


0.90996 


0.41469 
0.82938 


0.00258 
1.80517 


0.80102 


^ 


a446i9 
0.89239 


1 
2 






3 


2.72988 


1.24407 


2.70775 


1.29153 


2.68480 


1.33859 
1.78479 
2.23098 
2.67718 
3.12338 


3 






4 


3.63984 


1.65877 


3.61034 


1.72204 


3-57973 


4 




30 


1 
2 


4.54980 
5.4S976 
6.36972 


2.90285 


4.51292 

5.4i|5i 
6.31869 


2.58306 
3.01357 


4.47467 
6.26454 


1 


30 




i.l&s 


3.31754 


7.22068 
8.12326 


3.44408 


7.15947 
8.05440 


3.56958 






9 


3-73223 


3.87459 


4.01578 


9 






1 

2 


0.90814 
1.81628 


041866 
0.83732 


0.90069 
1.80139 


0.8^8$ 


0.89297 
1.78595 
2.67893 


0.45009 
0.90019 


1 

2 






3 


2.72442 


1.25598 


2.70209 


1.30333 
1-73778 


1.35029 
1.80039 


3 






4 


363257 


1.67464 


3-60279 


4464^9 


4 




45 


1 
I 


4.54071 


2.09330 


4.50349 
6.30488 


2.17222 


2.25049 


1 

7 


IS 




5.44885 
6.35700 

8!i7328 


2.51196 
2.93062 


2.60667 
3.04111 


6.25085 


HTc^ 






3-34928 


7.20558 
8.10628 


3.47556 


7.14383 


3.60078 


8 






9 


3-76794 


3.91000 


8x>368i 


4.05088 


9 




1 




Dep. 


Lat. 


Dep. 


Lat. 


Dep. 


Lat. 


1 




e 


5« 


& 


ft«> 


G3P 



Smithsonian Tables. 



40 



Digitized by 



GooqIc 



Table 9« 
TRAVERSE TABLE* "■•■— ^ «»■ 

DIFFERENCES OF LATITUDE AND DEPARTURE. -Continued. 



1 


8 


270 


28» 


2y> 


.1 


i 














^ 


s 


Lat 


Dep. 


Lat 


Dep, 


Lat 


Dep. 


Q 


s 




1 

2 


0.80100 
1.78201 


045399 
090798 


088294 
1.76589 


offiJ 


0.87462 


0.48481 
0.96962 


1 

2 






3 


2.67301 


1.36197 
1.81596 


2.64884 


1.40841 


2;62p6 


145443 


3 






4 


3-56402 


3-53179 


1.87788 


3.49048 


1.93924 


4 




o 


1 

9 


4-45503 
5-34003 
6.23704 
7.12805 
8.01905 


2.26995 
2.72394 
3-17793 
3-6JI93 
4.08591 


4.41473 

7.06358 
7.94052 


3.28630 

3-75577 
4.22524 


4.37310 
5.24772 

0.12234 

7.87156 


2.42405 
2.90886 

4.36329 


1 
I 

9 


60 




1 

2 


088901 
1.77803 


0.45787 
0.91574 


0.88089 
1,76178 


0.94664 
1.41996 


087249 
2.61748 


048862 
0.97724 


1 

2 






3 


2.66705 
3-55606 


1^3149 
2.28937 


2.64267 


1.46566 


3 






4 


3-52356 


1.89128 
2.83992 


348998 


1.95448 


4 




»S 


1 


444508 


4.40445 


4.36248 


244310 


I 


45 




5.33410 


2.74724 


kfe^r, 


5.23497 
6.10747 


2.93172 






i 

9 


6.2231 1 


3.20511 


m 


3.42034 


I 

9 






7.11213 
8x)oii5 


&, 


7.04712 
7.92801 


6.07996 
7.85246 


3.90896 
4-39759 






1 


0.88701 


046174 


087881 


0.47715 


0.87035 


0.45242 
0.98484 


1 






2 


1.77402 


0.92349 


1.75763 


095431 


1.74071 


2 






3 

4 


2.66103 
354804 


1.84699 


2.63(S4S 
3-51520 


1*90863 


2.61 106 
3-48142 


1.47727 
1.96969 


3 

4 




30 


1 


4-4350S 
5.32206 
6.20907 


2.30874 


4.39408 


2.J8579 
2.86295 


4.35177 


2.46211 


1 


30 




2.77049 


5.27290 
6.15171 


5.22212 


^4^^ 






1 


3-23224 


3.3401 1 
3-81727 


I 






7.09608 


3.69398 


7.03053 


7.83320 


3.93938 
4.4318I 






9 


7.98309 


4-15573 


7.90935 


4.29442 


9 






1 


088498 


046561 


087672 


048098 


0.86819 


049621 


1 






2 


1.76997 


0.93122 


1-75345 
2.63018 


0.96197 


1.73639 


0.99243 


2 






3 


2.65496 


:« 


1.44296 


2.60459 


i.i|864 


3 






4 


3-53995 


3.50690 


1.92395 


3.47279 


1.98486 


4 




45 


1 


4.42493 


2.32807 


4.38363 
5.26036 
6.13708 


2.40494 


4.34099 


2.48108 


1 


15 




5-30992 
6.19491 


2.79368 


2.88593 


5.20919 
6.07739 


2.97729 






I 

9 


3-25930 


3.36692 


3.4735* 


I 
9 






l^ 


3-72491 
4.19053 


7.01 381 
7.89054 


tx 


6.Q4559 
7.81378 


3.96973 
446594 






g 


Dep. 


LaL 


Dep. 


Lat. 


Dep. 


Lat 


1 


1 


c 
J? 














& 


8 


^ 


G 


2° 


6 


1° 


6 


ty» 


^ 


• 



Shitiwoiiian Tables. 



41 



Digitized by 



GooqIc 



Table 9« 

TRAVERSE TABLE* 
DIFFERENCES OF LATITUDE AND DEPARTURE. -CONTINUED. 



i 


6 


30° 


310 


32P 


g 


8 


1 

c 


1 














1 


1 














ig 


P 


Lat. 


Dep. 


Lat 


Dcp. 


Lat. 


Dep. 


^ 


s 




1 


0.86602 


a5oooo 


0.85716 


0.51503 


a848o4 


0.52991 
J -0^3 


1 






2 


1-73205 


1.00000 


1-71433 


1.03007 


1.69609 


2 






3 


2.59807 


1.50000 


^ 


1.545" 


2.54414 


3 






4 


3.46410 


2.00000 


2.06015 


3.39219 


2.1 1967 


4 




o 


1 


4.33012 


2.50000 


4.28583 


2.57519 


4*24024 


2.64959 


i 


60 




6!o62i7 


3.00000 


5.14300 
6.00017 


3.09022 


5.08828 


317951 






I 


3.50000 


3-60526 


m 


3-70943 


i 






6.92820 


4.00000 


6.85733 


4-12030 


4-23935 
4.76927 






9 


7.79422 


4.50000 


7.71450 


4-63534 


7.63243 


9 






1 

2 


0,86383 
1.72767 


0.50377 
1.00754 


0.85431 
1.70982 


0.51877 
1.03754 


0.84572 
1-69145 
2.53718 


0.53361 
1.00722 


1 
2 






3 


2.59150 


1.51132 


2.56473 


1. 55631 


1.60084 


3 






4 


3-45534 


I:^;i8°? 


3.41964 


2.07509 


3-38291 


2.13445 


4 




^5 


1 


4.31917 


4-27456 


2.59386 


4.22863 
5.07436 


2.6g8o7 


1 


45 




5.18301 
&04684 
6.91068 


3.02264 


5.12947 


3."263 


3.20168 






5 


3.52641 
4.03019 


5.98438 
0.83929 


3-63141 
4.6^5 


6!76582 


4.2^1 


I 






9 


7-77451 


4-53396 


7.69420 


7.61155 


4.80253 


9 






1 


0.86162 


0.50753 


0.85264 


0.52249 


2.53017 


0.53730 
1.07460 
1.61190 


1 






2 
3 


1.7232c 


1. 01 507 
1.52261 


1.70528 
2.55792 


1.04499 
1.56749 


2 
3 






4 


3.44651 


2.03015 


3.41056 


2.08999 


3.37356 
4.21695 


2.14920 


4 




30 


1 


4.30814 


2.53769 


4.26320 


2.61249 


2.686qo 

3.22380 


1 


30 




5.16977 
6.03140 


3-04523 
3-55276 
4-06030 
4.56784 


S."584 


3.13499 


5-06034 






5 
9 


6.821 12 
7.67376 


3-65749 
4-1799S 
4.70248 


5-90373 
6.74713 
7.59052 


3.76110 
4.29840 
4.83570 


I 

9 






1 


fytltr 


0.51 120 


0-85035 


0.52621 


a84io3 


0.54097 


1 






2 


1.022158 


1.70070 


1.05242 
1.57864 


1.68207 


ix>8i94 


2 






3 


2.57821 


1-53387 


2.55^05 


2.5231 1 


1.62202 
2.16389 


3 






4 


3.43762 


2.55646 
3-06775 
3-57905 


3.40140 


2.10485 


3-36415 


4 




45 


1 
g 


4-29703 


4.25176 


2.63107 
3-68349 


4.20519 

5.88827 
6.72831 


2.70487 


1 

7 


15 




6.01584 


5.1021 1 
6!8o28i 


i* 






6.87525 


4.09034 


4.20971 


tm^'7 


8 






9 


7.73465 


4.60163 


7.65316 


4-73592 


7-56935 


9 




1 




Dcp. 


Lat. 


Dep. 


Lat. 


Dep. 


Lat 


f 


1* 


1 




590 


sep 


570 


t 



SMiTHtoNiAN Tables. 



42 



Digitized by 



Google 



TRAVERSE TABLE. ^^""^ *' 

DIFFERENCES OF LATITUDE AND DEPARTURE. -Continued. 



i 

.S 


i 


33° 


340 


350 


i 


.S 














IS 


Q 


Lat 


Dep. 


TAt. 


Dep. 


Lat. 


Dep. 


Q 


^ 




1 

2 


0.83867 
1.67734 


0.54463 
1.08927 


0.82903 
1.6C807 
2.48711 


0.55010 
1.11838 


0.81 QI 5 
1.63830 


0.57357 
I. 14715 


1 

2 






3 


2.51601 


1.6339' 
2.17855 


1-67757 


2.45745 


1.72072 


3 






4 


335468 


3.31615 
4-14518 


2.23677 


327660 


2!8l7^ 


4 




o 


1 


4-19335 


2.72319 


2.79596 


4.09576 


^ 


60 




5.03202 


3-26783 


4.Q7422 
5.80326 
6.63230 
7.46133 


3-35515 


4.91491 


3.44145 






I 


5^7069 
6.70936 
7.54B03 


3.81247 
4-357" 


3-91435 
4.47354 


5.73406 
6.55321 


tw, 


I 






9 


4-90175 


5-03273 


7.37236 


5.I62I8 


9 






1 


a83628 


a54820 


a8265o 
1.65318 


0.56280 


0.81664 


0.57714 


1 






2 


l^l 


1.09608 


1.12560 
1.68841 


1.63328 


1.15429 


2 






3 


1.64487 


2.47977 


2.44992 


1-73143 


3 






4 


3-34514 
4-18143 


2.19317 


3-30636 


2.25121 


3.26656 


2.30S58 


4 




15 


1 


2.74146 


4.13295 


2.81402 


4.08320 


3-46287 


1 


45 




5.01771 


3-2%5 


4-9S9S4 
6.61272 


3-37682 


4.89984 






5 


5.69028 


3-Mo5 


393963 


5.71649 
6.53313 


4.04001 


7 






4-93483 


4-50243 


4.6I7I6 


8 






9 


752657 


7.43931 


5.06524 


7.34977 


5.19430 


9 






1 


^ 


0.55193 
1.10387 


0.82412 


0.56640 


a8i4ii 


0.58070 


1 






2 


1.64825 


1.13281 


1.62823 


1. 16140 


2 






3 


2.50165 


1-65581 


2-47237 


1.69921 


3-25646 


I.742IO 


3 




30 


4 

1 


3-33554 
4.16942 


i,1SS 


3-29650 
4.12063 


2.26562 
2.83203 


2.32281 
2-90351 


4 

1 


30 




5-0033I 


4-41549 


6.59300 


3-39843 


3.48421 






§ 


&67108 


3-96484 
4.53124 


5.69880 
6.51292 


4.06492 
4.64562 
5.22632 


I 






9 


7.50497 


4.96743 


741713 


5.09765 


7.32703 


9 






1 


0.83147 
1.66294 


0.55557 


0.82164 


5.56999 


0.81157 


t.^ll 


1 






2 


I.IIII4 


1.64329 


1.13999 


1.62314 


2 






3 


2.49441 


1.66671 


2.46494 


1.70990 
2.27998 


2.43472 


1.75275 


3 






4 


332588 


2.22228 


3.28658 


3.24629 


2.33700 


4 




45 


1 


4.157^5 


2.77785 


4.92988 


2.84998 
3-41998 


4.05787 
4-86944 


2.92125 
3.50550 


1 


15 




5 


j.8^9 


5.75152 
6.57317 


3-98997 


5.68101 


4.08975 


I 






6.6«76 
7.48323 


4.44456 


4-55997 


6.49260 


4.67400 






9 


5.00013 


7.39482 


5-12997 


7.30416 


5-25825 


9 






d 


Dcp. 


Lat 


Dcp. 


Lat. 


Dcp. 


Lat. 




1 


r 


^ 


8€P 


5. 


50 


& 


*o 


1 



SMmnoMMi Tabus. 



43 



Digitized by 



GooqIc 



Table 9* 

TRAVERSE TABLE. 
DIFFERENCES OF LATITUDE AND DEPARTURE. -CONTINUED. 



1 


t 


3e» 


3T> 


38» 


.s 


i 

9 


.s 


S 














.S 


s 


Q 


Tat. 


Dcp. 


Lat 


Dcp. 


Lat 


Dep. 


Q 


;^ 




1 


0.80Q01 


0.58778 


0.79863 


0.60181 


a788oi 


a6i566 


1 






2 


1.61803 


i-*7557 


1.59727 


1.20363 


1.57602 


'•f3'32 


2 






3 


ir^ 


1.76335 


2.39590 


1.80544 


2.36403 


1.84698 


3 






4 


2.35"4 


3.'9454 


240726 


3.15204 


246264 


4 




o 


1 


4.04508 


2.93892 


3.99317 


3.00907 


4^^ 


3.07830 


1 


60 




4.85410 
5-6631 1 

6.47213 
7.281 15 


3.52671 


4-79181 


3.61089 


369396 






5 


4.1 1449 
4.70228 


m 


4.21270 
4-81452 
5-41633 


& 


4.30963 
4.92529 


I 






9 


5.29006 


7.18771 


7.09209 


5-54095 


9 






1 

2 


0.80644 
1.61288 


UU 


a796oo 
1.50200 


a6o52o 
1.21058 


I-7853I 
1.57063 


a6ioo9 
1.23818 


1 

2 






3 


2.41933 


1.77392 


2.38800 


1.81588 


2.35595 
3.I4I26 


1.85728 


3 






4 


3.22577 


2.36523 
2.95654 
3-54785 
4.13916 
4.73047 


3.18400 


2421 17 


247637 


4 




IS 


1 


4.03222 


3-98001 


3.02647 


3.92658 


3.09547 


1 


45 




4.83866 


4.77601 


3-63176 


4.7 I 190 


3-71456 
4-33365 
4.95275 
5.57184 






I 


5.6451 1 
6.45155 


k'^. 


4.23705 
4.84255 
5-44704 


7-06785 


I 






9 


7.25800 


5.32178 


7.16401 


9 






1 
2 


a8o385 
1.60771 


l\l& 


t^i 


0.60876 
1.21752 


0.78260 
1.56521 


a6225i 
1.24502 


1 

2 






3 


2.41 1 57 


1.78446 


8.38005 


1.82628 


2.34782 


1.86754 


3 






4 


3.21542 


2.37929 


'^l 


2.43504 


3.J3043 


249005 


4 




30 


1 
5 


4.01928 


2.9741 1 


304380 


3-91304 


3." 257 
3-735» 


1 
I 


30 




4.82U4 


3.56893 
4^75^5^ 


4.76011 


3.65256 
4.26132 
4.87009 


4-69564 

IS 






9 


7-23471 


5.35340 


7.14017 


5.47885 


7-04347 


5-60263 


9 






1 
2 


0:80125 
1.60250 


0.59832 
1. 19664 


a7oo68 
1-58137 


0.61 221 
1.22443 


0.77988 
1.55946 


0i»2502 
I.25184 


1 

2 






3 


2.40376 


1.79497 


2.37206 


1.83665 
2.44886 


2-33965 


1.87777 


3 






4 


4.00626 


2.39329 


3-J6275 


3-"953 


2.50369 


4 




45 


1 


2.90162 


3-95344 


3.06108 


3-89942 


312961 


I 


15 




4.80752 


4.74413 


3-67330 


4.67930 


4^38146 






§ 


5.60877 
6.41003 
7.21128 


5.53482 
6.3255" 


4.28552 


5-45919 
6.23007 
7.01896 


I 






4.78659 


4-89773 


5.00738 






9 


5.38492 


7.1 1620 


5-50995 


5-63331 


9 




f 


q 


Dep. 


Lat. 


Dep. 


Lat 


Dep. 


Lat 


1 


f 


e 

1 


1 


53» 


52° 


5. 


l'^ 


c 

2 



Smithconian Tablcs. 



Digitized by 



GooqIc 



Table Q« 
TRAVERSE TABLE. 
DIFFERENCES OF LATITUDE AND DEPARTURE. -Continued. 



1 


1 

2 


3y» 


W 


41^ 


1 

(Q 


.1 














s 


Q 


Lat. 


Dep. 


Lat 


Dep. 


Lat 


Dep. 


Q 


S 




1 


0.77714 


0.6^ 


a766o4 


0.64278 
1.92836 


0.75470 


0.65605 


1 






2 


155429 


1.53208 


1.50941 


1.31211 


2 






3 


3-10858 


1.88796 


2.29813 


2.26412 


1.96817 


3 






4 


2.51728 


3.06417 


2.571 15 


3.01883 


2.62423 


4 




o 


1 


3.88573 


3.14660 


3-83022 


3^85672 


3-77354 
4.52825 
I.2829S 
6.03767 
6.79238 


3.28029 


1 


60 




4.66287 


3.77592 


4.59626 


3-93635 






7 


6.21716 


4.40524 


5.36231 
6.12835 


449951 


4.59241 


I 






8 




5.14230 


5.24847 






9 


6.99431 


6.89439 


5.78508 


5.90453 


9 






1 

2 


?:» 


0.65270 


0.76121 


a646i2 
1.29224 


a75i84 
1,50368 


\W 


1 
2 






3 


2-32317 


2.28969 


1.93837 
2.58449 


2.25552 


2^63738 


3 






4 


3.09757 


2.53082 

3.79623 
4.42893 

5.06164 


3.05293 
3.81616 


3.00736 


4 




IS 


1 
5 


3.87196 


3.23062 


3.75920 


3.29672 


1 
I 


45 




4.64635 
5-42074 
6.19514 


4-579^ 

SuIO^ 


S.16899 


6.01472 
6.76656 


3.95607 
4.61542 
5.27476 






9 


6.96953 


5.69434 


6.86909 


S^'S" 


5934" 


9 






1 


0.77162 


a636o7 


0.76040 


?s^ 


0.74895 


0.66262 


1 






2 


1.54324 


1.27215 


1,52081 


11^^ 


1.32524 


2 






3 


2.31487 


1.90823 


2.28121 


1.94834 


1.98786 


3 






4 


3.08649 


2.5443« 


3.04162 


2.59779 


2.99582 


2.65048 


4 




30 


1 


3.85812 


3.18039 


3-80203 


iJf^ 


374477 


3.3>3io 


1 


30 




4.62974 


3.81646 


4.56243 
6.08324 


449373 
5.242^ 


5.30096 






I 


5.40137 
6.17299 


t^ 


4-54613 
5.19558 


I 






9 


6.94462 


5.72470 


6.84365 


5.84503 


5.96358 


9 






1 


0.76884 


» 


0.75756 


0.65276 


0.74605 


0.66588 


1 






2 


1.53768 


i.5'5i3 


1.30552 

1.95828 


1.49211 


1-33176 


2 






3 


2.30652 


1.91831 


2.27269 


2.21817 
2.5^422 
3.73028 


1.99764 


3 




45 


4 

1 


3.07536 
3.84420 


2.55775 
3.19719 


3.03026 
3.78782 


2.61 104 
2.26380 
3.91656 


2.66352 
3-32940 


4 

1 


IS 




4.61305 


3.83663 


4.54539 


4.47634 


399529 






7 


5.38189 
6.15073 


4-47607 


5.30295 
6.06052 


4-56932 


5.22240 


4.661 17 


I 






8 


5."55i 


5.22208 


5.96845 
6.7145' 


5.32705 






9 


6.91957 


5.75495 


6.81808 


5.87484 


5.99293 


9 




5" 



S 

B 


Dep. 


Lat. 


Dep. 


Lat. 


Dep. 


T4»t 


q 




1 


& 














c 




s 


5 


OP 


4 


9P 


4 


8^ 


S 


8 



SMrmaoNiAN Tables, 



45 



Digitized by 



GooqIc 



Table 9. 

TRAVERSE TABLE. 
DIFFERENCES OF LATITUDE AND DEPARTURE. 'CONTINUCD. 



i 


.9 

Q 


420 


43° 


44° 


8 

1 
.3 


1 

.s 


Lat. 


Dep. 


Lat. 


Dep. 


Lat. 


Dep. 




1 

2 


1.48628 


0.66913 
1.33826 


0.73135 
1.46270 


a68i99 
1-36399 


r^^ 


rp 


1 

2 






3 


2.22943 


2.00739 


2.19406 


2.04599 


2.1 5801 


IfM 


3 






4 


2.97257 


2.67652 
3-34585 
4.01478 


2.92541 


2.72799 


IS 


4 







1 


3-71572 


fM' 


3.40999 


3.47329 


1 


60 




4.45886 


4.09199 
4.773^ 


4.31603 


4.16795 






7 


5.20201 


4.68391 


5.11947 


5.03537 


4.86260 


7 






8 
9 


^1^^ 


5-35304 
6.022x7 


^5^218 


6113798 


5-75471 
6.47405 


5.55726 
6.25192 


8 
9 






1 


0.74021 


0.67236 


0.72837 


0.68518 


0.71630 
1.43260 


1.39558 


1 






2 


148043 


1-34473 


1.45674 
2.18511 


1-37036 


2 






3 


2.22065 


2.017 10 


2.05554 


2.14890 


2.09337 


3 






4 


2.96087 


2.68946 
3-36183 


2.91348 


2.74073 


2.86520 


2.791 16 
3.48895 


4 




15 


1 


3.70109 


3.64185 


342591 


3.58151 


1 


45 




444130 
5.18152 


4.03420 


4-37022 


4.11109 
4-7^28 

^^6664 


4.29781 


4.18674 






7 


4.70656 


5.09859 


5.0141 1 


4.88453 


I 

9 






8 
9 


^6^196 


5.37893 
6.05130 


5.82696 
0.55533 


6.44671 


IS 






1 


0.73727 


0.67559 
i.35"8 


0.72537 


0.68835 


0.71325 
1.42650 


0.700Q0 
1.40181 


1 






2 


1-47455 
2.21x83 


1.45074 


1.37670 


2 






3 


2.02677 


2.17612 


2.06506 


2.13975 


2.10272 


3 






4 


^•S5?'2 


2.70236 


2.90149 


2.75341 


al^ 


2.80363 


4 




30 


1 


3.68638 
4.42366 


3-37795 


3.62687 


3.44177 


3.50454 


1 


30 




4.05354 


4.35224 


4.13012 


4.27950 


4.20545 
4.90636 






9 


5.16094 


4.72913 


5.07762 


4.81848 


4.99275 


I 

9 






I.89821 
6.63549 


6.08031 


6.52836 


5.50683 
6.19519 


5.70600 
6.41925 


kf^ll 






1 


a73432 


0.67880 


0.72236 


0.60151 
1.38302 


O.7IO18 


0.70401 


1 






. 2 


1.46864 


1.35760 


1.44472 


1.42037 


140802 


2 






3 


2.20296 


2.03640 


2.16709 


2.07453 


2.13055 


2.11204 


3 






4 


2.93729 


2.71520 


2.88945 


2.76605 
3-45756 


2.84074 


2.81605 


4 




45 


1 


3.67161 


339400 


3.61 182 


3.55092 
4.261 1 1 


3.52007 


1 


15 




4.40593 


4.07280 


4-33418 


4.14907 


4.22408 






9 


5.14025 


4.75160 
5.43040 
6.10920 


5.05654 
5.77891 
6.50127 


4.84059 

6.22361 


6.39166 


4.92810 
1.6321X 
8.33613 


I 

9 




1 


g 


Dep. 


Lat. 


Dep. 


Lat. 


Dep. 


Lat. 


! 


1' 


t 


^ 


470 


46^' 


45° 


5 



Smithsonian Tables. 



46 



Digitized by 



GooqIc 



Table 9« 
TRAVERSE TABLEa ^^ 

DIFFERENCES OP LATITUDE AND DEPARTURE. -Continued. 





a 

Q 


45« 


.52 

Q 




Lat. 


Dep. 


1 


0.70710 


0.70710 


1 




2 


1.41421 


1.41421 


2 






3 


2.12132 


2.12132 


3 






4 


2.82842 


2.82842 


4 






5 


3-53553 


3-53553 


5 






6 


4.24264 


4.24264 


6 






7 


4-94974 


4.94974 


7 






8 


5.65685 


5.65685 


8 






9 


6.36396 


6.36396 


9 




q 


Dep. 


Lat. 


1 


4. 


5« 



SHmiaeMMii Tabus. 



47 



Digitized by 



GooqIc 



Table 10. 

LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE Pm IN ENGLISH 

FEET. 

[Derivation of table explained on p. xlv.] 



Lat. 


o« 


1° 


2° 


3" 


4^ 


f 


6« 


7** 


SP 


9° 


IO«» 


p. p. 


I 

a 
3 

4 

1 
I 

9 
10 

II 

13 

«3 
«4 

:i 
:i 

«9 
20 
at 

22 
33 
"4 

30 

31 
3* 
33 

34 

35 
36 

u 

39 
40 

4« 
4a 
43 

44 
4S 

46 

ti 

49 
60 

S» 
5a 

53 

54 
55 

56 

il 

59 
60 


7.817 

7379 


7.817 

739a 


7.817 

7433 


7.817 

7500 


7.817 

7593 


7.817 

77x4 


7.817 

7861 


7.817 

8034 


7.817 

8333 


7.817 

8458 


7.817 

8709 


1 


7379 
7379 
7379 

7379 
7379 
7379 

7379 
7379 
7379 


739a 

7393 
7394 

7394 
7395 
7395 
7396 
7396 
7397 


7434 

-i 

7438 

7439 
7440 
7441 


75o» 
7503 
7504 
7506 
7507 
7508 

7510 
75«x 
7513 


7595 
7597 
7599 

7603 
7604 

7606 
7608 
7610 


7716 
77x9 
7731 

7736 
7738 

7730 
773a 
7735 


7873 
7875 
7877 
7880 

7883 
7885 


8037 
8040 
8043 
8046 
8050 
8053 

8056 
8059 
8063 


8337 
8340 
8344 

8347 
8251 

8a55 

£2 

8365 


8463 
8466 
8470 

8486 
8490 
8494 


8733 
8737 

873 X 

8735 

8740 
8744 
8749 


xo 

30 
50 

s 


.3 
.3 
.5 

:l 

t.o 


7379 


7397 


744a 


7514 


761a 


7737 


78S8 


8065 


8369 


8498 


8753 


7379 
7379 
7379 

7380 
7380 

7380 
7380 
7J8o 


7398 
7398 
7399 

7399 
7400 
7401 

7401 
740a 

740a 


7443 
7444 
7445 
7446 

74*9 
7450 
745 » 


75«5 
75«7 
7518 

75ao 
75a' 
75aa 

75a4 
75*5 
75*7 


7614 
7616 
7618 

7619 
7611 
7633 
7635 
7637 
7639 


7739 
774a 
7744 
7746 
7749 
775X 

7753 
7755 
7757 


789X 
7894 
7896 

7899 
790a 
7905 
7908 
7910 
79x3 


8068 
8071 
807s 
8078 
8081 
8084 

8087 
809X 
8094 


S 

8383 
8387 
8391 

830X 


8503 
8506 
85.0 

P'i 
8518 

8533 

8537 
853X 
8535 


8794 


a 


10 

ao 
30 
40 


•3 
.7 
I.O 

X.3 
X.7 
3.0 


7380 


7403 


745a 


75a8 


7631 


7760 


79x6 


8097 


8305 


8539 


8798 


7380 
7380 
7381 

738. 
7381 
7381 

7381 
738a 
738a 


7404 
7404 
7405 

7407 

7408 


7453 

7454 
7455 
7456 
7458 
7459 
7460 
7461 
746a 


7530 
753 X 
7533 

7534 
7535 
7537 
7538 
7540 
754 « 


7633 
7635 
7637 

7638 
7640 
764a 

B 


7763 
7765 
7767 
7770 
777a 
7774 

7777 
7779 
778a 


79x9 
79aa 
79a4 

79a7 
7930 
7933 

7936 
7938 
794X 


8100 
8104 
8107 

8txo 
8114 
81x7 

8iao 
8133 
8137 


8309 
83x3 
83x6 

8330 
8334 
8337 
8331 


8543 
8547 
8551 

8555 
8559 
8564 
8568 
857a 
8576 


88x3 

8816 
88si 
8836 

8830 
8839 


8 


ID 
20 
30 
40 

£ 


.5 
1.0 
x-S 
a.o 
a. 5 
30 


738a 


7409 


7463 


7543 


7650 


7784 


7944 


8x30 


834a 


8580 


8844 


738a 
7383 
7383 

7383 
7384 
7384 

7384 
7384 
7385 


7410 
7410 
741 1 
741a 

74«3 
7413 

7414 
7415 
7415 


7464 
7466 

7467 
7469 
7470 

7471 
747a 
7473 


7546 
7548 

7549 
75SI 
7553 

7554 
7556 
7557 


765a 

7663 

7665 
7667 
7669 


7786 
7789 
779X 

7794 
7796 
7799 
7801 


7947 
7950 
7953 
7956 

^? 

7964 
7967 
7970 


8133 
8137 
8x40 

8x44 
8x47 
8x50 

8154 


8346 
8350 
8353 

8357 
8361 
8365 

8369 
837a 
8376 


8584 
8588 
8593 

8597 
8601 
8605 

8609 


8849 

ia 

8863 
8867 
8873 

IS? 
8885 


4 


10 
30 
y> 

40 


•7 
1.3 
a.o 
a.7 
3-3 
4.0 


7385 


7416 


7474 


7559 


7671 


7809 


7973 


8x64 


8380 


8633 


8890 


7385 
7386 
7386 

7386 
7387 
7387 

7387 
7387 
7388 


7417 
7418 
7418 

74x9 
74ao 
74ai 

74aa 
74aa 
7433 


7475 

748a 
7483 

7486 


7561 
756a 
7564 
7566 

7569 

7571 
7573 
7574 


7673 
7675 
7677 

7679 
7683 
7684 
7686 
7688 
7690 


781 1 
7816 

78x9 
7831 
7834 
7836 
7829 
783 X 


7976 

799X 
7994 
7997 
8000 


8x67 

8.7X 
8x74 

8l8t 
8x84 

8x88 
819X 
8x95 


8384 
8388 
839a 

8396 
8400 
8403 

8407 
84x1 
84x5 


8636 
8631 
8635 

8643 

8648 
8653 

St 


Si!! 
8904 

8909 
Sis 

893a 


6 


xo 
30 

30 

40 


.8 
t.7 
as 
3.3 
4.a 
5.0 


7388 


74^4 


7487 


7576 


769a 


7834 


8003 


8x98 


84x9 


8665 


8937 


7388 
7389 
7389 

7390 
7390 
7390 

739' 
739' 
739a 


7425 
7426 
74a7 
74a8 
74*9 
7439 

7430 
7431 
743a 


7488 
7489 
7490 

749« 
7493 
7494 

7496 

11^ 


7578 
7579 
7581 

7583 

7588 
7590 
759» 


7699 

7701 
7703 
770s 

7707 
77x0 
771a 


7R37 

7850 

7853 
7856 
7858 


8006 

8009 

. 8013 

80x5 
8019 
8033 

8035 
8038 
8031 


830I 

1^ 

83X3 
82x5 
83x9 

8333 
8336 
8339 


8433 
8437 
8431 

8435 
8439 
844a 

8446 
8450 
8454 


8669 
8674 
8678 

8683 
8691 

8696 

8700 

8705 


8947 
895X 

8956 
896X 
8966 

8971 




739a 


7433 


7500 


7593 


77x4 


786. 


8034 


8a33 


8458 


8709 


8985 




J 



Smithsonian Tables. 



48 



Table 10. 
LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE p^ IN ENGLISH 

FEET. 

[Derivation of table explained on p. xIt.] 



Lat, 


II« 


I20 


13° 


I4« 


IS'' 


16° 


17° 


l8« 


19" 


20° 


P.P. 






7.817 


7.617 


7.617 


7.617 


7.616 


7.616 


7.616 


7.616 


7.616 


7.316 








IF 

I 
a 
3 


8985 


9385 


961 1 


9960 


0333 


0730 


"49 


i59« 


ao54 


3539 




4 




8995 

8^99 


9390 
9396 
9301 


9617 
9633 

9638 


9966 

997a 
9978 


0340 
«346 
0353 


0737 
0744 
0750 


1156 
1163 
1171 


1614 


3063 
2070 
3<.78 


a547 
3556 
3564 




10 


•7 




4 

I 


9004 
9009 
9014 


9306 
931a 
93x7 


9633 

9639 
9645 


9984 
9990 
9996 


03 S9 
0366 
0373 


0757 
0764 

0771 


.178 
X1M5 
1x93 


1631 
1639 
'637 


3-86 
ao94 

3I03 


3580 
3589 


so 
30 
40 


«-3 
3.0 

a.7 
3-3 
4.0 




I 

9 
10 

II 

la 


9019 

2SI 


93aa 
93a7 
9333 


9^50 
9656 
9661 


*0003 

^0008 

*ooi4 


oil? 

039a 


0778 
0784 
0791 


"99 
1207 

1214 


1644 
1652 
1659 


3IIO 
3Il8 
3136 


3614 




6 




9033 


9338 


9667 




0398 


0798 


1331 


1667 


a 134 


3623 




9038 
9043 
9048 


9343 
9349 
9354 


s 


«bo36 

*0033 

•0039 


0404 
0411 

0418 


08i3 

0819 


1338 
1336 

"43 


1690 


314a 
3150 
3158 


3630 

3639 
3647 




10 


.8 




«4 


9053 


9370 


tss, 

9701 


J«45 

•00s. 
•0057 


0424 
0430 
0437 


0826 

0833 
0839 


1350 


1697 
1705 

I7»3 


3166 


? 

3673 


so 
30 

40 
so 


1.7 
a-5 

3.3 
4.3 




.'I 

«9 
20 
ai 

33 

33 


9067 
907a 
9077 


9375 
9380 
9386 


9707 
9713 
9718 


•0063 
•6076 


0443 
0450 

0456 


0846 


1373 

"79 
1387 


1720 
1738 
1735 


3190 
3^ 
3206 


3680 

3688 
a697 


1. 


5.0 






6 




908a 


939t 


97a4 


*00S3 


0463 


0867 


"94 


t743 


3314 


3705 




9087 
9093 
9097 


9396 
940a 
9407 


9730 
9736 
974« 


•bo88 
•too94 
•oioi 


0470 
0476 
0483 


0888 


1301 
1316 


1751 


3323 
3330 
3238 


3713 
3733 
3730 




10 


X.O 




*4 


910a 
9107 

91 13 


9413 
9418 
94a3 


9747 
9753 
9759 


•9107 
•bii3 
^119 


0303 


0895 

0903 

0909 


'."3 

1330 
1338 


1 781 
1789 


3346 


a739 
a747 
a7S5 


30 

30 
40 


3.0 
3.0 
4.0 

5-0 




39 

30 

3« 

33 

33 


9x17 
9123 
9127 


9439 
9434 
9440 


9765 
9770 
9776 


^125 
•0133 
«bi38 


0516 
0523 


0916 

0933 

0930 


X345 
i3Sa 
1360 


X8l2 


3370 
•3S? 


3764 
3781 


6.0 




7 




9132 


9445 


978a 


•b«44 


0539 


0937 


1367 


1830 


3394 


3789 




9«37 
914a 
9i47 


9450 
9456 
9461 


9788 


•0150 
•0156 
•bi63 


0536 
054a 
0549 


0944 
0951 
0958 


1389 


1838 
1835 
1843 


3303 
2310 
3318 


3814 




10 


1.3 




34 


9153 


9467 
947a 
9477 


9817 


•0169 


OS55 

0563 
0569 


0965 

0973 
0979 


1397 
1404 
14" 


1851 


3336 

8334 
a343 


3823 

3831 

3840 


30 
30 
40 
50 


a. 3 

3.5 




39 
40 

41 
4* 

43 


9167 
917a 
9177 


9*!2 
9488 

9494 


9839 
9835 


•bi87 
•bi94 

•b200 


0575 
0583 
0588 


0986 

0991 
1000 


I4t9 
1426 
14M 


lis 
.889 


a35i 
all? 


3848 


60 


7.0 




6 




9182 


9499 


9841 


•0306 


0595 


1007 


1441 


1897 


a375 


a874 




9187 
919a 

9«97 


9505 
9510 
95 «6 


9847 
9859 


*b3I3 

'^>3I9 
•10335 


0602 
0608 
0615 


1014 

I03I 
I038 


1448 
I4S6 
1463 


1905 
1913 
1930 


8383 
a39« 
3400 


3883 
,891 
a899 




to 


1.3 




44 
45 
46 


9303 

9307 
9»i3 


95a« 
9527 
9533 


2?^ 


•6331 
^>238 

•6344 


0633 
0639 
0635 


1035 
1043 
XO50 


«47i 


1928 
1936 

«944 


3408 
3416 
3434 


390S 
3916 
3925 


30 
40 
50 


a.7 
4-0 

11 




5 

49 
60 
5« 
53 


93.8 
9M3 
9338 


9538 
9544 
9549 


9883 
9894 


•6350 
•6356 
•b363 


0643 
0649 
0655 


1071 


X494 
1501 
1509 


195a 

1959 
1967 


3433 
3441 
3449 


a933 
394a 
3950 


60 


8.0 











9a33 


9555 


9900 


^6369 


0663 


1078 


1516 


«975 


a457 


3959 




9238 
9243 
9a49 


9561 
9566 
9S7a 


9906 

99" 
9918 




0669 


1085 
1093 
1099 


1534 
«53« 
X539 


1983 
1991 
>999 


3465 

"42 


3968 




10 


'•5 
3.0 

1:1 

7-5 




54 
55 

56 


9a54 

r4 


95«3 
9589 


9924 
9930 
9936 


:^5 

•6307 


0696 
0703 


tio6 
1113 

II3I 


«546 

lilt 


aoo7 
3014 

3033 


3506 


a993 
3003 
3011 


30 
40 

1: 




59 
60 


9369 


9600 
960s 


994a 
9948 
9954 


•0314 

•6320 

•0337 


0710 
0716 
0733 


XI38 

"35 
1143 


»576 


3030 
3038 
3046 


3514 

aw 

3531 


3019 
3oa8 
3036 


9X> 








9a85 


9611 


9960 


•^333 


0730 


"49 


I59« 


ao54 


a539 


3045 


e 



SliiTMaoNiAN Tablcb. 



49 



Table 10. 

LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE p« IN ENGLISH 

FEET. 











[Derivation of table explained on 


p. xlv.] 










Lat. 


21° 


22° 


230 


24° 


25° 


26° 


27° 


28<' 


29« 


30^ 


P.P. 


I 

a 
3 

4 

1 
I 

9 

10 

II 
la 
13 

11 

17 
i8 
19 

ao 

ai 
aa 

33 
34 

39 

30 

31 

33 

S3 

34 

II 

% 

39 
40 

41 
43 

43 

44 

:i 
% 

49 
50 
5« 

S3 

53 
54 

M 

59 
60 


7.818 

3045 


7.818 

3570 


7.818 

4II5 


7.818 

4678 


7.818 

5359 


7.818 

5858 


7.818 

6474 


7.818 

7105 


7.818 

775 » 


7.818 

8413 


8 


306a 
3070 

3096 
3105 
3"3 
3iaa 


I'M 

3597 
3606 
3614 
3633 

3633 
3641 
3650 


4«34 
4133 
414a 

4153 
4161 
4170 

4«79 
4189 
4198 


4688 
4697 
4707 

4716 
4736 
4735 
4745 


5369 

'^ 

5399 
5309 
5319 
5338 
5338 
5348 


5868 

5^ 
5889 

5899 
5909 

59«9 

5939 
5939 
5949 


6484 
6494 
6505 

6515 
6536 
6536 

6546 
6PJ 


7116 
7136 
7»37 
7.48 
7«58 
7169 

7180 
7190 
7301 


7763 

7817 
7838 
7839 
7850 


8433 

US 

8479 

8490 
850. 
8513 


10 
ao 
30 
40 
50 
60 


1.3 
3.6 
4.0 

8.0 


3131 


3659 


4307 


4774 


5358 


5960 


6578 


7313 


7860 


8533 


3x57 
3165 

IliJ 

3191 
3300 
3309 


3668 

3695 
3704 
37»3 
3733 
3731 
3740 


4ai6 
4336 
433s 
4344 
4363 

4391 


4783 

4831 
4841 
4851 
4860 


5368 

54«7 

5437 
5437 
5447 


S970 
5980 
5990 
6000 
6011 
6031 

6031 
6041 
6051 


6588 

6630 
6630 
6640 

6673 


7333 
7333 
7344 

7354 
7376 
7387 

7''3S 


7893 
7904 

79S9 


8557 
8568 
8579 
8591 

86o3 
8613 
8634 


9 


10 
30 
30 
40 
50 
60 


1.5 
3-0 

ti 

7-5 
9-0 


3317 


3749 


4300 


4870 


5457 


606a 


6683 


7319 


7970 


8635 


33a6 
3335 
3344 

3370 


3758 

\^ 

37»5 

ISJ 

38.3 

3823 
3831 


4310 

Si? 
4358 

4356 
4366 


4899 
4908 
4918 

4938 

4937 
4947 
4957 


5467 

5497 
5507 
55«7 

5537 
5537 
5547 


6073 
6083 
6093 

6io3 
61 13 
6133 

6133 
6143 
6154 


6703 
6714 

6734 
6735 
6745 

6756 
6766 
6777 


7339 
7340 
735« 
7363 

lUl 

7394 
7416 


798« 
2?3 

B 


8680 
8691 
8703 
8714 

irai 


10 


10 
30 
30 
40 


«-7 
3.3 
5.0 

8.3 
10.0 


330s 


3840 


4394 


4966 


5557 


6164 


6787 


7436 


8080 


8747 


33 «3 
332a 
333« 
3340 
3349 
33 S7 
3366 
3375 
3384 


3867 

3894 

3904 
3913 

3933 


4403 
4413 

4433 

4431 
444« 
4450 
4460 
4469 
4479 


S005 
5015 
5035 

5034 
5044 
5054 


5567 

fig 

5W 
5607 
5617 
5637 
5637 
5647 


6195 

6aos 
6315 
6aa6 

6336 
6346 
6356 


6798 

6to8 
6819 

6839 
6840 
6851 
6861 


7459 

7469 
7480 
749> 
7503 
7513 
7533 


809. 
8103 
81I3 

8134 

l:i: 

8179 


8759 
IS 

88x5 
88a6 

8849 


11 


10 
30 
30 
40 


1.8 
3.7 
5-5 
7-3 
9.3 
11.0 


3393 


3931 


4488 


5064 


5657 


6367 


6893 


7534 


8190 


8860 


340I 
3410 
34«9 
3438 

347a 


3940 
3967 

'^ 

3995 
4004 
4013 


4498 
4507 
45»6 

4536 
4535 
4545 

4564 
4573 


5093 
5103 
5113 

5133 

5«3a 
S143 
S«5i 


5667 

5697 

5707 
5717 

5737 

5737 
5747 


6398 

6308 
6318 
6339 
6339 
0300 


6903 
6914 
6934 

6956 
6967 


7545 

7599 
7610 
763. 
7633 


8301 

8313 
8333 

8357 
8a68 

?a£ 


8883 
8894 

8938 
8939 


u 


to 

30 
30 
40 


a.o 
4-0 
6.0 
8.0 
10.0 

13.0 


3481 


4023 


4583 


5 161 


5757 


6370 


6999 


7643 


8301 


8973 


3490 

IJS 

3516 
3535 

3534 
3543 


403a 
4041 
4050 

4078 

!^ 
4096 

410S 


^3 

4611 

4631 
46SO 
4640 

4649 


1:1; 

5«9« 
5300 
5310 
5330 

5330 

5340 
5350 


5767 

58,8 

5838 
S838 
5848 


638Q 
6391 
6401 

6411 
6433 
6433 

6443 


7009 

7oao 
7Q30 

7041 
7094 


7653 

S 

7719 
7739 
7740 


8313 
8333 
8334 

8379 
8390 
8401 


9007 

9018 

9030 
9041 

9075 




3570 


4115 


4678 


5359 


5858 


6474 


7105 


775« 


8413 


9086 


Bmitma 


lOMIAM 1 


rABurs. 














Jigltize 


dbyV^ 


rro 


^ 



50 



Table 10. 

LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE Pm IN ENGLISH 

FEET. 

[Derivation of table explained on p. xlv.] 



LaL 


31° 


32° 


33° 


34° 


35° 


36° 


37° 


38° 


39° 


400 


p.p. 




7.313 


7.313 


7.319 


7.319 


7.319 


7.319 


7.319 


7.319 


7.319 


7.319 




IF 

I 
a 
3 


9086 


9773 


0472 


1x83 


1903 


363X 


3369 


4"4 


4866 


5623 


11 


9098 
9109 
9120 


9785 
9796 
9807 


0484 
0495 
0507 


"94 

I306 
X3X8 


X9X4 
.926 
1938 


2643 


3381 
3394 
3406 


4x26 
4139 
4»5i 


4878 
489X 
4904 


5636 
5649 
5661 


4 

1 


913a 
9'43 
9>54 


9819 


0519 
o53« 
054a 


1330 
124X 
"53 


«950 
X962 

«974 


3680 
3692 
2705 


34«8 
3431 
3443 


4164 
4x76 
4189 


49x6 
4929 
4941 


5674 
5687 
5699 




xo 


X.8 
3.7 
5.5 

7-3 
9.a 
X1.0 


1 

9 

10 

II 
la 

13 


9166 
9177 
9189 


9877 


1% 

0577 


1265 
1377 
1389 


1986 
1999 
201 1 


3717 
3729 
2741 


1 

3480 


4201 
4214 
4226 


4954 
4966 
4979 


S7xa 
5725 
5737 


30 
40 


^JOO 


9889 


0590 


X30X 


2023 


2753 


349a 


4239 


4992 


5750 


9aii 
9«3 
9334 


9900 

99" 

99a4 


0601 
0613 
0635 


t3'3 
1325 
1337 


2035 
2047 
2059 


2766 
3778 
3790 


3505 
35»7 
3530 


4251 
4276 


5004 
5017 
5029 


5763 

IVd 




«4 


9245 


9935 


0637 
0648 


>373 


2095 


,803 
38x5 
3827 


354a 
3567 


4289 
4301 
4314 


5042 


5«o. 

$2 




»9 

ao 

ai 
aa 

23 


9380 
929X 
9302 


9982 
9993 


0696 


1385 
1397 
1409 


3108 

3I20 
2132 


2839 


3579 

is: 


4326 
4339 

4351 


S080 
5092 
5«o5 


5839 


u 


9314 


•boos 


0707 


X42X 


2144 


2876 


3616 


4364 


51x8 


5877 


93a5 
9337 
9348 


•0016 
•0028 

*0040 


07x9 
0731 
0743 


1433 
1445 

«457 


3180 


3888 
3901 
3913 


3629 
364. 
3654 


4401 


5»30 
5156 


5890 
5902 
5915 


M 

U 


9300 
937« 
938a 


^cxjo3 


0700 
0778 


,469 
X48X 
M93 


2192 
2205 
2217 


2938 
3950 


3666 

3678 
3691 


4414 
44a6 
4439 


5x68 
5181 
5193 


5928 
5940 

5953 




xo 


3.0 


3 

SO 

33 


9393 
9405 
9417 


•bo86 
*oo98 
•biio 


0814 


«505 
1517 
1529 


2229 
224X 

2253 


2962 

2974 
2987 


3703 
3716 
3728 


4477 


5206 
52x9 
5231 


5966 
5078 
599» 


30 

30 
40 


tl 

8.0 
X0.0 
xa.o 


9428 


•toi3i 


o8a6 


1541 


2365 


2999 


374 « 


4489 


5244 


6004 


9440 
945' 
9463 


^»33 


0837 


1553 
XS65 
"577 


3378 
3390 
3302 


301 1 
3024 
3036 


1% 
J778 


450a 
4514 
4527 


It 

5283 


6017 
6029 
604a 




34 


9497 


•0168 

•toi79 
•0191 


0897 


x6ox 
1613 


3314 

3336 
2338 


3060 
3073 


3815 


4539 
4564 


5294 
5307 
5320 


6067 
6080 




39 
40 

4« 
4a 
43 


9So8 
9520 
953« 


*to203 
•6214 

•b226 


0908 
0920 
093a 


1625 
X637 
1649 


2363 
2375 


3085 
3097 
3110 


3828 
3840 
3852 


4602 


533a 


6093 
6106 
61x8 


IS 


9543 


*0238 


0944 


x66i 


2387 


3122 


386s 


4614 


S370 


6131 


9577 


•b273 


0980 


X697 


2399 
34XX 
3424 


3134 
3147 
3159 


3877 
3890 
390a 


4627 
4640 
465a 


5383 


6x69 


44 


9613 


•6285 
•0296 
•0308 


0992 
1003 
XOI5 


1709 
172 1 

»733 


2436 
2460 


3184 
3«96 


39«5 
3927 
3939 


466s 
4677 
4690 


5421 
5433 
5446 


6183 
6195 
6307 




xo 


a.a 

13.0 


2 

49 
60 

S3 


9623 

9635 
9646 


•0320 
•10331 
•0343 


1037 

1039 
1051 


1745 
1769 


3472 
2485 
2497 


3208 
3221 
3233 


3977 


4702 
4715 
4727 


5459 
5484 


6333 
6245 


30 
40 
50 

to 


9658 


•035s 


1063 


X78X 


2509 


324s 


3989 


4740 


5497 


6258 


9669 
9693 


•0366 
•0378 
•^390 


X087 
1098 


1817 


352X 
2546 


3258 
3270 
3282 


4002 
4014 
4027 


4765 
4778 


5509 
5522 

5535 


627X 




54 


9704 
97«5 
9727 


•0403 
•o4»3 
•o4a5 


XllO 
1X32 

"34 


X829 
184X 
'854 


2558 

2570 
2582 


3295 
3307 
3319 


4039 


4815 


5547 
5560 
5573 


6309 
6323 
6335 




59 
00 


9739 
9750 
9763 


•0437 
•0449 
•0460 


1 146 
XX58 
1 170 


x866 
X878 
1890 


2594 
2607 
2619 


3333 
3344 
3356 


4101 


4«38 
4841 

4853 


in 

56XX 


6347 
6360 

6373 




9773 


•o47> 


1X83 


1902 


2631 


3369 


4"4 


4866 


5623 


6385 







SiimiaoNiAN Tables. 



51 



Table 10. 

LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE pm IN ENGLISH 

FEET. 

[Deriyatioa of table explained on p. xlv.] 



Lat. 


41** 


42° 


43" 


44" 


45" 


46° 


47" 


48" 


49" 


SO" 


P.P. 




7.319 


7.318 


7.818 


7.318 


7.319 


7.8i0 


7.320 


7.820 


7.320 


7.320 




I 
a 
3 


638s 


7«5a 


7921 


8693 


9464 


0236 


1007 


1776 


2543 


3306 




6398 
6411 
6424 


7164 
7177 
7190 


?SI 

7959 


8704 
8717 
8730 


9476 
9489 
9503 


0248 
0261 
0374 


1020 
>033 
1045 


1789 
1803 
1815 


a556 
3569 
3581 


33<9 
333 « 
3344 


4 
5 
6 


6436 
6449 
6463 


7228 


B 


8743 

1^ 


95 '5 
95a8 
9541 


0387 
0300 
0313 


1058 


,8,7 
1840 
1853 


1^' 

3619 


3357 
3369 
338a 




I 

9 
10 

II 

13 

13 


6500 


7241 
7a54 
7267 


8010 
8023 
8036 


8781 


9579 


0336 
0338 
035« 


1097 
mo 
1 122 


1866 
1879 
1893 


363a 

^3^1 


3395 
3407 
34ao 


12 


65'3 


7280 


8049 


8820 


959a 


0364 


"35 


1904 


3670 


3433 


6526 
6538 
6S5« 


7292 
730s 
7318 


8062 


nil 

8«» 


9631 


0377 
0390 
0403 


,148 
1 161 
1174 


1917 
1930 
1943 


3709 


3471 


10 
30 
30 
40 
50 
60 


3.0 
Vo 


14 
'5 
i6 


6564 


7331 
7344 
7356 


8100 
8113 
8126 


lis 
8897 


9644 
9669 


0416 
0439 
0441 


1187 
1 199 

I2I3 


1981 


2731 

2734 
3747 


3496 
3509 


8.0 
10.0 
13.0 


17 
i8 
»9 

20 

ai 
aa 
*3 


0020 


7369 
738a 
7395 


8139 
8I65 


8910 


9683 
9708 


0454 
0467 
0480 


1238 
1251 


»994 
3007 
2019 


3760 
377a 
3785 


35ai 

3534 
3547 








6640 


7408 


8177 


8949 


9731 


0493 


1264 


3033 


a798 


3559 


6666 
6679 


7420 
7433 
7446 


8190 
8203 
8216 


8962 


9734 
9747 
9760 


0506 
0519 
053 « 


1303 


Si 

3071 


381 1 
3836 


Ills 

3597 


24 

as 
26 


6692 
6704 
6717 


7459 


8229 
8342 
8254 


9000 

9013 

9026 


977a 


0544 
0557 
0570 


1328 

«34i 


3083 
3096 
3109 


a849 
3861 

2874 


3610 
3623 
3635 




27 
28 
29 

30 

SI 
3a 
33 


6730 
6743 
6755 


7497 
7510 
75a3 


8267 
8280 
8293 


9039 
9065 


981 1 
^24 
9837 


0583 
0596 
0609 


«379 


2122 

ai34 
2147 


3887 
3900 
3913 


3648 
3661 
3673 


13 


6768 


7536 


8306 


9077 


9850 


0621 


139a 


2160 


3925 


36S6 


6781 
6794 
6806 


7549 
7561 
7574 


8319 
833a 
834* 


9090 

9»03 
91 16 


9862 


0634 
0647 
0660 


X430 


3173 
3186 
3198 


2938 


3699 
37" 
37a4 






34 


6819 
6832 
6844 


7600 
7613 


8357 
8370 
8383 


9129 
9143 
9«55 


9901 
9914 
9927 


0699 


1456 
1469 


33II 
3224 

a237 


3001 


3736 
3749 
3763 


10 

30 
30 
40 


3.2 

B 

10.8 
13.0 


11 

39 
40 

41 
4a 
43 


6858 
6870 
6883 


7626 
7638 
765* 


8396 
8409 
8422 


9168 
9180 
9193 


9940 


0711 
0724 
0737 


1482 
'494 
1507 


2249 
2262 

a275 


3014 
3027 
3039 


3774 
3787 
3800 


50 
60 


6896 


7664 


8434 


9306 


9978 


0750 


1530 


3388 


305a 


38.a 




6909 
6921 
6934 


7677 
7690 
770a 


8447 
8460 
8473 


9219 
9a3a 
9a4S 


^9991 
•0004 
•boi7 


0763 
0776 
0788 


1546 
1559 


3301 


3078 
3090 


3850 


44 


6947 
6960 
6973 


77»5 
77a8 
7741 


8486 

8499 
851a 


9258 
9270 
9*83 


•0030 
•0043 
•0055 


0801 
0814 
0827 


1597 


3339 


3»03 
3116 
3138 


3863 




49 

60 

51 

Sa 

S3 


701 1 


7767 
7779 


8524 
8537 
8550 


9296 
9309 
93aa 


*oo68 
•0081 
•t»94 


0840 
0853 
0866 


i6io 
1623 
1635 


2377 
3390 
3403 


3«4« 


390« 
39«3 
39a6 




7024 


779a 


8563 


9335 


•6107 


0878 


1648 


a4i5 


3179 


3938 


7036 


783X 


8576 
8589 
8692 


9348 
9361 
9373 


•0120 
•0133 
•toi46 


0891 
0904 
0917 


1661 


3438 
3441 
a454 


3 '9a 
3*05 
3317 


395« 


54 

II 


7100 


g 


8614 


9386 
9399 
9412 


•bi58 
•0171 
•0184 


0930 
0943 
0955 


1699 
1712 
1725 


3466 
3479 
3493 


3a3o 
3243 
3a5S 


3989 
4009 
4014 




15 

59 
60 


7113 
7ia6 
7139 


7^> 
7908 


8679 


9485 
9438 
9451 


•0197 
•toaio 

•b323 


0968 
0981 
0994 


»738 
1763 


aso5 
3517 
a530 


3368 
3381 
3293 


4027 
4039 
4052 




715a 


7921 


8693 


9464 


•0336 


1007 


1776 


2543 


3306 


406s 


iLir-ihin 





Smithsonian Tables. 



5* 



Table 10. 

LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE Pm IN ENGLISH 

FEET. 













[Deriyadon of table explained on p. zlv.] 












Lat. 


51- 


520 


53" 


54° 


5!^ 


56- 


57° 


58O 


59° 


60° 


P.P. 






7.sao 


7.sao 


7.800 


7.300 


7.320 


7.830 


7.330 


7.330 


7.330 


7.331 






X 

a 
3 


4o6s 


48x7 


5564 


6303 


7034 


7756 


8467 


9168 


9857 


OS34 


13 




4077 
4090 
4102 


48.9 
484a 

4854 


5576 


6315 
6327 
6340 


7046 
7058 
7070 


7768 
7780 
7792 


8479 
8491 
8503 


9180 
9191 
92P3 


9868 
9880 
9891 


0545 




4 

1 


4"5 
4127 
4140 


4867 
4879 
4892 


5613 


6352 
6376 


7082 
7094 
7x07 


7804 
78x5 
7827 


lilt 
8538 


92x4 
9226 
9238 


9903 
9914 
9925 


0578 










I 

9 
10 

XI 

la 

13 


4152 
4«6S 
4*77 


4904 

49»7 
4929 


5675 


6388 
6401 
6413 


71 19 
7'3' 
7«43 


7839 
7851 
7863 


lis 

8573 


9249 
926X 
9272 


9937 
9948 
9960 


0612 
0623 
0634 


30 
30 
40 

IS 


X3.0 




4190 


4942 


5687 


642s 


7155 


7875 


8585 


9284 


9971 


0645 




4203 


1^ 

4979 


5699 

5712 
5724 


6437 
6449 
6462 


7167 
7179 
7191 


7887 
7899 
79" 


IIS 
8630 


9295 
9307 
9318 


9982 
9994 
•0005 


3 








14 
'5 
i6 


4240 


4992 
5004 
50x7 


5737 
5749 
5761 


6498 


7203 
7215 
7227 


7923 
7946 


8632 
8643 
8655 


9330 
934« 
9353 


•0016 
•0027 
•0039 


0689 
0701 
07x3 






51 

«9 

ao 

2X 
33 
23 


4278 
429X 
4303 


5029 
5042 
5054 


5799 


6510 
6523 
6535 


7239 
7251 
7263 


7958 
7970 
7982 


8667 
8679 

8690 


9364 
9376 
9387 


•0050 
•0061 
•0073 


0723 
0734 
0745 






43 '6 


5067 


5811 


6547 


727s 


7994 


8702 


9399 


•0084 


0756 




4328 
434« 
4353 


5079 
5092 
SX04 


5823 
5848 


6559 
6571 
6584 


7287 
7299 
73" 


8006 
8018 
8030 


8714 

8725 
8737 


9410 
9422 
9433 


JC095 
•0107 
•01 18 


0767 
0778 
0789 




24 


4366 

4378 
439« 


5x17 
5129 
5«4« 


5860 


6596 
6608 
6620 


7323 
7335 
7348 


8042 
8053 
8065 


8749 
8760 
8772 


B 


*OI29 

•6140 
•0x52 


0800 
0812 
0823 


13 










29 
SO 

31 

32 

33 


4416 
4428 


5«79 


5897 
5909 
5922 


6632 
6645 
6657 


7360 
7372 
7384 


8x01 


8784 

8796 
8807 


9479 
9491 
9502 


•0163 


0834 
084s 
0856 


30 
30 
40 


3.0 
8.0 

XO.O 

xa.o 




444> 


5 '9' 


5934 


6669 


7396 


8113 


8819 


95 '4 


•bi97 


0867 




4479 


5216 
5228 


5946 
5959 
597 « 


6681 
6693 
6706 


7408 
7420 
7432 


8x25 


8831 

8842 
8854 


9525 
9537 
9548 


*0208 

*^i9 
•b23x 


X 

0900 








34 

11 


4491 
4504 
45'7 


5241 

!3I 


5983 

g2i 


6718 
6730 
6742 


7444 


8160 
8172 
8184 


8866 


9560 
9571 
9583 


''^242 
•0253 
•0264 


09XX 
0922 
0933 






11 

39 
40 

4« 
42 

43 


4529 
4S42 
4SS4 


5278 
S29« 
5303 


6030 
6032 
6045 


6707 
6779 


7480 
7492 
7504 


8196 
8207 
8219 


890X 

8913 
8924 


2IS 
9617 


•to298 


0944 
0955 


11 




4567 


53 »6 


6057 


6791 


7516 


8231 


8936 


9629 


•0309 


0977 




4579 
4592 
4604 


5328 
534 « 
5353 


6069 
6082 
6094 


6803 
6815 
6828 


7528 
7540 
7552 


8243 


8948 
8959 
8971 


9640 


•0320 
•0332 
•0343 


0988 
0999 

xoto 




44 


4617 
4629 
4642 


5366 
5378 
5390 


6106 
61 18 
613 X 


6840 


7576 
7588 


8278 
8290 

8302 


9006 


9697 


*^377 


X02X 
XO32 

«043 






xo 


1.8 




49 
60 

5« 
52 

53 


4679 


5403 
5428 


6143 
6155 
6168 


6889 
690X 


7600 
7612 
7624 


83x4 
8325 

8337 


9017 

9029 

9040 


9709 
9720 
9732 


*o388 
•6399 
•64x1 


iS 


20 
30 
40 

IS 


3.7 
5.5 

7.3 
9.3 

IX.O 




4692 


5440 


6180 


6913 


7636 


8349 


9052 


9743 


•6422 


X087 




4704 
47«7 
4729 


1^5 
5477 


6192 
6205 
6217 


6925 
6937 
6949 


7648 
7672 


836X 


9064 

9087 


97«> 
9777 




.098 
X109 

XX30 






54 

H 


4742 


5490 
5502 
55«4 


6229 
6241 
6254 


6961 


7684 


8420 


9098 

9XX0 

9X23 


9789 
9800 
981 X 


^89 


"3« 

XI43 

"53 






59 
00 


4779 


5527 
5539 
5552 


6278 
6391 


699S 

7010 
7022 


7720 
7732 
7744 


8432 

8443 
845s 


9«33 
9M5 
9156 


9823 
tt 


•10500 
•0512 
•0523 


XX64 






48x7 


5564 


6303 


7034 


7756 


8467 


9x68 


9857 


•0534 


"97 




1 



•■rmaoMiAN Tables. 



S3 



Table 10* 

LOGARITHMS OW MERIDIAN RADIUS OF CURVATURE pm IN ENGLISH 

[Derivation ol table ezphined on pi sir.] 



Lat. 


6i« 


62O 


63" 


64° 


6f 


66° 


67° 


esp 


69» 


70° 


p.p. 


C 

I 

3 

3 

4 

1 

7 
8 

9 

10 

I. 
la 

«3 
«4 

ao 

ai 

aa 
as 
M 

U 

29 

SO 

s« 

33 

33 
34 

% 

39 
40 

4« 

42 

43 

44 

49 
60 

5« 
5* 
53 

54 

59 
60 


7.821 

"97 


7.821 

1845 


7.821 

2479 


7.821 

3097 


7.821 

3698 


7.821 

4282 


7.821 

4848 


7.821 

5396 


7.821 
5924 


7.821 

6432 


11 


iao8 
1219 
ia3o 

1241 

J25I 

ia6a 

"73 
1384 
1295 


1856 
1866 
1877 
1888 
1898 
1909 

i9ao 
193 1 
1941 


2489 
2500 
2510 

2521 

253 X 

254X 
2552 

2562 

2573 


3x07 
3XX7 
3127 

3x37 
3147 
3x58 
3x68 
3x78 
3188 


3708 
37x8 
3728 
3738 
3747 
3757 

3767 

3777 
3787 


4292 
430X 
43XX 
4320 
4330 
4340 
4349 

J5I2 


4857 
4867 
4876 

488s 
4894 
4904 

49x3 
4922 
4932 


5405 
54x4 
5423 

5432 
5440 
5449 

5458 
5467 
5476 


5933 
594X 
5950 

5958 

5984 
5993 
6001 


6440 
6448 
6457 
6465 

t^. 

6498 
6506 


to 
ao 
30 
40 


(.8 
3-7 
5.5 
7*3 
9.2 
11.0 


1306 


X952 


2583 


3x98 


3797 


4378 


494X 


5485 


6010 


65x4 


13x7 
1328 
1338 

1349 
1360 

i37« 
138a 
1392 
1403 


1963 
«973 
1984 

1994 
aoi6 
aoa6 
2037 
2047 


2614 
2625 

2635 

2645 
2677 


32c* 
33x8 
3228 

3238 
3248 
3259 
3269 


3807 
llZ 

11% 
3856 

3866 

3875 
3885 


4387 
4397 
4406 

44x6 
4425 
4435 

4444 
4454 
4463 


4950 
4959 
4969 
4978 
4987 
4996 

5005 
50x5 
5024 


5494 
5503 
55x2 

552 X 

5529 
5538 

5556 
5565 


6018 
6027 
6035 
6044 
6061 

OODO 
6078 
6086 


6522 
6530 
6539 

6547 
6555 
6563 

6588 




10 


M14 


2058 


2687 


3299 


3895 


4473 


5033 


5574 


6095 


6596 


10 
ao 
30 
40 


«-7 
3-3 

1:; 

10^0 


1436 
1447 

1458 
1468 
1479 
Z490 
1501 
151a 


2069 
2079 
ao90 

a 100 
aiit 

2Z22 

2132 
2143 

2«53 


2718 
.728 

2738 
2749 

2769 
2780 


3309 
33x9 
3329 

3339 
3349 
3360 

3380 
3390 


3905 
39x5 
3924 

3934 
3944 
3954 

3964 
3973 
3983 


4482 
4492 
450« 

45«« 
4520 
4530 
4539 

:^J2 


5042 
5o5» 
5060 

5078 
5088 

5097 
5106 
SXX5 


5583 
5600 

1^ 

5627 
5636 
5644 
5653 


6XOS 
61 xa 
6zao 

6ia9 
6x37 
6146 

t\n 

6x71 


6604 
6612 
662 1 

6629 
6637 
6645 

6670 




9 


1523 


a 164 


2790 


3400 


3993 


45« 


5x24 


5662 


6180 


6678 


1534 
1545 
'555 

1566 

1609 

i6ao 


2175 
aiSs 
2196 

2206 

2217 
3228 

2338 
2249 
2259 


2800 
28IX 
383 1 

383. 

2841 

2852 

2862 

2872 
2883 


34x0 
3420 
3430 
3440 
3460 

3490 


4003 
4012 
402a 

4032 
4041 
405 X 
4061 


4596 

4606 
46x5 
4624 

4634 

4643 
4653 


5x33 
5x42 
5'5x 

5x60 
5x69 
5x79 
5x88 

5x97 
5206 


567 X 
5680 
5688 

5706 
57x5 

5724 
5732 
574« 


6188 
6197 
6205 

6a.4 
622a 
6230 

6239 
6247 
6256 


6686 

6710 
6718 
6727 

6735 
6743 
6751 


10 

ao 
so 
40 

S 


«.5 
3.0 

tl 

7.5 
9.0 


1631 


2270 


2893 


3500 


4090 


4663 


52x5 


5750 


6264 


6759 




S 


164a 
1663 

9 

1695 
1706 
1717 
1727 


2280 
229X 
2301 

2312 
2322 
2333 
2343 

2364 


2903 

2913 
2924 

2934 
2944 
2954 

2964 
2975 
298s 


3510 
3520 
3530 

3540 
3549 
3559 

3569 

3579 
3589 


4100 
4x09 
4119 

4x28 
4x38 
4x48 

4x67 
4x76 


4690 

47x8 

4727 
4736 
4746 


5224 

5233 
5242 

5260 
5270 

ns 

5297 


5759 
5767 
5776 

5785 
5793 
5802 

58x1 

5820 
5828 


6272 
628 X 
6289 

6298 
6306 
63x4 

6323 
633 X 

6340 


Si? 
^1 
6791 

68x5 
6823 
6831 


10 

ao 
30 
40 

1: 


li 
4.0 

8.0 


1738 


2375 


2995 


3599 


4186 


4755 


5306 


5837 


6348 


6839 


1749 

«759 
1770 

1781 
1791 
1802 

.8.3 
1824 
X834 


2385 
3396 
2406 

2417 
2427 
2437 
2448 
2458 
2469 


3005 

3026 

3036 
3046 
3056 

3066 

3077 

3o«7 


3f»9 
3619 
3629 

3639 
3648 
3658 
3668 
3^^78 
3688 


4196 
4205 
42x5 
4224 
4234 
4244 

4253 

42'^>3 
4272 


4764 
4774 
4783 

4792 
4801 
4811 

4820 
4829 
4839 


53x5 
5324 
5333 
5342 
535X 
5360 

53^^ 
5378 
5387 


5846 

5'^54 
58^>3 
5872 
5880 
5889 
5898 
5907 
59x5 


6356 
636s 

6373 
6382 
6390 
6398 
6407 

64x5 

6424 


6847 
6855 
6863 

687X 
6879 
6887 

6895 
6903 
69x1 


T 


J845 


2479 


3097 


3698 


4282 


4848 


5396 


5924 


6432 


69x9 



Smithsonian Tables* 



S4 



Table 10« 

LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE pm IN ENGLISH 

FEET. 

[Derivation of table explained on p. zIt.] 



Lnt. 


71° 


72° 


73° 


74° 


7f 


760 


77° 


78° 


79" 


80** 


P.P. 


C 

I 
a 
3 
4 

1 
i 

9 
10 

II 
la 
13 
M 

:i 
% 

«9 
20 

ax 

aa 
Vi 

M 

U 

a9 

ao 

3X 
3* 
33 

34 

u 

39 
40 

4« 
4a 
43 

44 

% 

49 
60 

5« 
5a 
5J 

54 

H 

fi 

59 
00 


7.821 

6919 


7.321 

7385 


7.821 

7839 


7.821 

8351 


7.821 

8650 


7.821 

9035 


7321 

9377 


7821 

9704 


T.aaa 

0007 


7322 

0384 






69*7 
«935 
69i3 

s 

6990 


739a 
7400 
7407 

7415 
743a 
7430 

7437 
7445 
745a 


7836 

787a 

7894 


8358 
836s 
8371 

13? 

o3B5 
8393 

8399 
8305 
8313 


8669 

868a 
8688 

8695 
8701 
8708 


903* 
9037 
9043 

9049 
9055 
9061 

9067 
9073 
9079 


9383 
9388 
9394 

9399 
9405 
94" 
94x6 
9433 
9427 


9709 
97>4 
9730 

9785 
9730 
9735 
9740 
9746 
975« 


OOX3 
00x7 
003I 

0036 

0036 
0041 
0045 
0050 


0388 
0393 
0397 

030a 
0306 
03x0 

0315 
0319 
0334 


10 

To 

40 


1.3 
a.6 
4.0 

8.0 


6998 


7460 


7901 


8319 


87x4 


9085 


9433 


9756 


005s 


0328 




7 


7006 

7014 

7021 

7019 
7037 
7045 

7^ 
7068 


7467 
7475 
7483 

7490 
7497 
7505 

75" 
7530 
7527 


7908 
79»5 
792a 

7944 
7951 


8336 
833a 
8339 
8346 
8353 
8359 
8366 
8373 
8379 


8730 
8737 
8733 
8739 

nil 

8771 


909X 
9097 
9«03 
9x09 
9"5 

9X31 

9x37 

9'33 
9139 


-9438 
9444 
9449 

9460 
9466 

947' 
9477 
9483 


977X 

9776 
9781 
9787 
9793 
9797 


0060 
0064 
0069 
0074 

0088 

0093 
0097 


033a 
0337 
o34« 

0345 
0349 
0354 

0358 
0362 
0367 


xo 
ao 
30 
40 


x.a 
a.3 
3.5 

ti 

7.0 


7076 


7535 


797a 


8386 


8777 


9M5 


9488 


9807 


0x03 


037» 


7084 
709a 
7099 
7107 
7««5 
7133 

7131 
7138 
7146 


754a 
7550 
7557 

7565 
757a 
7580 

7587 
7595 
7003 


7900 
7993 
8000 
8007 
80.4 

8oai 
8o88 
8035 


84x9 
8436 

8433 

8440 
8446 


8783 

8803 
8808 
88x5 

8831 
8837 
8834 


9151 
9»57 
9x63 

9x69 

9»74 
9180 

9x86 
9XM 
9198 


9493 
9499 
9504 

9510 
95»5 
95a X 

9536 
9533 
9537 


98x3 
98x7 
9833 

9837 
9833 
9838 

9853 


0x07 

OIIX 

0x16 

0I30 
0x35 
0X30 

0134 
0X39 
0x43 


0375 
0379 
0384 

0388 
039a 
0396 

0400 
0405 
0409 


6 


xo 
ao 
30 
40 


I.O 

a.o 
3.0 

4.0 

IS 


7«54 


7610 


804a 


8453 


8840 


9304 


9543 


9858 


0148 


0413 


716a 
7170 
7«77 
718s 
7193 
7aoi 

7ai6 
7aa4 


7617 
7635 
763a 

^l 
7654 
7661 

7676 


8091 
8098 
8105 


8460 

8466 

8473 

is? 

8493 

1^ 

8513 


8846 

8859 
8865 

8871 

8877 

8883 
8890 

8896 


93x0 
93x6 
9331 

9337 
9333 
9339 

9*45 
9350 
9356 


9548 
9554 
9559 

9565 
9570 
9575 

«?i 
9586 

959a 


987s 
9903 


0x53 
0x57 
0x63 

0166 
0x71 
0X76 

0x80 
0x85 
0189 


0417 
0431 
0436 

0430 

044a 
0447 
045 X 


6 


xo 

ao 
30 
40 


.8 
1.7 
a.5 
3.3 
4.3 
50 


7»3a 


7683 


8iia 


85x9 


8903 


9363 


9597 


9908 


0x94 


<H55 


7340 
7M7 
7*55 

7»63 
7370 
7378 

7386 
7*94 
7301 


7690 
7798 
7705 
7713 
7719 
77a7 

7734 
7741 
7749 


1:^6 

8133 
8140 
8147 
8154 

8x6x 
8168 
8x75 


8536 
8533 
8539 

8545 
8553 
8559 
8565 

8578 


8908 
89x4 

8931 

8937 
8933 
8939 

8945 
8958 


9368 
9374 
9279 

9a8s 
939X 
9397 

9303 
9308 
9314 


9613 
9619 

9639 
9635 


99«3 
99x8 
99*3 
9938 
9933 
9938 

9943 
9948 
9953 


0199 

S3 

03I3 
0217 
0333 

0336 
033X 
0335 


0467 
0471 

0493 


4 


xo 
ao 
30 
40 


■7 
IS 
3.0 
a.7 
3-3 
40 


7309 


7756 


8183 


8585 


8964 


93ao 


9651 


9958 


0240 


0496 


73 »7 
7334 
733a 

7339 
7347 
7355 
7363 
7370 
7377 


7763 
777> 
7778 

7785 
7793 
7800 

7807 
7814 
7833 


8189 
8196 
8303 

8310 
8316 
8333 
8330 
8337 
8344 


IS! 

86x1 
86x7 
8634 

8630 
8643 


is2 
0970 

8983 

8994 
900X 

9007 
9013 
90x9 


9336 
9331 
9337 

9343 
9348 
9354 
9360 
9366 
937« 


9002 
9667 
9673 

9693 
9699 


9973 

9978 
9983 
9987 
999a 

^0003 


0344 
0349 
0353 
0358 
0363 
0366 

037 X 

0300 


0500 

0508 

05x3 

0516 
0530 

0534 
0528 
0533 


^ 


T 


7385 


7839 


8351 


8650 


9035 


9377 


9704 


*boo7 


0384 


0536 



SMmtaoNiAH Table*. 



55 



TablcIO. 
LOGARITHMS OF MERIDIAN RADIUS OF CURVATURE p» IN ENGLISH 

FEET. 

[DerivadoD of table eqjdained on p. zlv.] 



Lat 


Si*' 


82° 


83° 


84^ 


85- 


86° 


87- 


88° 


89» 


P. 


P. 




7.322 


7.322 


7.322 


7.322 


7.322 


7.322 


7.322 


7.322 


7.8tl 






X 

a 
3 


0536 


0763 


0963 


.138 


X285 


1407 


X50X 


1569 


1609 


4 


0540 


0766 
0770 
0773 


0966 
0969 
0972 


1141 


,287 
1289 
1293 


1409 
14 10 
141a 


X502 
1504 
«505 


1570 
'571 
1571 


1609 

x6io 
1610 






4 

1 


055a 
0556 

0560 


0777 
0780 
0784 


097s 


1148 
1x51 

"54 


1296 
1298 


U'4 
'415 
1417 


XS06 
XS07 
1509 


«57a 
«573 
»574 


x6xi 
x6xi 
x6xx 


xo 

ao 
30 
40 
50 
60 


.7 
1.3 
a.o 
a.7 


I 

9 

10 

II 
la 
«3 


057a 


0787 
0791 
0794 


0991 


1x56 
"59 
1161 


1300 
1303 
1305 


14x9 

X42X 

142a 


1510 
15" 
i5»3 


1575 
«576 


16x2 
16x2 
16x3 


3.3 
4.0 


0576 


0798 


0994 


1x64 


>307 


X424 


1514 


1577 


16x3 






0580 


0801 


0997 
1000 
1003 


1x67 
1x69 
1x7a 


1309 
13" 
1314 


X426 

1427 
X429 


«5i5 
1518 


1578 
1579 
«579 


1613 
x6i4 
x6x4 


»4 


059a 
0595 
0599 


o8ia 
0815 
0819 


1006 
1009 
loia 


"74 

;;2 


13 16 
13x8 
i3ao 


143 « 
'43a 
1434 


«5i9 
1520 
isaa 


X580 
X58X 
1582 


16x5 
16x5 
16x5 






»9 
SO 

ai 

aa 

as 


060s 
0607 
0611 


o8aa 
0826 
0839 


1015 
1018 
loai 


1x82 
1.8s 
1x87 


1322 
13*5 
1327 


1436 
1438 

M39 


«5a3 
1534 
1526 


X583 
1583 
1584 


x6x6 
x6x6 
1617 





0615 


0833 


1024 


1 190 


1339 


«44« 


1537 


1585 


1617 


10 
ao 
30 
40 


•S 

i.o 

1.5 
aa> 
a-S 

S.O 


0619 


0836 


1027 
1030 
«^3 


1x92 

"95 
"97 


«33i 
1333 
1335 


1443 


X528 
1539 
1530 


XS86 
1587 


16x7 


M 

S 


0630 
0638 


'Z 

0853 


XQ36 
1039 
104a 


X200 
1202 
1205 


'337 
1339 
X34I 


«447 
«449 
M5« 


1531 
153a 
1534 


1588 
1589 


1618 

x6i8 
1618 






a9 

ao 

33 

33 


064a 
0645 
0649 


0856 


1051 


xao7 
1210 

X2I2 


>343 
«345 
«347 


145a 
1454 
MS5 


1536 
1537 


1590 
«59« 
i59« 


16x8 
.6x9 
16x9 


1 


0653 


o8«6 


1054 


X3I5 


1349 


1457 


1538 


159a 


X619 


0664 




1057 
1060 
io6a 


X217 

1220 
122a 


«35i 
1353 
«355 


X460 
146a 


»539 
1540 
«54« 


1593 
"593 
»594 


1619 
1619 
i6ao 


34 

U 


0668 

0671 
0675 


0886 


1071 


1225 
1227 
X229 


«357 
1361 


1463 
1467 


iS4a 
«543 
>545 


"595 
1596 


1620 
i6ao 






10 


.3 


39 

40 

4« 
4a 

43 


s 


0889 
0892 
0896 


X074 
1076 
1079 


1232 

«a34 
«a37 


1363 
.365 
1367 


X468 
X470 
X471 


1546 
1548 


1598 
1598 


i6ao 
162X 
1621 


ao 
30 
40 


.7 
1.0 
«.3 

1.7 
a.o 


0690 


0899 


io8a 


1239 


1369 


«473 


«549 


«599 


1621 


0694 

0697 
0701 


0906 
0909 


1090 


1241 

"44 
1246 


1371 
»373 
1375 


«477 


1550 
»55« 
«55a 


x6oo 
1600 


1621 
x6at 
X621 






44 

t 


071a 


091a 
0915 
0919 


I093 
1096 
1099 


1249 

I2SX 

"53 


iii 


X48X 


«553 
«554 
1555 


160X 
1601 
1602 


1621 
X621 
X622 






49 
SO 
s« 

53 


0716 
07*3 


09aa 
0925 
0929 


txoa 
1104 
1107 


1256 




1483 


X556 


X602 

X603 
1603 


1622 
1622 
1622 


] 




0727 


0933 


mo 


X263 


X388 


1487 


1559 


x6o4 


1622 


XO 

ao 
30 

40 


.a 
•3 
•5 

i 

I.o 


0731 
0734 
0738 


0935 
0938 
0941 


1113 
11x6 
1118 


1267 
X270 


X39O 

«39a 
«394 


X488 
X490 
X49X 


X560 
156X 
1562 


1604 
1605 
160S 


1622 
X622 
X622 


54 


0741 
0745 
0749 


0944 
0947 
095 « 


X121 
1 124 
X127 


1272 


1396 
1397 
1399 


1493 
>494 
1495 


1563 
1564 
1565 


x6o6 
x6o6 
X607 


1622 
1622 
1623 


1; 






li 

59 
00 


075a 

0756 

0759 


0954 
0957 


X130 
113a 

"35 


1278 
X28I 

.283 


140X 
1403 
1405 


1498 
1500 


1566 
1567 
1568 


^608 
x6oS 


xfa3 
1623 
X623 




T 


0763 


0963 


1.38 


1285 


1407 


X50X 


•569 


1609 


1623 



SliiTHaoNiAN Tabus. 



S6 



Table 11. 

LOGARITHMS OF RADIUS OW CURVATURE OP NORMAL SECTION 
p^ IN ENGLISH FEET. 

[Derivatioii of table ejcpbined on p. xlv.] 



Lat. 


o'' 


1° 


^ 


3** 


4° 


f 


6*» 


7^ 


8° 


9° 


Id* 


P.P. 




7.660 


7.360 


7.360 


7.360 


7.360 


7.860 


7.360 


7.360 


7.360 


7.360 


7.360 




I 
a 
3 


«75 


6880 


6893 


6916 


6947 


6987 


7036 


7094 


7160 


7a35 


73x9 






6880 
6880 
6880 


6893 


6916 
6917 
6917 


6948 
6949 
6949 


6988 
6989 
6989 


7038 
7Q39 


7096 
7097 


7161 
7163 
7x64 


7336 
7238 
7339 


7380 
73»a 
7383 


4 

1 


6875 


6880 
6881 
6881 


689s 


6918 
6918 
69x8 




6990 
J99« 
6993 


7040 
704X 
704X 


7098 
7099 
7100 


7x67 


7340 
7341 
7a43 


7387 




I 

9 

10 

II 
xa 

«3 


687s 


6881 
6881 
6881 


SSI 


69x9 
6919 


6953 


6993 
0993 
6994 


704a 
7043 
7044 


710X 
7103 
7x03 


7x68 
7x70 
7x71 


7a44 
7*45 
7*47 


7389 
7330 
733a 


1 


6875 


6881 


6896 


6930 


6953 


6995 


7045 


7x04 


7x73 


7348 


7333 


S75 


6881 
6881 
688a 


6896 


6930 
6931 
693X 


6955 
6955 


6997 


7046 


7106 
7107 


7x73 


7349 
7351 
7353 


7334 
7336 
7338 






»4 


6876 


688a 
688a 
688a 


68,8 


6933 

^3 


6956 
6956 
6957 


6999 
6999 


7049 
7050 
7050 


7108 
7109 
71XX 


7179 


7854 


7339 
734X 
734a 


xo 
30 
30 


.a 
•3 
.5 


iO 

31 

aa 
as 


6876 

6876 

6876 


688a 
6883 
6883 


6900 


6924 


6959 


7000 
700X 
700X 


7051 
7053 
7053 


7x13 
7"3 
71x4 


7180 
7183 
7183 


7358 


7343 
7346 


£ 


i 
x.o 


6876 


6883 


6900 


69.S 


6959 


7003 


7054 


7115 


7184 


7a(n 


7348 




6876 
6876 
6876 


6883 
688i 
6884 


6900 
6901 


6936 


6961 


70Q3 
7004 
7004 


7057 


71x6 


7x88 


7>«3 


7350 
735« 
7353 


34 


6876 
6876 
6876 


6884 
6^ 
6884 


6901 
69QS 


6937 


6963 

6963 
6963 


7007 


7058 
7059 


7119 
7x30 

7X33 


7x89 

7x90 
7x91 


7370 


7358 




2 

a9 

30 

3S 
3* 

33 


6S76 
6876 
6876 


6884 
6885 
6885 


69QS 
6903 


6938 
6939 




7009 


7^ 
7063 


7X33 

7x34 
7x35 


719a 
7x94 

7«95 


7a7a 
7*73 
7875 


736X 
736a 




6876 


6885 


6903 


6930 


6966 


7010 


7064 


7136 


7196 


7376 


7364 


^ 


6886 


6904 


6930 

693 X 
693 X 




701 X 
70x3 
70x3 


7067 


7"7 
7x38 

7»a9 


7197 
7x99 
7aoo 


7377 


7366 

7IS 


34 


^ 
^ 


6886 

6887 
6887 


6905 


693a 

693a 

6933 


6970 


7014 
7015 
701S 


7069 
7070 


7x30 
7x31 
7x33 


730X 
7303 
7304 


7383 
7383 
7384 


7370 
737X 
7373 




39 
40 

4« 
4* 

43 


^ 


6887 


6^ 

6907 


6934 
6935 


6973 
6973 


70x6 


7070 
7071 
7073 


7x34 
7x35 
7x36 


3 


7a86 
7387 
7389 


7374 
7376 
7377 


6 


6877 


6888 


6907 


6935 


^3 


7019 


7073 


7x37 


7ao9 


7390 


7379 


10 
30 
30 
40 


•3 
•7 
1.0 
X.3 




6888 
6888 
6889 


6909 


6936 
6936 
6937 


6974 
6975 


7030 

703X 

7031 


7074 
7075 
7076 


7x38 
7x39 
7140 


7310 

73X3 

7ax3 


7391 
7893 
7894 


738X 
7383 
7384 


44 

49 
60 

5« 
Sa 

53 


6878 

6878 
6878 
6878 


6889 

6889 
6^; 

6889 

6890 
6890 


6909 

6910 
6910 

6910 

69II 

691 1 


6937 
6938 

6939 

6939 
6940 


6976 
6977 
6978 

6979 


7033 
7033 
7034 

7035 


7077 
7078 
7079 

7081 


714X 
7x43 
7«44 

7«47 


7316 
73x7 

73x8 
73x9 

733X 


7896 

7300 
730* 
73<*3 


7387 
7389 

7390 
739a 
7393 


£ 


x-7 
3.0 




6878 


6890 


6911 


6941 


6980 


7037 


708s 


7M8 


7333 


7304 


7395 


6878 
6878 
6879 


6890 
6891 
689X 


691a 
6913 

6913 


694a 
694a 
6943 


698X 
698. 
6983 


7038 

7039 

7Q30 


!2« 


7«49 
7x50 
7x5a 


7333 


7305 

^3 


7400 


54 

ft 


«2 


6891 
689a 
689> 


69x3 

69x4 
69x4 


6943 
6944 
6944 




7031 
703a 
7Q3a 


7090 


7x53 
7'54 
7«5S 


7338 
7330 


73x0 
73XX 
73«3 


740X 
7403 
7405 




59 
60 


6880 


689a 
689a 
6893 


69x5 


6945 

at 


6986 


7033 
7034 
7035 


709X 
7093 
7093 


7x56 
7x58 
7x59 


7a3x 
7333 
7834 


73x4 
73x6 
73x7 


7406 
7408 
7409 




6880 


6893 


69x6 


6947 


6987 


7036 


7«94 


7x60 


7a35 


7319 


74" 




1 



S u fTw aowiAii Tables. 



57 



Table 11. 

LOGARITHMS OP RADIUS OP CURVATURE OP NORMAL SECTION 
fK, IN ENGLISH PEET. 

[DerivatioD of taUe escplained oo p. zIt.] 



Lit. 


lio 


12^ 


13" 


I4*> 


If 


l6<* 


17** 


18O 


19" 


20<» 


p.p. 


I 
a 
3 

4 

I 
i 

9 
10 

XI 

xa 
«3 

«4 
X5 

x6 

'A 

«9 

ao 

ai 
aa 
as 

24 

U 

^9 

ao 

3< 
3a 
33 

34 

'A 

39 
40 

4« 
4a 

43 
44 

t 
% 

49 
50 

51 
Sa 
53 

54 

% 

59 
60 


7.320 

74" 


7.310 

75" 


7.320 

7619 


7.820 

7736 


7.320 

7860 


7.320 

799a 


7.320 

8x3 a 


7.320 

8279 


7.320 

8434 


7.320 

8595 


1 


74«3 
7414 
7416 

74x7 
74*9 
74ai 

74aa 

74*4 
74a5 


7S«3 

7516 

75«8 
75«9 
75ai 

75a3 

75a6 


76ai 
7633 
76a5 

7630 
763. 


7738 
7740 
774a 

"? 

7748 

7750 
775a 
7754 


786a 
7864 
7867 

7869 
7871 
7873 


7994 
7997 
7999 
8001 
8«,3 
8006 

8008 
8010 
80,3 


8x34 
8137 
8139 
814a 

\Z 

8149 
8151 
8154 


828a 
8a84 
8287 

8289 
829a 
8395 

8297 
8300 
830a 


8437 
8439 
844a 

8444 

!^' 
8450 

845a 
8457 


Hoi 
8603 
8606 

8609 

86x3 

861s 


xo 

ao 

JO 

40 

£ 


•3 

:J 

1.0 


74a7 


75a8 


7638 


7756 


788a 


8015 


8156 


830s 


8460 


8633 


74a9 
7430 
743a 

7433 
7435 
7437 

7438 
7440 
744« 


7530 
753a 
7533 

7535 
7537 
7539 

7541 
7S4a 
7544 


7640 
764a 
7644 
7646 
7647 
7649 

7651 
7653 
7655 


7770 
777a 
7774 


7888 
7890 

7901 


8017 
8oao 
8oaa 

£2 

8oa9 
8031 


8158 
8161 
8163 

8166 
8168 
8170 

8.73 


8307 
8310 
831a 

83x5 
8317 
8330 

83aa 
Jsas 
83a7 


8463 

8476 

Its? 

M4 


86a6 

8640 
8643 

1^ 


1 


7443 


7546 


7657 


7776 


7903 


8038 


8180 


8330 


8487 


86sx 


74f8 

7450 
745 « 
7453 

7455 
7457 
745« 


7548 
7550 
755« 

7553 
7555 
7557 

7560 
7561 


7663 

7668 

7670 
767a 
7674 


7778 
7780 
778a 

J| 

7789 

779* 
7793 
7795 


7905 
7907 
7910 

79" 
79«4 
7916 

7918 
79ai 
79a3 


8040 
8043 
8045 
8047 

8059 


8x82 
8x85 
8187 
8190 

819a 
8195 
8x97 

8aoo 

82C2 


8333 

8340 

i^ 

8348 
8351 
8353 


8490 
849a 
8495 

8498 
8500 
8503 
8506 
8509 
851X 


8654 

Sf57 
8659 

866a 

1^ 

8671 


xo 

ao 
30 
40 


.3 
.7 

X.O 

X.3 
X.7 
a.o 


,^ 


7564 


7676 


7797 


79a5 


8061 


8ao5 


8356 


8514 


8679 


746a 
7463 
7465 
7466 
7468 
7470 

747X 
7473 
7474 


'55s 
7568 

7569 

757« 
7573 
7575 


768a 

7^^ 
J688 

7694 


7803 

7807 
7810 

7».a 


79a7 
79,9 

793a 

7934 
7936 
7938 
7940 
7943 
7945 


8068 
8083 


Jaoy 
8a 10 
821a 

82x5 
8217 
82x9 

8222 
8«4 

8327 


836s 

8366 
8368 
8371 
8373 

8378 


85.7 
8519 
8533 

8535 
85a7 
8530 

ISI 
8538 


868a 

8685 
8687 

8704 


S 


7476 


758a 


7696 


7818 


7947 


8085 


8239 


838X 


8541 


8707 


7478 
7481 

7483 
7484 
7486 

7488 
7490 
749» 


7584 
7588 

7590 
759« 
7593 

7595 
7597 
7599 


7698 
7700 
770a 

7708 

7710 
77" 
77*4 


7830 

78aa 
7824 
78a6 
7828 
7831 

7833 
7835 
7837 


7949 

795a 
7954 
7956 

7961 
7963 


8IOI 


823. 

8a39 
8241 
8244 
8246 
8249 
8251 


8389 

839. 
8394 
8397 

8399 
840a 
8404 


8S44 
8546 
8549 
855a 
8554 
8557 
8560 
8i63 
8565 


87.0 
8713 

8715 
8718 

873X 

8734 

8727 
8729 
873a 


xo 

30 
30 
40 

S 


•5 
1.0 

i.S 

a.o 

a.5 

3.0 


7493 


7601 


7716 


7839 


7970 


8108 


8254 


8407 


8568 


8735 


7495 
7497 
7498 

7500 
750a 
7504 
7506 
7507 
7509 


7603 
70cx> 

7608 

7610 
76fa 

7615 
7617 


7718 
77ao 
77aa 

77a8 

7730 
773a 
7734 


784. 
7843 
7845 

^7 
7849 
785a 

7854 

7858 


797a 
7974 
7977 

7<i90 


8tio 
8113 
8115 

8118 
8120 
813a 

8125 
8127 
8130 


8256 

tx\ 

8266 
8269 

827X 
8274 
8276 


8410 
841a 
8415 
8418 
8420 
8433 
84a6 
8439 
843 X 


857. 
f^ 

8584 

8587 
8590 
859a 


8738 
874X 

8743 

8746 
8749 
875a 

8755 




75" 


7619 


7736 


7860 


799a 


8.32 


8279 


8434 


8595 


8763 




-■ 



SiiiTHaoNiAN Tabus. 



S8 



Table 11. 

LOGARITHMS OF RADIUS OF CURVATURE OP NORMAL SECTION 
p^ IN ENGLISH FEET. 

[Derivation of table explained on p. jcIt.] 



Lat. 


2I<> 


22« 


23° 


24« 


2f 


2&> 


27^ 


28<» 


29^ 


30^ 


P.P. 


I 
a 
3 
4 

1 

; 

9 
ID 

XX 

xa 

»3 
14 

\l 
\l 

»9 
SO 

at 

aa 
23 

24 

U 

29 

ao 

31 

32 

33 

34 
35 

36 

39 
40 
41 

42 

43 
44 

• % 

49 
60 
5« 

52 

53 
54 

IS 

u 

59 
00 


7.sao 

8763 


7.320 

8939 


7.820 

9120 


7.820 

9308 


7.820 

9502 


7.820 

9701 


7.820 

9907 


7.821 

0x17 


7.821 

0332 


7.821 
0553 


2 


8766 
8769 
8772 

8780 

8789 


8942 
8951 

US 

8965 


9123 
9x26 
9129 

9x32 
9136 
9<39 
9142 
9«45 
9148 


93" 
9318 
932X 
9324 
9327 

9330 
9333 
9337 


213 

95«2 

95«5 
95i8 
9S2I 

21-1 

9531 


S3 

97x2 

97'S 
97«8 
9722 

9725 
9728 
9732 


9910 
9913 
99«7 
99» 
9924 
9917 

993« 
9934 
9938 


OX2S 
0124 
0x28 

013 1 
0135 
0x38 

0x4a 

0145 
0149 


0336 
0340 
0343 

0347 
o35« 
0354 

0358 
0361 
0365 


0564 

0567 
0571 
©575 

0586 


8792 


8968 


9>5» 


9340 


9535 


9735 


9941 


0153 


0369 


0590 


XO 

ao 
SO 
40 


.3 
.7 

x.o 

1.3 

x-7 
a.o 


E 

8810 

88x2 
8815 
8818 


8971 
8974 
8977 
8980 
8983 
8986 

8992 
8995 


9«54 
9«57 
9160 

9163 
9167 
9170 

9»73 
9176 
9x79 


9343 
9346 
9349 

9353 
9356 
9359 
9362 
9365 
9368 


9538 
954« 
9545 
9548 
9551 
9554 

9558 
956i 


9739 
9742 
9745 

9749 
9752 
9756 

9759 
9762 
9766 


9945 
9948 
9952 

9955 
9959 
9962 

9966 

9V69 
9973 


0x56 

OXS9 
0163 

0x67 
0170 
0174 

0177 
0181 
ox8s 


037s 

%t 

0383 
0387 
0391 

0394 
0398 
0402 


0594 
060X 

Si 

0612 
06x6 

o6ao 
0623 


8 


8821 


8998 


9x82 


9372 


9568 


9769 


9976 


0188 


040s 


0627 


8830 

8833 
8836 
8839 

^' 

8847 


9001 
9004 
9007 

90x0 

9020 
90J3 

9026 


9188 
919X 

9«95 
9198 
9201 

9204 
9207 
92x0 


9375 
9378 

9391 

9394 
9398 
940X 


957« 
9574 
9578 
958X 
9584 
9588 

9591 
9594 
9598 


9779 

^U 
9786 

9790 

9793 
^¥> 
9800 


9980 
9983 
9987 

9990 
9994 
9997 
•toooi 


0x92 
0195 
0199 

02x0 

0213 
02x7 
0220 


0409 
0413 
04x6 

0420 
0424 
0427 

043X 
0438 


0631 

^al 

0642 
0646 
0649 

0657 

o66x 


10 
20 
30 
40 


•5 

x.o 

»-5 
2.0 
25 

SO 


8850 


9029 


92x3 


9404 


960X 


9803 


•001 1 


0224 


0442 


0664 


nil 

8859 

8862 
8877 


9032 
9035 
9038 

9041 
9044 
9047 
9050 


9216 
9220 
9223 
9226 
9229 
9232 

^11 

9242 


9407 
94" 
9414 

94x7 
9420 
9424 

9437 
9430 
9433 


9611 

9621 

963 X 


9807 
98x0 
9814 
98x7 
9820 
9824 

9827 
9831 
9834 


•bois 
•0018 
•0022 

•0029 
•0032 

•0036 
•0039 
•0043 


0228 
023X 

0235 

0238 
0242 

0246 

0249 

0256 


0446 
0449 
0453 

0464 

0468 
0471 
0475 


0668 
0672 
0676 

068, 

0691 


4 


8879 


9059 


924s 


9437 


9634 


9838 


•0046 


0260 


0479 


0702 


888a 

8891 

8897 

8900 

8903 
8906 


9062 

9071 
9074 
9077 

9086 


9348 
92SX 
9254 
9257 

•9264 

9267 
9270 
9273 


9440 
9443 
9446 

94SO 
9453 
9456 

^' 

9466 


9638 

9644 
9648 

9654 

9658 
9661 
9664 


984X 

9858 
9862 
9865 

9869 


•0050 
•0053 
•0057 

•0060 

•0064 
•0067 

•0071 

*oo74 
•0078 


0264 
0271 

0274 

Si! 

0285 
0289 
0293 


0482 
0486 
0490 

0493 
0497 

osox 

0508 
0512 


0706 

0710 

0713 
07x7 

072X 

0725 

0728 
0732 

0736 


XO 

20 

30 
40 


•7 
1.3 
a.o 
2.7 
3-3 
4.0 


8909 


9089 


9276 


9469 


9668 


9872 


•too82 


oifj/b 


0516 


0740 




8912 

8921 
8924 
8927 
8930 

^^l 


9093 

9096 

9099 

9102 
91" 

91 14 
91x7 


9*89 
9292 
V295 
9298 
9302 
9305 


9472 
9476 
9479 
9482 
9485 
94^ 
9492 
9495 
9498 


9671 
9681 

969X 

9695 
9698 


9575 

9879 
9882 

9886 
9889 
9893 
9896 

9900 
9903 


•cx)«s 
•0089 
•0092 

•0099 
•0x03 

•0106 
•01 10 
•01x3 


0300 
0303 
0307 

03x1 
0314 
0318 

0322 
0325 
0329 


0519 
0523 
0527 
0530 
0534 
0538 

0542 
0545 
0549 


0743 
0747 

07SX 

0755 
0759 

0766 
0770 
0774 


8939 


9x20 


9308 


9502 


970X 


9907 


•01x7 


0332 


05S3 


0777 




■ 



SumtaoNiAM Tables. 



59 



Table 11. 

LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION 
p^ IN ENGLISH FEET. 

[Derivation of tabk giphinrd on p. zIt.] 



Lat. 


31° 


32° 


33° 


34° 


35° 


36° 


37° 


38° 


39° 


40** 


p.p. 




7.821 


7.sai 


7.8ai 


7.821 


7.821 


7.821 


7.321 


7.821 


7.821 


7.821 




I 
a 
3 


0777 


1006 


"39 


X476 


X7x6 


«959 


aaos 


2453 


3704 


2956 


s 


0781 
0785 
0789 


lOXO 

iois 


xa43 
X247 
X251 


X480 

xMl 


X7ao 


X963 
X967 
X971 


3209 

32x3 

32X7 


2457 
3463 
3466 


2708 
37x2 
37x6 


396X 


4 

1 


S 


loaa 
ioa6 
1039 


X255 

1359 
xa63 


X500 


X73a 
X736 
1740 


«975 


aaax 

3336 


3470 


372X 

2725 
3739 


S 




xo 


•5 


i 

9 
10 

IZ 

la 
13 


0811 


1033 
«o37 
1041 


xa67 
xa7x 
X275 


X5ia 


'75* 


X988 

1996 


3343 


3483 
3487 
2491 


2733 
'737 
2743 


3986 
3990 

2994 


_1j 


1.0 

x-5 

3.0 

a-5 
3.0 


081S 


1045 


xa79 


1516 


1756 


aooo 


3346 


a495 


2746 


2999 


0819 
0833 
0837 


1049 
«os3 
1057 


laSa 

X386 
xa90 


xsao 


'1^ 


30xa 


3350 
3354 

3359 


a499 
3503 
a507 


2750 


3003 
3007 
30x1 




«4 


0830 


S060 


x3oa 


X536 
X540 




aox6 
aoao 
aoa4 


3363 

3367 

337X 


35x3 
35x6 
2530 


11^ 

377X 


3016 

3030 

3024 




«9 

ao 

31 

aa 

as 


0849 


JOiJ% 

1076 
1080 


.306 
X3X0 
X314 


■55» 


1793 


ao38 
ao33 
ao37 


3375 


2532 


«775 

1SQ 


3038 

303a 
3037 


4 


0853 


1084 


X3x8 


•556 


1797 


3041 


3387 


2537 


3788 


304X 


0865 


1087 
1091 
1095 


132a 
X336 
1330 




x8oi 
1809 


ao45 
ao49 
ao53 


3393 
3396 
3300 


a54x 
aS45 

a549 


379a 

1& 


3045 
3049 
3054 


34 


0869 

087a 


1099 
1 103 
1 107 


X334 
X337 
X34X 


X57a 


>S>3 
x8x7 
x8ax 


ao65 


33x3 


a553 
2557 
3563 


1813 


3066 




10 


•7 


2 

^9 

ao 

3X 

3a 
33 


0880 


IIZI 

i.xS 
Z118 


X345 
X349 
X353 


XS93 


xjas 
X839 
x«33 


ao69 
ao73 
ao77 


33x6 
3331 

a3a5 


3566 
3570 
a574 


3823 
3836 


307X 
307s 
3079 


30 

30 
40 


««3 
3.0 
«.7 
3.3 
4.0 


0891 


1132 


X3S7 


1596 


1837 


ao8a 


a3a9 


a578 


3830 


3083 


z 

0903 


1 136 
XI30 
XI34 


.36X 
X369 


x6oo 


184X 
X845 
X849 


ao86 
ao9o 
ao94 


a333 
a337 
a34x 


3583 
3587 
3S9X 


2843 


3087 




34 


0907 
0910 
0914 


XX38 
1x4a 
XX46 


1373 


x6xa 
16x6 
x6ao 


X853 


ao98 
aio3 
a 106 


a345 
a3SO 
a354 


2595 


s 


3x00 
3104 
3x09 




39 
40 

4« 
4» 

43 


0918 


XX50 

"53 

x«57 


X3«S 
X389 
«393 


x63a 


X865 
X870 
X874 


axxo 
axx4 

31X9 


3366 


3608 

36X3 
3616 


a 


3"3 

3"7 

3X3X 


6 


0930 


1 161 


X397 


X636 


X878 


2x23 


3370 


3630 


3873 


3X36 


0933 
0937 
094X 


1x65 
X169 
X173 


X40X 
X40S 
1409 


X640 


i88a 
x886 
X890 


3X37 

ax3x 
3X35 


a374 


3629 

a633 


:i2 
3885 


3'30 


44 


0945 

0949 
0953 


XX77 

xz8x 
X185 


Z4ia 

X416 
x4ao 


x65a 
!66o 


x9oa 


3139 
ax43 
2X47 


a387 
a39x 
3395 


2637 
264X 
2645 


3889 
2893 
2897 


3x43 
3«47 
3X5X 




xo 
30 
30 

40 

S 


.8 
X.7 
a.S 
3.3 
4.a 
5.0 


49 
50 
s« 

53 


0960 
0964 


>x89 
XX92 
X196 


X43a 


1673 


X906 
19x0 
X9X4 


axsx 

3156 
2160 


a399 


2649 
2658 


390a 
3906 
2910 


3x64 


0968 


1200 


1436 


1676 


X918 


3x64 


34x3 


2662 


29x4 


3x68 


097a 
0976 
0979 


X3X3 


1440 


1680 

1^ 


Z923 
1936 
X93« 


3168 
2x73 
2x76 


2416 
2420 
2424 


3675 


29.8 
2923 
3927 


3x7a 
3x81 




54 


0983 
0987 
0991 


I3l6 
X230 
1334 


145a 
X456 
1460 


1693 
X696 
1700 


X93S 
X939 
1943 


2x80 
2x84 
ai88 


2438 

a433 
a437 


3687 


293 X 

2935 
2940 


3x85 
3189 
3193 




11 

59 
60 


0995 
0999 
1003 


1228 
X231 

xa3S 


147a 


1712 


X947 
X95« 
>9S5 


ax93 
a 197 
2201 


2441 
2445 
2449 


269X 
2696 
2700 


2948 
2952 


3x98 
3206 




too6 


"39 


X476 


X716 


X959 


aaos 


2453 


2704 


2956 


33x0 




■■ 



Smithsonian Tables. 



60 



Table 1 1 . 
LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION 
p» IN ENGLISH FEET. 

[DeiivatioB of table explained on p. xhr.] 



T^t. 


41° 


42- 


43^ 


44^ 


45° 


46*> 


47** 


48O 


49° 


50° 


P.P. 




7.011 


7.311 


7.811 


7.311 


7.311 


7.311 


7.811 


7.311 


7.311 


7.311 




z 
a 
3 


saio 


3466 


3722 


3979 


4236 


4494 


475X 


5007 


5263 


55x7 




3215 
3a 19 
3M3 


3470 
3474 
3479 


3726 

373 « 
3735 


399a 


424X 
4245 
4249 


4498 
4S02 
4507 


1!^ 

4764 


Soia 
5016 
5020 


5267 
527X 
5276 


5522 
5526 
5530 


4 

1 


3**7 
3^a 
3236 


3483 
3*87 
349« 


3739 

11% 


3996 
400X 
4005 


4254 
4258 


45XX 

45x5 
4520 


4768 
477* 
4777 


5024 
5<M9 
5033 


5280 

5284 
5288 


5534 
5538 
5543 




i 

9 

lO 

II 
la 

«3 


3240 
3244 

3249 


3496 
3500 
3504 


3752 

It 


4009 


4267 
4271 
4275 


453a 


478X 
4785 
4789 


5<^7 
5042 
5046 


5293 

5297 
530X 


5547 
555X 
5555 


4 


3253 


3508 


3765 


4022 


4279 


4537 


4794 


5050 


5305 


5560 


3266 


35»3 
35«7 
3521 


37«9 


4026 
403X 
4035 


4a9S 


454X 
4545 

4550 


4&>7 


5054 


53x0 


5572 


»4 


3270 


3526 
3530 
3534 


3786 

379X 


4039 
4043 
4048 


4297 
430X 
4305 


f 




S067 
5071 
S076 


53aa 

5327 
5331 


If 

5585 




xo 


.7 


19 

ao 

31 

aa 


?f4 

329* 


3538 
3543 
3547 


3795 
Sol 


4052 


4309 
43x8 


4567 
457« 
4575 


4832 


5080 


5S3S 

5339 
5344 


5589 


30 

40 


X.3 
ajo 
2.7 
3-3 
4.0 


3295 


3551 


3808 


¥f>S 


4322 


4580 


4837 


5093 


5348 


5602 


3300 

S3 


1 

3564 


3812 
38.6 
3821 




4327 
433 X 
4335 


4588 
459a 


4845 
4849 


5097 
5XOX 
5x05 


5356 
5361 


5606 
5610 

5614 




24 


33" 

3317 
3321 


3568 
3573 
3577 


3825 
3829 
3833 


4091 


4339 

S3 


460s 


U 


5x10 


5369 
5373 


5619 
55»3 

5627 




39 

so 

32 

33 


33*5 
3329 
3334 


3581 
3585 
3590 


3838 
3846 


4095 
4099 
4104 


435a 


4610 


4866 
487X 
4875 


5««3 
5x27 
5X3X 


5386 


5636 
5640 




333« 


3594 


3851 


4108 


4365 


462a 


4879 


5x35 


5390 


5644 


3342 
3347 
3351 


S 


S855 

Jit? 


411a 
4116 
4iai 


4369 
4378 


45a7 
463X 
4635 


2 

4892 


5140 


5395 
5399 
5403 


5648 
5657 


34 


335S 

f3S 


3611 
3615 
3620 


3868 


4ias 
4129 
4«34 


4382 
4387 

439X 


4640 


4896 
4901 
4905 


5x52 

5x57 
5161 


5407 
54x2 
54x6 


5661 




39 
40 

4« 
4* 
43 


3368 
3372 
3376 


363a 


3889 


4138 
4142 
4x46 


4395 
4399 
4404 


465. 
1^1 


4909 
49x3 
49x8 


5x65 
5x69 
5x74 


5420 


g 





10 

ao 
30 
40 


.8 
«.7 
a.5 
3-3 
4.2 
5.0 


3381 


3637 


3893 


4>5» 


4408 


4665 


4922 


5x78 


5433 


5686 


338s 
3389 
3393 


3641 
3645 
3649 


3898 

3906 


4x55 
4164 


44X2 
44x7 
442X 


4670 


4926 

493 X 
4935 


5x8a 
5.86 
519X 


5437 
544X 
5445 


5690 

5694 
5699 


44 

1^ 


3398 
3402 
3406 


3654 


39" 
39«5 
39x9 


4x68 
4I7J 
4x76 


4425 
4430 
4434 


468a 
4691 


4939 


5x95 
5x99 
5203 


5450 


5703 
5707 

57X1 






49 
60 
5» 
53 


34IO 
3415 
34«9 


1^ 

3675 


3932 


4.8X 
418s 
4189 


4438 
4442 
4447 


469s 
4700 
4704 


4952 


5208 
521a 
52x6 


547X 


57x6 
5720 
5724 




3423 


3679 


3936 


4x94 


445X 


4708 


4965 


5220 


5475 


5728 


3427 
3432 
3436 


3684 
3688 
369a 


394 > 
3945 
3949 


4x98 
4206 


4464 


47X2 
47x7 
4721 


4969 


5225 

5229 
5233 


g 


5732 
5737 
574X 


54 


3440 
3445 
3449 


3697 
3701 
3705 


B 


42x1 

42x5 
4219 


4468 
4472 
4477 


4725 
4730 
4734 


4990 


5237 
5246 


S49J 
5496 
5500 


5745 
5749 
5753 




59 
00 


3453 


3709 

37'4 
3718 


3966 
3971 
3975 


4228 
4232 


448. 
4485 
4490 


4738 

4742 
4747 


4995 
4999 
5003 


5250 
5254 
5259 


5505 
5509 
55x3 


576a 
5766 




3466 


3722 


3979 


4236 


4494 


475X 


5007 


5263 


55x7 


5770 


> 





SiuTNaoNiAfi Tables. 



61 



Table 11. 

LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION 
p^ IN ENGLISH FEET. 

[Derivation of table espbdned oo p. xIt.] 



Lit. 


5iO 


S^ 


53" 


54** 


55° 


56O 


57° 


580 


59° 


6(f 


P.P. 






7.ttl 


7.ttl 


7.8il 


7.8S1 


7.321 


7.aai 


7.3S1 


7.sai 


7.321 


7MX 






I 
a 
3 


5770 


6Q3I 


6370 


6517 


6760 


7001 


7a38 


747a 


7701 


7987 






5783 


6oa9 
6q34 


3 


653X 
6535 
6539 


677a 


7005 
7009 
70x3 


7a4a 
7a46 
7350 


It 

7483 


7705 
7709 
77«a 


793« 




4 

1 


5787 
5791 
5795 


6qs8 
604a 
6046 


6386 
6390 
6a9S 


6533 
6537 
6541 


6785 


7017 
7031 

7oa5 


7a54 


7487 
7491 
7495 


77«6 
7730 
7784 


7948 
7945 
7949 


6 






g 




I 

9 
10 
II 

13 

«3 


s 


6050 
6055 
6059 


6a99 
6303 
6307 


6545 
6549 
6553 


6789 
6793 
6797 


7039 
7033 
7037 


7365 
7369 
7a73 


7499 

75M 
7506 


77a8 
7731 
7735 


7953 
7960 


ao 

30 
40 
50 
60 


1.7 

*.5 

3.3 
4-8 
5.0 




$8ia 


6o(^ 


6311 


6557 


6801 


704« 


7377 


75 «o 


7739 


7964 




5816 
58ao 
58as 


Si 


6315 
63 »9 
6384 


6561 


6805 
6809 
68x3 


7045 
7049 
7053 


738X 


7514 
7518 
7Saa 


7743 
7747 
7750 


7968 
797« 
7975 








«5 

i6 


5839 

III? 


S 


6338 
633a 
6336 


6573 


6817 
6831 
6835 


7064 


7300 


75a6 
7Sa9 
7533 


7754 
7758 


S 






«9 

ao 

at 
aa 

n 


5850 


0096 
6100 


6340 
6345 
6349 


6586 
6590 
6594 


6839 
6833 
6837 


7068 
7072 
7076 


11^ 

73" 


7537 
7541 
7545 


7766 
7769 
7773 


7990 
7994 
7997 






5854 


6104 


6353 


6598 


684X 


7080 


73 «6 


7549 


7777 


800X 




5867 


6108 
6113 
6117 


6365 


6606 
6610 


S*5 

ss 


7093 


73ao 

11^ 


7S5a 
7560 


778. 


80x3 




24 


587. 


6131 
6135 
6139 


6369 

till 


6614 
66x8 
6633 


6865 


7096 
7x00 
7x04 


733a 
7335 
7339 


757a 


779a 
7000 


8016 
8019 
8033 


4 










80 

3> 
Sa 

33 


589a 


6133 
6138 
6143 


6383 
6386 
6390 


6637 
6631 
6635 


6869 
6877 


7x08 
71x3 
7x16 


7343 
7347 
735' 


7576 


7804 

7807 
781 1 


803X 
8034 


xo 
ao 
30 
40 


.7 
1.3 
a.o 
8.7 
3-3 
4.0 




58g6 


6146 


6394 


6639 


6881 


7130 


7355 


7587 


78x5 


8038 




5900 

5904 
5909 


6150 


6398 
6403 
6406 


6643 
6647 
665X 


6885 

6885 
6893 


l^ 

7132 


7359 
7363 
7367 


7591 

l^ 


78x9 

7833 
7836 


8043 

£:5 








34 


59«3 
59«7 
59a« 


6i6a 
6166 
6x71 


64x0 
64x4 
64x9 


6655 


SJ 
^ 


7136 
7139 
7'43 


737« 
7378 


76x0 


7830 

7833 
7837 


§ 






IS 

39 
40 

4« 
4a 
43 


59»5 
5930 
5934 


6175 


64a3 
6437 
6431 


6667 
6671 
6675 


6909 

69x3 
69x7 


7«47 
7x51 

7155 


7386 
7390 


76x4 
76x7 
763X 


784X 


807X 


S 




5938 


6x87 


6435 


6679 


6931 


7>59 


7394 


7635 


785a 


8075 




594a 
5946 
5951 


619 X 

6195 

6300 


6439 
J443 
6447 


6683 
6687 
669X 


6935 
6939 
6933 


7x63 
7x67 
7171 


7398 
7403 
7406 


7639 

7636 


7856 

7860 

7863 


is? 

8086 




44 


5955 


63X3 


6451 
^15 


6699 
6704 


6937 
6941 
6945 


7175 
7179 
7x83- 


74«o 
7413 
7417 


7648 


7867 

787X 
7875 


80R9 
8097 




10 


.5 




49 
60 

5' 
sa 

53 


5967 
597a 
5976 


63x6 
632 X 
6225 


6464 
6468 
6473 


6708 
6713 
6716 


6949 
6957 


7187 
7191 
7195 


74ax 
74a5 
74a9 


7653 
7655 
7659 


7886 


8x00 
8104 
8x07 


ao 
30 
40 

1: 


X.O 

«-5 

a.o 

8.S 

3.0 




5980 


6329 


6476 


6730 


6961 


7199 


7433 


7663 


7890 


8xxx 




599a 


6233 
6237 
6341 


6480 


6734 
6738 
6733 


6965 
6969 
6973 


7203 
7307 

73XX 


7437 
744* 
7445 


7667 

767 X 

7674 


7894 
7897 
790X 


81x5 
81x8 

8X33 






54 

11 


6005 


6245 
6249 
6254 


6493 
6496 
650X 


6736 
6740 
6744 


6985 


73x5 
7318 

7323 


7449 
74Sa 
7456 


7678 
7682 

7686 


79x3 


8136 

8x39 

8133 






IS 

59 
60 


6013 
6017 


6258 
6362 
6266 


6505 
6509 
65«3 


6748 
6752 
6756 


6989 
6993 
6997 


7326 
7*30 
7234 


7460 
7468 


7690 

7693 
7697 


79x6 
7930 

7983 


8137 

8x4X 
8144 






602X 


6370 


63x7 


6760 


7cx>x 


7a38 


747a 


770X 


7987 


8x48 




Smitma 


OMIAN 1 
















Digitize 


rBy"tj 


t!^t!^ 


^ ' 





62 



Table 11. 
LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION 
p. IN ENGLISH FEET. 

[DeriTation of table ezplainod on p. zIt.] 



Lat. 


6i*> 


62« 


630 


64^ 


65" 


66^ 


67° 


68O 


69- 


70° 


P.P. 


a 
3 

4 

1 
I 

9 
10 
II 

13 

»3 

M 

\l 

:i 

'9 
SO 

91 

M 
23 

as 

a6 

% 

a9 

ao 
j« 

32 
33 

34 

U 

39 
40 

41 
43 
43 

44 

49 
M 

SI 
S» 

53 

54 

II 

59 
00 


7.sai 

8148 


7.3S1 

8364 


7.821 

8575 


7.3ai 

8781 


7.3ai 
8983 


7.821 

9176 


7.821 

9365 


7.381 

9548 


7.381 

9724 


7.881 

9893 


4 


815a 
8155 
8159 

816a 
8166 
8170 

8173 

IS 


8368 
837« 
8375 

|J2 

8i86 

8389 
8393 
8396 


8585 
8589 

8596 

8603 
8606 


8791 
8813 


K5 

901a 


9179 
9183 
9186 

9189 
919a 
9«95 

9198 
9ao3 
9aos 


9368 
937« 
9374 

9380 
9384 

9387 
9390 
9393 


955 > 
9554 
9557 
9560 
9562 
9565 
9568 
957« 
9574 


9727 
9730 
973a 

9738 
974' 

9746 
9749 


990Z 

9906 
9909 
9913 

99«5 
99«7 


8184 


8400 


8610 


8815 


9015 


9308 


9396 


9577 


9752 


9920 


10 

ao 
SO 
40 


•7 
1.3 
a.o 
a-7 
3.3 
4.0 


8188 
8I9Z 

8195 

aao6 

8ao9 
8213 
8ai6 


8403 
8407 
8410 

8431 


8613 
8617 
863^ 

8634 
8641 


8818 
8833 
8835 

8833 
883s 

8843 
8846 


9018 
9031 
9035 

9038 
9031 
9034 

9037 
9041 

9044 


9311 
9314 
9318 

9331 
9334 
9337 

9330 
9234 
9*37 


9399 
9403 
9405 
9408 
94" 
9415 
9418 
9421 
9434 


9580 

9589 
9592 
9595 

9Cx>i 
9604 


9755 
9758 

9766 
9769 

9773 
9775 
9778 


9936 
9928 

9931 
9934 
9937 

9940 
9942 
9945 


3 


82ao 


8435 


8645 


8849 


9047 


9340 


9427 


9607 


9781 


9948 


82*4 
8327 
8231 

pi 

8243 

8246 
8250 
8aS3 


8438 
8443 
8445 

8449 
^5J 
8456 

8459 


8648 

8665 

8669 
8673 
8676 


8853 
8856 
8859 
8863 
8865 
8869 
8873 

8879 


9050 
9054 
9057 
9060 
9063 
9067 

9070 
9073 
9077 


9346 
9250 

9»53 
9*56 
9»59 
9363 
9366 
9369 


9430 
9433 

9436 

9439 
9442 
9445 
9448 
945« 
9454 


9610 
9613 
9616 

96x9 
9631 
9634 
9637 
9630 
9633 


9784 
9787 
9789 

9792 

9801 

9803 

9806 


995« 

9956 

9959 
9961 
9964 

9967 
9970 

9972 


xo 
30 

30 
40 


.5 

I.O 

1.5 

3.0 
2.5 
3.0 


8357 


8470 


8679 


8883 


9080 


9273 


9457 


9636 


9809 


9975 


8261 

8^3^ 

8371 
8375 
8379 

8383 
8386 
8389 


8473 

8491 
850X 


8683 
8686 
b689 

1^ 

8699 
8710 


8885 
8889 
8893 

8896 
8913 


9083 
9086 
9090 

9093 
9096 

9099 
910a 
9106 
9109 


9«75 
9378 

9384 
9387 
9391 

9»94 
9397 
9300 


9460 

9469 
9472 
9475 

9484 


9639 
9643 
9645 

9648 
9651 
9654 

9663 


98,3 
9815 
9817 

9830 

9823 
9836 

9839 

9831 
9834 


9978 
9980 
S^3 

999« 

9994 
9997 
9999 


8 


8»93 


8505 


8713 


8916 


91 13 


9303 


9487 


9666 


9837 


•0003 


8303 

8307 
8310 
8314 

8317 
8331 
8334 


8508 
8513 
8515 
8519 
8533 
8536 

8539 
8533 
8536 


8716 
8730 
87*3 

8737 
8730 
8733 

8737 
8740 
8744 


8919 

gl 

8936 
8939 

8946 


9115 
91 18 
9133 

9135 
9138 
913I 

9'34 
9*38 
9141 


9306 

9309 
9312 

9315 
93 >8 
93" 

9325 
93*8 
933 « 


9490 
9493 
9496 

9499 
9502 
9506 

9509 
951a 

9S«S 


9669 
9673 
9675 

9678 
9680 
9683 
9686 
9689 
9693 


9840 
9843 
9845 

9848 
9851 
9854 
9857 


*ooo7 
•0010 

<^x>I3 
^0015 

^0O3I 


10 

ao 
30 
40 
50 
60 


•3 
.7 

Z.O 

i.S 
"7 
a.o 


8338 


8540 


8747 


8949 


9144 


9334 


9518 


969s 


9865 


*^39 




833» 
833s 
8339 

834* 
8346 
8350 
8353 

US 


8543 
8547 
8550 

8554 
8571 


8750 
8754 
8757 
8761 

V^ 
8767 

877. 
Hit 


8956 
8959 
8963 

li 

8979 


9M7 
9150 
9' 54 

9157 
9160 
9»63 
9166 
9x70 
9'73 


9337 
9340 
9343 
9346 
9349 
9353 

9356 
9359 
9363 


9521 
9524 
9527 
9530 
9533 
9536 

9539 
9542 
9545 


9698 
9701 
9704 

9707 
9709 
9713 

97'5 
9718 
9721 


9868 

9871 
9873 
9876 

gg 

9885 
9887 
9890 


•bosa 
•>«>34 
•0037 
J»39 

*0O43 

•too45 

JxH7 
•0050 
•0053 


8364 


8575 


8781 


8983 


9176 


9365 


9548 


9724 


9893 


•0055 


r 


^ 



e 



SMiTHaoNiAii Tables. 



63 



Table 11. 

LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION 
p^ IN ENGLISH FEET. 

PMvstioB of tabk apbiaed on p, xhr.] 



Lat. 


7i» 


7^ 


73* 


74° 


7f 


76« 


7r 


78° 


79P 


8o« 


P.P. 




7.ass 


7.ass 


7.SSS 


7.ass 


7.ass 


7.SSS 


7.ass 


7.ass 


7.ass 


7.ass 




I 
a 
3 


OOS5 


02 to 


0359 


0499 


C6i2 


0757 


0875 


0984 


.08s 


"77 




oos8 
0063 


0213 

02I( 
0218 


0361 
0366 


0501 


0634 
0636 
0639 


0761 
0763 


0877 


S 

0989 


X090 


:;2 

1181 


4 

1 
I 

9 
10 

ti 
la 
S3 


0066 
0068 

0071 

0074 
0077 
0079 


oaao 

0231 
0233 


0369 
0371 
0373 
0376 
0378 
0381 


«>50» 

0510 
0513 

0515 
0517 

osao 


0641 
0643 
0645 

0J47 
0650 
065a 


077« 
0773 
0775 


088a 

0888 

0891 


0991 
099a 
0994 

-1 

0999 


1091 
1093 
1095 

1096 
1098 
1099 


1183 

II87 

XI89 

XX90 


S 


10 

ao 
30 

40 

£ 


•5 

I.O 

«.$ 

a^ 
a-5 

3.0 


008a 


0236 


0383 


0522 


0654 


0777 


0893 


lOOI 


IIOI 


xi9a 


0087 
0090 


0238 
0241 
0243 


0390 


0529 


0656 

0660 


0783 


0895 


1003 


1 102 

1104 

lies 


"93 




«4 


3 


0246 
0248 
0251 


039a 
0394 
0397 


0531 
0533 
o$35 


066a 


0785 
0787 
0789 


0901 
090a 
0904 


1008 
1009 

lOII 


IIIO 


1.98 

"99 
laoo 




«9 

SO 

ai 
aa 
a3 


0100 
0103 

oios 


0256 
0258 


0399 
0401 
0404 


0537 
0540 
054a 


0673 


o79( 
0793 
0795 


5!S 
0908 

0910 


IOI3 

101$ 
1016 


IIXI 

III3 

IX 14 


xaoa 
xao3 
laos 




0108 


oa6i 


0406 


0544 


067s 


0797 


091a 


IOI8 


III6 


xao6 


01 II 
0113 
0116 


oa68 


0408 
0411 
0413 


0546 

0549 
0551 


0677 


3S? 
080J 


0916 
0917 


xoao 
1021 
loas 


IXI8 
1x19 

IX2X 


xao7 
iao9 

xaxo 


S 

•9 
SO 

SS 
3* 

33 


0118 
oiai 
oia4 

oia6 
oiaQ 
0131 


0*71 
0283 


0416 
0418 
O4ao 

04*3 

SSI 


0553 
0565 


06S3 

0694 


S 

o8xx 
08.3 
0815 


0919 

09ai 
09*3 

SI 


SI 

1028 

1030 
1032 
1033 


1122 

1 127 
1129 
XX30 


taia 
iai3 
iai4 

xat6 
iai7 
xax9 


1 


10 

ao 
30 
40 
50 
to 


>3 

•7 
1.0 
«.3 
X.7 


0134 


oa86 


0430 


0567 


0696 


0817 


0930 


X03S 


xx3a 


laao 


0137 
0139 
014a 


0288 
0291 
0293 


043a 
0435 
<H37 


0569 
0571 

0574 


0698 

0700 
070a 


cA.9 
08a 1 
o8a3 


093a 
0934 

09S5 


;SJ 

1Q40 


"33 

IIJI 


taai 
iaa3 

iaa4 




34 


0144 
OI47 
0150 


SI 

0300 


0439 
0441 

0444 


0576 


B 


SI 

o8a8 


0937 
0939 
0941 


104a 
1043 
104s 


1x38 
1 139 
1x41 


I2a6 




39 
40 

4« 
4* 
43 


015a 
0155 
0157 


0303 

S3 


0446 
0448 
0451 


058a 
0585 
0587 


0710 
o7xa 
0714 


^90 
^3a 
0834 


0943 

0946 


1047 
1049 
1050 


"4* 

"44 
"45 


1230 

123 X 

"33 




0160 


0310 


0453 


0589 


07x6 


0836 


0948 


1052 


"47 


1234 


oi6a 
0165 
0167 


031a 
03«5 
0317 


0460 


0591 


0718 
07ao 
07aa 


S^* 

z 


0950 
095a 
0953 


xo$4 
105s 
«o57 


1148 
Its© 
"5« 


"35 


44 
49 

00 

51 
5* 

53 


0x70 
017a 
0175 

0177 
0180 
0x82 


03ao 
o3aa 
©3*4 

03a7 
03*9 
033a 


046a 
«^64 
0467 
0469 
0471 
0474 


22 

060a 

0604 
0607 
0609 


0739 

073« 
0733 
0735 


0848 

0850 
o8s2 
0854 


0955 
0957 
0959 
0961 
0962 
0964 


1062 

.063 
1065 
1066 


««53 

"54 
1x56 

"57 


1240 

X24X 

1242 

«M4 

"45 
1247 


1 


to 
ao 
30 
40 


1 

.a 
•3 
•5 

i 

1.0 


0185 


0334 


0476 


061X 


0737 


0856 


0966 


1068 


1x62 


1248 


0187 
0190 
019a 


0336 
0339 
0341 


0478 
0481 
0483 


0613 
0615 
0617 


0739 
0741 

0743 


0862 


0968 
0970 
097X 


1070 
1071 
1073 


1x63 

!:ti 


1249 
125 1 
1252 




54 


0195 
0197 
0200 


0344 
0346 
0349 


0485 
0487 
0490 


06x9 
0621 
0624 


0745 
0747 
0749 


0864 
0865 
0867 


0973 
097s 
0977 


X078 


1x68 

1x69 
XX7X 


"53 

1256 




11 

59 
60 


oaoa 
oaos 
0207 


035' 
0354 
0356 


049a 
0494 
0497 


0626 

0628 
0630 


0751 
0753 
0755 


0869 

0871 
0873 


0979 
0980 
0982 


1080 
to82 

1083 


txTa 
"74 
•«75 


1 




0210 


0359 


0499 


0632 


0757 


0875 


0984 


1085 


XX77 


126X 




T 



8mitn«onian Tables. 



64 



Table 11. 
LOGARITHMS OF RADIUS OF CURVATURE OF NORMAL SECTION 
p^ IN ENGLISH FEET. 

[Derivation of table explained on p. zIt.] 



Let. 


8i*» 


82° 


830 


84^ 


Zf 


86° 


87<' 


88° 


89^^ 


P.P. 




7.381 


7.3Sa 


7.3Sa 


7.3aa 


7.823 


7.333 


7.333 


7.333 


7.333 




t 

3 

3 


ia6i 


>337 


1403 


X461 


"5"« 


"55" 


'583 


1605 


1619 




ia6a 
ia64 
ia65 


1338 
'339 
1340 


1404 


1462 
1463 
1464 


"5«a 
1512 

"5«3 


"55» 

"55* 
"553 


1583 
1584 
'584 


X605 
1606 
1606 


x6x9 

1619 
Z619 


4 

1 


ia66 
1269 


«34i 
«34a 
1344 


;:3 

X410 


1465 

h66 


"5"4 

»5"4 
i5>5 


"553 
"554 
"555 


'585 
1585 
'585 


1606 
z6o6 
.607 


x6x9 
1619 
X620 




I 

9 
10 

la 
«3 


1270 
ia7f 
"73 


1347 


141 1 

1412 

I4«3 


1469 


1516 
«5"7 
«5"7 


"556 
"556 


1586 
X586 
"587 


'52 

IS 


1620 
X620 
X620 


3 


"74 


1348 


M«4 


"470 


1518 


'557 


"587 


x6o8 


x6ao 


"75 
1378 


>349 
«350 
1353 


1416 
X417 


"47" 
"472 
"473 


"5«9 
1519 
1520 


"558 
"558 

"559 


1588 


1608 
1609 
1609 


X620 
x6ao 


«4 


'.32 

laSa 


>353 
1354 
>355 


1418 
1419 
1420 


"474 
"474 
"475 


1521 
1521 

XS22 


156X 


"589 
X589 

1589 


1609 
1609 
x6xo 


X620 
i6ao 

X62X 




xo 


•3 


«9 
10 

ai 

2a 

33 


'*!* 
;SJ 


1356 
«358 
"359 


X42X 

142a 
1423 


1476 
"T8 


"5»3 

"5»4 
"5*4 


1561 
1562 


X590 
1590 

'59' 


1610 
z6io 
x6ii 


x6ax 
i6ai 
x6ai 


20 
30 
40 


•7 

X.O 

"3 
"•7 
2.0 


1287 


«36o 


«4a4 


"479 


«5«5 


"563 


«59' 


x6xx 


i6ax 


ia88 
"90 
"91 


1361 
X362 
13^ 


1437 


Z481 


X526 
X526 
xsa7 


X563 
X5j4 
1564 


"59" 
X592 
X592 


x6ix 
161 z 
1612 


X62X 
X62X 
X62X 






"9» 

"93 
Ka9S 


1365 

1367 


1428 
1429 
1430 


,482 
1483 
1484 


X528 

1528 
1529 


.565 
1565 
1566 


"593 
"593 
"593 


x6ia 
z6ia 
i6ia 


Z621 

X621 
x62a 




19 
SO 

31 
3* 

33 


1296 
"97 
"99 


1369 
1370 


143 « 
1432 
«433 


.48s 


"530 
"53" 

"53" 


'567 
"567 


"594 
'594 
'595 


Z6Z2 

1613 
1613 


X622 

X622 
X622 




1300 


1371 


M34 


"487 


"532 


X568 


'S9S 


1613 


1622 


1301 
130a 
1304 


1372 

»373 
«374 


"437 


1489 
"489 


"533 
"533 
"534 


X569 
X569 


'596 


1613 
1613 
1614 


1622 
1622 
X622 


34 

^1 


1307 


1376 
1378 


«438 
1438 
X439 


1490 

"49" 
1492 


"535 

1536 


"570 

"570 
"57" 


"597 
"597 
"597 


x6z4 
1614 
1614 


X633 
x62a 
1623 




39 
40 

41 
43 
43 


1308 
1310 
1311 


1381 


1440 
1441 
«44a 


"493 
"493 
"494 


-1 

1538 


«57« 
1572 
"57* 


"599 


x6z4 
1615 
Z615 


1623 
X623 


1 


xo 

20 
so 
40 


.a 
*3 
•S 

■I 

1.0 


131a 


1382 


"443 


"495 


"539 


'573 


'599 


X615 


1623 


1313 
1316 


.383 
1384 
1385 


"444 


"496 
"497 
"497 


"540 
"540 
"54" 


"573 
"574 
"574 


'599 
1600 
z6oo 


X615 
1615 
z6i6 


1623 
x6a3 
1633 


44 


1317 
1318 
1320 


1386 
1387 
1389 


"447 

1» 


1498 
"499 
1500 


"54" 
"542 

"543 


'575 
1576 


x6oo 
z6oo 
z6oi 


1616 
x6x6 
x6i6 


1623 
1623 
X623 








49 
M 
SI 
53 


1321 

«322 
1324 


1390 
1391 
1392 


"449 
1450 
"45" 


iSoi 
1501 
1502 


"543 
"544 
'544 


XS76 
'577 
'577 


z6oi 
x6oi 
1602 


1616 
1617 
1617 


1623 
1623 
1623 




"335 


«393 


'45a 


"503 


"545 


'578 


1602 


1617 


1623 


1326 
1327 
1329 


«394 


"453 
"454 
"455 


"504 
1505 

"505 


'546 
'546 
'547 


"578 
'579 
'579 


X602 

1603 
1603 


x6i7 
16x7 
x6i8 


X623 
x6a3 
1623 


54 


'330 
«33« 
1332 


U99 


"456 
1456 
"457 


1506 


"549 


1580 
1580 
X581 


X603 
1603 

X604 


1618 
1618 
x6i8 


X623 
X623 
1623 




59 
00 


>333 
1335 
1336 


1400 
1401 
1402 


"458 
"459 
1460 


1509 
1509 
1510 


"549 
"550 
"550 


.58« 
1582 
1582 


1604 

1605 


x6i8 
1619 
1619 


x6a3 
1623 
1623 




«337 


1403 


1461 


151X 


"55" 


'583 


1605 


16x9 


x6a3 







8HiTHaoNiAii Tables. 



6s 



Tabu 12. 

LOGARITHMS OF RADIUS OF CURVATURE p« (IN METRES) OF SECTION 
OF EARTH'S SURFACE INCLINED TO MERIDIAN AT AZIMUTH a. 









[Fonmila for p« givei 


1 on p. xIt.] 


















LATITUDE. 










Azimath. 






















22° 


^f 


24** 


2f 


26*» 


27° 


28« 


2^ 


30° 


31° 


&> 


6A)237 


6.80242 


6.80248 


6.80254 


6.80260 


6J80266 


6.80272 


6.80279 


6.80285 


6.80292 


5 


239 


244 


250 


2|6 


262 


268 


274 


280 


287 


^ 


10 


244 


250 


255 


261 


267 


SI 


^ 


285 


292 


^ 


IS 


254 


259 


264 


270 


276 


294 


300 


306 


ao 


266 


^' 


277 


282 


288 


^ 


299 


305 


3" 


3^7 


25 


282 


287 


292 


297 


302 


313 


319 


325 


^^l 


30 


300 


305 


309 


314 


319 


324 


330 


335 


340 


346 


3S 


320 


324 


329 


333 


33» 


343 


f 


353 


358 


3f3 


40 


341 


345 


350 


354 


358 


^^ 


372 


377 


382 


45 


364 


367 


37' 


375 


379 


383 


387 


391 


396 


400 


SO 


386 


389 


392 


396 


399 


403 


^ 


411 


415 


419 


II 


407 


410 


413 


416 


420 


423 


4*6 


430 


434 


437 


427 


430 


432 


435 


438 


442 


445 


448 


451 


455 


65 


445 


448 


'4 

478 


tU 


455 


458 


461 


464 


4^ 


470 


70 


461 


.46J 
476 


T^ 


473 


%l 


478 


481 


484 


75 


473 


480 


484 


489 


492 


494 


80 


483 


485 


487 


489 


491 


tP 


495 


498 


500 


502 


85 


489 


490 


492 


494 


496 


SOI 


503 


505 


507 


90 


490 


492 


494 


496 


498 


500 


S02 


504 


507 


509 












LATIT 


UDE. 










Aximuth. 






















32° 


33° 


34° 


35° 


36° 


37° 


38° 


39° 


40« 


41° 


OO 


6.80299 


6.80306 


6.80313 


6.80320 


6.80327 


6.80335 


6&)342 


6A)35o 


6.80357 


6A>365 


5 


300 


307 


314 


322 


329 


336 


344 


351 


1 


366 


xo 


305 


312 


31? 


326 


333 


340 


.348 


W 


370 


15 


3*3 


320 


326 


333 


340 


348 


355 


369 


376 


20 


324 


330 


337 


343 


ir. 


3^1^ 


364 


371 




385 


25 


337 


3^5^ 


349 


355 


'^ 


382 


395 


30 


352 


364 


370 


376 


382 


394 


401 


407 


35 


3^ 


374 


380 


385 


391 


397 


402 


408 


414 


420 


40 


386 


392 


397 


402 


407 


412 


418 


423 


429 


434 


45 


405 


410 


414 


419 


424 


429 


434 


439 


444 


449 


50 


423 


428 


432 


436 


441 


445 


1 

480 


484 


459 


464 


II 


441 
458 


III 


449 
465 


t^ 


457 
472 


461 
476 


%^ 


478 
491 


65 


V 


476 


480 


483 


486 


489 


493 


496 


500 


503 


70 


486 


489 


492 


495 


^^0 


501 


504 


507 


510 


514 


75 


497 


SCO 


502 


505 


508 


510 


5'3 


516 


5*9 


522 


80 
85 


505 


507 


510 


512 


515 


517 


520 


523 


525 


528 


510 


512 


5'1 


5'Z 


519 


522 


524 


527 


529 


532 


90 


5" 


514 


516 


518 


521 


523 


526 


528 


531 


533 



Smithsonian Tables. 



66 



Table 12. 
LOGARITHMS OF RADIUS OF CURVATURE pa, (IN METRES) OF SECTION 
OF EARTH'S SURFACE INCLINED TO MERIDIAN AT AZIMUTH a. 











[Fonmik for p« ghren 


on p. 


KlTj 














LATITUDE. 









Aamnth. 














4^ 


43f 


44'' 


45^ 


460 


47' 


48^ 


4<^ 


ScP 


51' 


o<» 


6A)373 


6A)38o 


6.80388 


6.80396 


6.80404 


6.80411 


6.8041 


9 6.80426 


6&)434 


6A>442 


5 

10 

IS 


i 


3!» 
38s 
39« 


389 
393 
399 




397 
400 
406 


4x3 


4x2 

415 
420 


42 
4a 
4a 


!0 428 

3 430 
« 435 


442 


443 
445 
450 


20 

30 


392 
402 

413 


420 


406 




413 
422 

433 


420 
429 
439 


427 

S2 


4^ 
M 
4! 


A 441 

^^ 445 

;2 458 


448 


gi 

471 


35 
40 
45 


426 
440 
454 


432 
446 

459 


438 




444 
457 
470 


475 


i 

480 


4^ 


>2 468 

^4 479 
^5 490 


495 


480 
490 
500 


SO 


468 
482 
495 


499 


478 
490 

502 




482 


487 
499 
510 


492 
503 
514 


45 
5« 
51 


)6 501 
)8 512 
8 522 


S06 
S16 
526 


510 
520 
530 


65 
70 

75 


507 
517 
525 


510 
520 
528 


514 
523 
530 




534 


520 


524 
532 
539 


52 
5: 
5^ 


^ 531 
^ 539 

^2 545 


534 
548 


538 
545 
551 


80 

85 
90 


531 


534 


536 

540 
541 




539 
542 
544 


542 


18 

54^ 


5^ 
5! 
SI 


^7 55° 
50 553 
)« 554 


553 


559 








LATITUDE. 








Ajunuth. 














520 


S3? 


54' 


55^ 


56" 


57' 


58^ 


59' 


6o<> 


©*> 


6A)449 


&804S7 


^80464 


6.80471 


6.80479 


6.80486 


6.80493 


6A)5oo 


6.80506 


5 
10 

15 


450 
453 
457 


1 

464 


467 
471 


472 
478 


485 


486 
488 
492 


493 


500 

502 

505 


507 
509 
5" 


20 
25 
30 


469 

477 


1 


490 


483 


489 
495 
502 


496 

508 


514 


509 
514 
519 


5x5 
520 

525 


35 

40 
45 


496 

505 


492 

501 


506 

515 


503 
512 
520 


509 

517 
525 


515 
522 

530 


520 

527 

534 


525 
532 
539 


531 
537 
543 


50 


5^5 
524 
533 


520 
528 

537 


524 
533 
541 


528 
537 
544 


533 

IS 


537 
545 
552 


54J 
548 

555 


546 
558 


55? 
5^' 


65 

70 

75 


548 

554 


545 
551 
557 


548 
554 
559 


551 


565 


1 


561 
566 
570 


5^ 
569 

573 


567 

572 
575 


80 

85 
90 


1 

S6i 


563 
564 


IS 

566 


S 

569 


568 
570 
571 


571 
573 
574 


573 


578 





8hith«onian Tablcs. 



67 



Tablk 13. 

LOGARITHMS OF FACTORS a^7;:FOR COMPUTING SPHEROIDAL 
EXCESS OF TRIANGLES. 
UNIT = THE ENGLISH FOOT. 

[Derivaticm and ose of table explained on p. lyiiL] 





log. factor and 




log. factor and 




log. factor and 




log. factor and 


^ 


change per 


^ 


change per 


^ 


change per 


f 


change per 




minute. 




minute. 




minute. 




minute. 


<y> 


0.37498 


200 


0.37429 


400 


0.3725s ^ 


W> 


0.37056 




— aoo 




— 0.12 




— 0.18 




—0.15 


I 


498 


21 


422 


41 


244 


61 


047 




— ao2 




— 0.12 




— 0.17 




— ai5 


2 


497 


22 


415 


42 


234 


62 


038 




— ao2 




— ai2 




— 0.17 




— 0.13 


3 


496 


23 


408 


43 


224 


63 


030 




— 0/)2 




— ai2 




— ai7 




— 0.13 


4 


495 


24 


401 


44 


^'4 « 


64 


022 




— ao3 




— ai3 




— ai8 




— ai3 


5 


493 


25 


393 


45 


203 


65 


014 




—0.03 




— ai3 




— 0.17 




— ai3 


6 


491 


26 


385 


46 


193 


66 


006 




— ao3 




— ai3 




— ai7 




;"?"'3 


7 


489 


27 


377 


47 


183 


67 


0-36998 




— 0.03 




";S-'5 




— ai7 




— ai2 


8 


487 


28 


368 


48 


'73 ^ 


68 


991 




—0.05 




— ai3 




— ai8 




~ai2 


9 


484 


29 


360 


49 


162 


69 


984 




— 007 




-ais 




— ai7 




~ai2 


10 


480 


30 


351 


50 


152 


70 


977 




— 007 




— ai5 




— ai7 




— aio 


II 


476 


31 


342 


51 


142 


71 


971 




— ao7 




-ais 




— ai7 




— ai2 


12 


472 


32 


333 


52 


132 


72 


^ « 




— 0.07 




— ai7 




—0.17 




^ao8 


13 


468 


33 


323 


53 


122 


73 


959 




— ao8 




—0.15 




— ai7 




— aio 


14 


463 


34 


314 


54 


112 


74 


953 „ 




— ao7 




—0.17 




-ais 




— ao8 


15 


459 


35 


304 


55 


103 


75 


948 , 




— aio 




— ais 




—0.17 




— ao8 


i6 


*S3 , 


36 


295 


56 


093 


76 


^3 




— ao8 




— 0.17 




—0.17 




— ao8 


17 


448 


37 


28s 


57 


083 


77 


938 




— aio 




— 0.17 




— ai5 




—007 


i8 


442 


38 


27s 


58 


074 


78 


934 




— 0.10 




— ai7 




—0.15 




— 0.07 


19 


436 


39 


26s 


59 


065 


79 


930 




—0.12 




— O.I7 




—CIS 




— 0.07 


20 


4^9 

— ai2 


40 


*5S „ 
— ai8 


60 


056 
-ai5 


00 


926 



SurmieiiiAM Tablu. 



68 



Digitized by 



GooqIc 



Tablk 14. 

LOGARITHMS OF FACTOR8-a^ FOR COMPUTING SPHEROIDAL 
EXCESS OF TRIANGLES. 

UNIT=THE METRE. 

[Derivation and use of table explained on p. Iviii.] 





log. factor and 




log. factor and 




log. factor and 
oiangeper 




log. factor and 


f 


change per 


^ 


change per 


^ 


f 


change per 




minute. 




minute. 




minute. 




minute. 


0«> 


14069s 


200 


1.40626 


400 


140452 ^ 


60<> 


I402S3 




— aoo 




— O.X2 




— ai8 




— 0.1S 


X 


69s 


21 


619 


41 


441 


61 


244 




— OX>2 




— ai2 




— ai7 




— ais 


2 


694 


22 


612 


42 


431 


62 


235 




— ao2 




—0.12 




— ai7 




— ai3 


3 


693 


23 


60s 


43 


421 


63 


227 




^ao2 




— 0.13 




— ax7 




— 0.13 


4 


692 


24 


597 


44 


*" « 


64 


219 




— ao3 




— 0.12 




— ai8 




— 0.1S 


5 


690 


25 


590 


45 


400 


65 


2IO 




— 003 




— 0.13 




— ai7 




— ai2 


6 


688 


26 


582 


46 


390 


66 


203 




— o/)3 




— 0.15 




— ai7 




— ai3 


7 


686 


27 


573 


47 


^ 


67 


«95 




— 0.05 




— ai3 




— ai8 




^ai2 


8 


683 


28 


565 


48 


369 


68 


188 




—0.05 




— ais 




— ai7 




— ai2 


9 


680 


29 


556 


49 


359 


69 


181 




— 005 




— ai3 




—0.17 




— ai2 


10 


677 


ao 


548 


50 


349 


70 


174 




— ao7 




— 0.1S 




— 0.17 




— aio 


II 


673 


31 


539 


51 


339 


71 


168 




— 0^ 




— ais 




— ai7 




— 0.12 


12 


669 


32 


530 


52 


329 


72 


161 




-0.07 




— ai7 




— ai7 




—0.10 


13 


^s „ 


33 


520 


53 


319 


73 


^55 Q 




—0.08 




— ais 




— ai7 




— 0.08 


H 


660 


34 


5" 


54 


309 


74 


ISO 




—0.08 




— ai7 




— ai7 




—0.10 


15 


655 


35 


501 


55 


299 


75 


'44 ^ 




— ao8 




— ai7 




—0.15 




— ao8 


i6 


650 


36 


491 


56 


290 


76 


139 




— aio 




—ais 




— ai7 




— 0.07 


17 


^ 


37 


482 


57 


280 


77 


'3^ Q 




—0.08 




— ai7 




— 0.IS 




— 0.08 


i8 


639 


38 


472 


58 


271 


78 


130 




— 0.12 




— ai7 




— ais 




— 0.07 


19 


632 


39 


462 


59 


262 


79 


126 




— aio 




— ai7 




-ais 




0.0s 


20 


626 
— 0.12 


40 


— ai8 


60 


253 
-ais 


00 


123 



SumMONiAN Tamjw. 



69 



Digitized by 



GooqIc 



Table 15. 
LOGARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATI- 
TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. 
UNIT=THE ENGLISH FOOT. 

[Derivation and uae of table explained on p. Ix.] 



^ 


a\ 


^=^ 


Of 


^ 


c% 


^ 


a\ 


*i=fi 


<H 


^ 


c% 


o^' 


7.99669 


7-99374 


—00 


^00 


0.372 


IO«00' 


7.9965s 


799369 


9.621 


9.926 


0.398 


10 


^ 


374 


7^39 
8.140 


s 


0.372 


10 


655 


369 


9.628 


9.933 


0.399 


20 


669 


374 


0.372 


20 


654 


369 


9.636 


9.941 


0.400 


30 


669 


374 


8.316 


8.614 


0.372 


30 


654 


369 


9.643 


9.948 


0.401 


40 


669 


374 


8.441 


i:ip 


0.372 


40 


654 


^ 


9.650 


9-955 
9.963 


0402 


50 


669 


374 


8.538 


0.372 


SO 


653 


369 


9.657 


0.403 


I 00 


669 


374 


8.617 


5-915 


0.372 


II 00 


653 


3f5 


9.663 


9.970 


0404 


10 


^ 


374 


8.684 


8.982 


0.372 


10 


652 


3f5 


9.670 


9.977 


0.404 


20 


668 


374 


8.742 


9.040 


0.372 


20 


652 


368 


9.677 


9-983 


0405 


30 


668 


374 


8.793 


9.091 


0.373 


30 


651 


368 


9.683 


9-990 


0406 


40 


668 


374 


5-539 


9.137 


0.373 


40 


651 


3g 


9.690 


9-997 


0407 
0408 


50 


668 


374 


8.880 


9-179 


0.373 


50 


650 


368 


9.696 


aoo3 


200 


668 


374 


8.918 


9.216 


0.373 


1200 


650 


367 


9.702 


0.010 


0.409 


10 


668 


373 


us? 


9.2U 

9.283 


0.373 


10 


649 


3^ 


9.708 


0.016 


0.410 


20 


668 


373 


0.373 


20 


649 


367 


9-714 


0.023 


a4i2 


30 


668 


373 


9.015 


9.3M 


0.374 


30 


648 


367 


9.720 


0.029 


0413 


40 


668 


373 


9.043 


^3^ 


0.374 


40 


648 


^^ 


9.726 


0.035 


0414 


SO 


668 


373 


9.069 


0.374 


50 


647 


367 


9.732 


ao4i 


0415 


300 


668 


373 


9094 


9.393 


0.374 


1300 


646 


3^ 


9.738 


0.048 


a4i6 


10 


667 


373 


9.1 18 


9-417 


0.375 


10 


646 


3^! 


9.744 


0.054 
ao6o 


0417 


20 


667 


373 


9.140 


9.439 


0.375 


20 


64s 


366 


9.749 


a4i8 


30 


667 


373 


9. 1 61 


9.460 


0.376 


30 


645 


366 


9-755 
9.761 


0.065 


0.419 


40 


667 


373 


9.182 


9.481 


40 


644 


3^ 


0.071 


a42o 


so 


667 


373 


9.201 


9-500 


0.376 


50 


644 


365 


9-766 


0.077 


0.422 


400 


667 


373 


9.<220 


9-519 


0.376 


1400 


643 


365 


9-771 


ao83 
ao88 


0423 


xo 


666 


373 


9.237 


9-537 


0.377 


10 


642 


365 


9.777 


a424 


20 


666 


VZ 


9.2S4 


9.554 


0.377 


20 


642 


36s 


9.782 


0.094 


0.425 


30 


666 


373 


9.271 
9.287 


9.570 


0.377 


30 


641 


36s 


9.787 


aioo 


0.426 


40 


666 


373 




0.378 


40 


640 


364 


9.792 


0.105 


a428 


50 


666 


373 


9.302 


0.378 


50 


640 


364 


9.798 


am 


0429 


500 


66s 


373 


9.317 


9.617 


0.379 


1500 


639 


* 364 


& 


aii6 


0430 


10 


^5 


373 


9.331 


9.631 


0.379 


10 


^39 


364 


ai2i 


0.431 


20 


66s 


372 


9.3+S 


9.645 


0.379 


20 


638 


363 


9.813 


0.127 


0.433 


30 


66s 


372 


9.358 


9.659 


0.380 


30 


637 


363 


9.818 


ai32 


0434 


40 


664 


372 


9.372 


9-^72 


0.380 


40 


637 


363 


9.822 


0.137 


0.43s 


50 


664 


372 


9.384 


9.685 


0.381 


SO 


636 


363 


9.827 


ai42 


0.437 


600 


664 


372 


9.397 


9-697 


0.381 


x6oo 


635 


363 


9-832 


0.147 


a438 


10 


664 


372 


9.409 


9-709 


0.382 


10 


635 


362 


9.837 


0.153 


0439 


20 


663 


372 


9.420 


9.721 


0.383 


20 


634 


362 


9.841 


0.158 a44i 
ai63 a442 
ai68 , a443 


30 


^3 


372 


9-432 


9.732 


0.383 


30 


633 


362 


9.846 


40 


663 


372 


9.443 


9.744 


0.384 


40 


632 


362 


9.851 


50 


662 


372 


9.453 


9.755 


0.384 


50 


632 


361 


9-855 


0.173 0445 


700 


662 


372 


9.464 


9.76s 


^1 


1700 


631 


361 


9.860 


ai78 0446 
0.182 0448 


10 


662 


371 


9.474 
9.484 


10 


630 


361 


9.864 


20 


662 


Z7^ 


0.386 


20 


630 


361 


9.869 


a 187 


0.449 


30 


661 


371 


9.494 


9.796 


0.387 


30 


62! 


360 


9-873 


0.192 


0450 


40 


661 


371 


9.504 


9.806 


^•357 


40 


360 


0.197 


0452 


so 


661 


Z7^ 


9.5^ 


9.816 


0.388 


50 


627 


360 


9.882 


0.202 


0453 


800 


660 


371 


9.523 


9.825 


0.389 


1800 


627 


360 


9.886 


a2o6 


0455 
0.456 


10 


660 


371 


9.532 


9-834 


0.389 


10 


626 


359 


9.890 


0.211 


20 


659 


371 


9-541 


9-843 


0.390 


20 


625 


359 


9.89s 


a2i6 


0.458 


30 


6S9 


371 


9.558 


^•t^' 


0.391 


30 


624 


359 


9.899 


0.220 


0.459 
0.461 


40 


§ 


370 


9.861 


0.392 


40 


624 




9-903 


0.225 


SO 


370 


9.870 


0.392 


50 


623 


9.907 


0.229 


0.463 


900 


6s8 


370 


9.575 


9-f78 


0-393 


1900 


622 


358 


9-9" 


0.234 


0.464 


10 


657 


370 


9.583 


9.886 


0-394 


10 


621 


358 


9.915 


0.239 


0.466 


20 


657 


370 


9.591 


9.895 


0.39s 


20 


620 


358 


9.919 


0.243 


0.467 


30 


^57 


370 


t^ 


9.903 


0.396 


30 


620 


357 


9-923 


0.248 


0.469 


40 


656 


370 


9.910 


0.396 


40 


619 
618 


357 


9-927 


0.252 


0.470 


SO 


6s6 


369 


9.614 


9.918 


0.397 


50 


357 


9.931 


0.256 


0.472 


1000 


6S5 


369 


9.621 


9.926 


0.398 


20.00 


617 


357 


9-935 


a26i 


0474 



SiiiTHaoNiAii Tables. 



70 



Table 16« 
LOGARITHMS OF FAOTOR8 FOR COMPUTING DIFFERENCES OF LATI- 
TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. 

UNIT=THE ENGLISH FOOT. 

[Derivation and uae of table explained on p. Ix.] 





f 


a\ 


h^ci 


0S 


h 


Ci 


^ 


tfi 


^ = r. 


at 


^ 


f% 




20*»00' 


7.99617 


7-99357 


9-935 


a26i 


0.474 


3o''oo' 


7.99558 


7.99337 


0.135 
0.138 


a496 


0.593 




10 


616 


356 


9-939 


a265 


0.475 


xo 


557 


337 


0.500 


0.595 
0.598 




20 


61S 


356 


9-943 


0.270 


0.477 


20 


556 


336 


ai4i 


0.503 




30 


615 


356 


9-947 


0.274 
a278 
a282 


0.479 


30 


555 


336 


0.144 


0.507 


0.600 




40 


614 


355 


9-951 


0480 


40 


554 


335 


0.146 


0.511 


0.603 




50 


613 


355 


9-955 


a482 


50 


553 


335 


0.149 


0.514 


0.605 




21 00 


612 


355 


9-958 
9.962 


0.287 


0.484 


31 00 


552 


335 


0.152 


0.518 


0.607 




10 


611 


355 


0.291 


0.486 


10 


550 


334 


0.155 
0.158 


0.522 


a6io 




20 


610 


354 


9.966 


0.295 


0.487 


20 


549 


334 


0.525 


0.612 




30 


^ 


354 


9.970 


0.299 


0.489 


30 


548 


333 


ai6i 


0.529 


0.615 




40 


354 


9.973 


0.304 
0.308 


0.491 


40 


547 


333 


0.164 
ai66 


0-532 


0.617 




SO 


608 


353 


9.977 


0.493 


SO 


546 


333 


0-536 


0.619 




22 00 


^ 


353 


9.^1 


0.312 


0.494 
0.496 


3200 


545 


332 


0.169 


0.540 


0.622 




10 


606 


353 


9-984 


0.316 


10 


54* 


332 


0.172 


0.543 


0.624 




20 


605 


353 


9.988 


a320 


0.498 


20 


542 


332 


O.X75 


0.547 


0.627 




30 


604 


352 


9.991 


^324 
0.328 


0.500 


30 


541 


331 


0.177 
0.180 


0.550 


0.629 




40 


603 


352 


9995 
9.998 


0.502 


40 


540 


33* 


0.554 
0.558 


a632 




SO 


602 


352 


0.332 


0.503 


50 


539 


330 


0.183 


0.634 




2300 


601 


351 


0.002 


0.336 


0.505 


3300 


538 


330 


0.186 


0.561 


0.637 




10 


600 


351 


0.005 


0.340 


0.507 


10 


537 


330 


0.188 


t'^ 


0.639 




20 


600 


351 


0.009 


0.344 


0.509 


20 


535 


329 


0.191 


0.642 




30 
40 


^ 


350 
350 


0.012 
0.016 


0.348 
0-352 


0.51 1 
0.513 


30 
40 


534 
533 


3? 


0.194 
0.197 


0.572 
0.575 


0.644 
0.647 




SO 


S97 


350 


0.0x9 


0.356 


0.515 


so 


532 


328 


0.199 


0.579 


0.650 




2400 


596 


349 


0.02Q 


0.360 


0.517 


3400 


531 


328 


0.202 


in 


0.652 




10 


595 


349 


0.364 


0.518 


10 


IS 


327 


a205 
0.208 


0.655 




20 


594 


349 


0.029 


0.368 


0.520 


20 


327 


0.590 


0-657 




30 


593 


348 


0.033 
0.036 


0.372 


0.522 


30 


5^J 


326 


0.210 


0.593 


a66o 




40 


592 


3^5 


a376 


0.524 


40 


526 


326 


0.2x3 
0.2x6 


0.000 


a663 




50 


591 


348 


0.039 


0.380 


0.526 


50 


525 


326 


a665 




2500 


500 


347 


0.043 
0.046 


°-3§4 


0.528 


3500 


523 


325 


0.2x8 


0.604 
0.608 


0.668 




10 


509 


347 


0.388 


0.530 


10 


522 


325 


a22i 


0.671 




20 


588 


347 


ao49 


0.392 


0.532 


20 


521 


324 


0.224 


a6ii 


0.673 




30 


587 


346 


0.052 


0.396 


0.534 


30 


520 


324 


0.226 


0.615 
0.618 


0.676 




40 


^^ 


346 


0.056 


0.399 


0.536 


40 


519 


324 


0.229 


0.679 




so 


585 


346 


0.059 


a403 


0.538 


50 


517 


323 


0.232 


0.622 


0.681 




2600 


5!^ 


345 


0.062 


a407 


0.540 


3600 


516 


323 


0.234 


a625 


0.684 




10 


5i3 


345 


0.065 
ao68 


0411 


0.543 


10 


515 


322 


0.237 


0.629 


°-S7 




20 


582 


345 


0.415 


0.545 


20 


514 


322 


0.239 


0.632 


0.689 




30 


5f^ 


344 


0.072 


0.418 


0.547 


30 


512 


322 


0.242 


0.636 


0.692 




40 


580 


344 


0.075 
0.078 


0.422 


0.549 


40 


5" 


321 


0.245 


0.640 


t^ 




SO 


579 


344 


0426 


0.551 


50 


510 


321 


0.247 


0.643 




2700 


578 


343 


ao8i 


0.430 


0.553 


3700 


509 


320 


0.250 


0.647 


a7oo 




10 


577 


343 


ao84 


0433 


0.555 


xo 


5^2 


320 


0.253 


0.650 


0.703 
0.706 




20 


576 


343 


0.087 


0.437 


0.557 


20 


506 


320 


0.255 


0.654 




30 


575 


342 


0.090 


0.441 


0.559 
0.562 


30 


505 


319 


0.258 


IW. 


0.709 




40 


574 


342 


0.093 
0.096 


0.44s 
0.448 


40 


504 


3'? 
318 


a26o 


0.7x2 




SO 


573 


342 


0.564 


50 


503 


0.263 


0.665 


0.715 




2800 


571 


341 


0.099 


0.452 


a566 


3800 


501 


318 


a266 


0.668 


0.717 




10 


570 


341 


0.10Z 


0.456 
0.460 


0.568 


10 


500 


317 


0.268 


a672 


0.720 




20 


569 


341 


0.105 


0.570 


20 


499 


317 


a27i 


0.675 


0.723 




30 


568 


340 


0.108 


a463 


0.573 


30 


498 


317 


0.270 


0.679 


0.726 




40 


5^ 


340 


0.1 1 1 


0.467 


0.575 


40 


496 


316 


0.683 
0.686 


0.729 




SO 


566 


340 


0.114 


0.471 


0.577 


so 


495 


316 


0.278 


0.732 




2900 


565 


339 


0.1 17 


0.474 


0.579 


3900 


494 


31s 


0.281 


0.690 


0.735 
0.73? 




10 


564 


l^ 


0.120 


0.478 


0.582 


10 


492 


315 


0.284 


0.693 




20 


563 


0.123 


0.^182 


0.584 


20 


491 


315 


0.286 


0.697 


0.741 




30 


562 


338 


0.126 


0.485 


°-S86 


30 


Ip 


314 


0.289 


0.701 


0.744 




40 


561 


338 


0.129 


0.489 


0.588 


40 


3M 


0.291 


0.704 


0.747 




SO 


560 


337 


0.132 


0.493 


0.591 


50 


487 


313 


0.294 


0.708 


0.750 




3000 


558 


337 


0.135 


0.496 


0.593 


4000 


486 


313 


0.296 


a7ii 


0.753 



SamiaoiiiAN Tables. 



71 



Table 16. 
LOGARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATI- 
TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. 
UNIT = THE ENGLISH FOOT. 
[Dcriradon and use ci tabk etplainnH on p. Iz.] 



f 


ai 


h^n 


«s 


At 


c% 


^ 


a\ 


h=ci 


tfi 


^ 


^2 


AfPoo' 


7.99486 


7.99313 


a296 


a7ii 


0.752 


50°oo' 


'"^ 


7.99287 


a448 


0.939 


0^955 


10 


485 


312 


0.299 


0.715 


0.75s 


10 


^7 


0450 


0.944 


0.958 


20 


484 


3" 


a30i 


0.719 


0.759 


20 


407 


287 


0453 


a948 


0.962 


30 


482 


3" 


0.304 


a722 


0.762 


30 


406 


286 


0.4S5 


0.952 


0.966 


40 


481 


3" 


0.307 


a726 


a;'^ 


40 


404 


286 


0.458 


0.956 
a96o 


0.970 


50 


480 


3" 


0.309 


0.730 


SO 


403 


285 


a400 


0.974 


41 00 


479 


3"o 


0.312 


0.733 


0.771 


SI 00 


402 


^5 


0463 
a466 


0.964 


0.978 


10 


477 


310 


0.314 


0.737 


0.774 


10 


401 


^ 


0.96S 


0.982 


20 


476 


309 


o.3'7 


a740 


0.777 


20 


399 


284 


0468 


0.972 


0.985 


30 


47S 


309 


0.319 


0.744 
0.748 


a78o 


30 


398 


^ 


0^71 


a976 


0.989 


40 


473 


^ 


0.322 


S:S 


40 


397 


^3 


0.473 
0476 


a98i 


0.993 


so 


472 


0.324 


0.75" 


so 


396 


283 


0.985 


0.997 


4200 


471 


308 


0.327 


0.755 


0.789 


52 00 


394 


282 


0.478 


0.989 


1. 001 


10 


*?2 


307 


0.329 


0.759 
a762 


0.792 


10 


393 


282 




0.993 
0.998 


1.005 


20 


468 


307 


0.332 


0.796 


20 


392 


281 


0.484 


1.009 


30 


467 


306 


0.334 


0.766 


0.799 
0.802 


30 


301 


281 


0.486 


1.002 


1. 01 3 


40 


466 


306 


0.337 


0.770 


40 


380 


281 


0.489 


1.006 


I.OI7 


SO 


464 


306 


0.339 


0.774 


0.805 


SO 


388 


280 


a49i 


1.010 


I. 021 


4300 


463 


305 


0.342 


0.777 


0.808 


5300 


3!7 


280 


0.494 


1.015 


1.025 


xo 


462 


305 


0.344 


0.781 


0.812 


10 


386 


279 


0.497 


1.019 


1.030 


20 


461 


304 


0-347 


0.785 


0.815 


20 


384 


279 


0.499 


1.023 


1.034 


30 


4^ 


304 


0.349 


0.788 


0.818 


30 


3f3 


^^ 


0.502 


1.028 


1.038 


40 


303 


0.352 


0.792 


0.821 


40 


^o" 


0.505 


1.032 


1. 042 


so 


4S7 


303 


0.354 


0.796 


0.824 


50 


381 


278 


0.507 


1.036 


1.046 


4400 


4SS 


303 


0.357 


0.800 


0.828 


5400 


379 
378 


277 


0.510 


1. 04 1 


1.050 


10 


4S4 


302 


0.359 


0.803 


0.831 


10 


277 


0.512 


1.045 


1.055 


20 


4S3 


302 


0.362 


0.807 


0.834 


20 


377 


277 


0.515 


1.049 


1.059 


30 


452 


301 


0.364 


0.81 1 


0.838 


30 


376 


276 


0.518 


1.054 


1.063 


40 


4SO 


301 


0.367 


0.815 


0.841 


40 


375 


276 


0.520 


1.058 


1.067 


SO 


449 


300 


0.370 


0.818 


0.844 


SO 


373 


275 


0.523 


1.063 


1.072 


4500 


448 


300 


0.372 


0.822 


0.848 


55 00 


372 


275 


0.526 


1.067 


1.076 


xo 


.446 


300 


0.375 


0.826 


0.851 


10 


371 


275 


0.528 


1.072 


1.080 


20 


44S 


299 


0.377 


0.830 


0.854 


20 


370 


274 


0.531 


1.076 


1.084 


30 


444 


299 


0.380 


0.833 


0.858 


30 


369 


274 


0.534 


1.081 


1.089 


40 


443 


298 


0.3S2 


0.837 


40 


367 


273 


0.537 


X.085 


1.093 
1.098 


so 


441 


298 


0.385 


0.841 


a865 


SO 


366 


273 


0.539 


1.090 


4600 


440 


297 


0.387 


0.845 


0.868 


5600 


365 


273 


0.542 


1.094 


1. 102 


10 


439 


297 


0.390 


0.849 


0.872 


10 


364 


272 


0.545 


1.099 


1. 106 


20 


437 


297 


0.392 


0.853 


0.875 


20 


363 


272 


0.547 


1. 104 


I. Ill 


30 


436 


'2^ 


0.395 


0.856 
0.860 


°-!z^ 


30 


361 


271 


0.550 


1. 108 


1. 115 


40 


43S 


296 


0.397 


0.882 


40 


360 


271 


0.553 
0.556 


1.113 

i.iiS 


1. 120 


SO 


434 


295 


a40o 


0.864 


0.885 


SO 


359 


271 


I.I24 


4700 


432 


295 


a402 


0.868 


0.889 


5700 


358 


270 


0.558 


1. 122 


1. 129 


10 


43" 


294 


0.405 


0.872 


0.892 


10 


357 


270 


0.501 


I.I27 


1-134 


20 


430 


294 


0.407 


0.876 


0.896 


20 


356 


269 


0.564 


I.I32 


1. 138 


30 


428 


294 


0.410 


0.880 


0.900 


30 


354 


269 


0.567 


I.I37 


I.M3 


40 


^l 


293 


0.412 


0.884 


0.903 


40 


353 


'^ 


0.569 


I.I4I 


1. 147 


SO 


426 


293 


0.415 


0.888 


0.907 


50 


352 


0.572 


1. 146 


1.152 


4800 


42s 


292 


0.417 


0.891 


0.910 


5800 


351 


268 


0.575 
0.578 


I.I5I 


1. 162 


10 


423 


292 


0.420 


0.895 


0.914 


10 


350 


267 


1. 156 
1. 161 


20 


422 


291 


0.422 


0.899 


0.918 


20 


349 


267 


0.581 


1.166 


30 


421 


291 


0.425 


0.903 


0.921 


30 


347 


267 


t^ 


I.166 


X.171 


40 


420 


291 


0.427 


0.907 


0.925 


40 


346 


266 


1. 170 


1. 176 


50 


418 


290 


0.430 


0.91 1 


0.929 


SO 


345 


266 


0.589 


I.I75 


1. 181 


4900 


417 


f 


0.432 


0.915 


0.932 


59 00 


344 


266 


0.592 


1. 180 


1. 185 


10 


416 


0435 
0.438 


0.919 


0.936 


10 


343 


265 


0.595 
0.598 


1. 185 


1. 190 


20 


414 


289 


0.923 


0.940 


20 


342 


265 


1.190 


1.195 


30 


413 


28Q 


0.440 


0.927 


0.943 


30 


341 


264 


0.600 


I.I95 


1.200 


40 


412 


288 


0.443 


0.931 


0.947 


40 




264 


0.603 


1.200 


1.205 


SO 


411 


288 


0.445 


0.935 


0.951 


SO 


264 


0.606 


1.205 


1.210 


SO 00 


409 


287 


0.448 


0.939 


0.9SS 


6000 


337 


263 


0.609 


1. 210 


1.215 



Smitmsonian Tables. 



72 



Table 16. 
LOCARITHM8 OF FACTORS FOR COMPUTING DIFFERENCES OF LATI- 
TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. 

UNIT = THE ENGLISH FOOT. 

[DerivatioD and use ol table explained on p. Iz.] 



^ 


tfi 


h=ci 


0S 


h 


<•« 


^ 


«i 


h=ci 


fl« 


At 


^8 


6o*>oo' 


7-99337 


7.99263 


0.609 


1.210 


1.215 


70**oo' 


7.99278 


799244 


0.S09 


1-575 


;:?J 


10 


336 


263 


0.612 


1.216 


1.220 


10 


277 


243 


0.813 


1.583 


20 


335 


263 


0.615 


1.221 


1.225 


20 


277 


243 


0.817 


1.590 


1.591 


30 


334 


262 


a6i8 


1.226 


1.230 


30 


276 


243 


0.821 


1.598 
1.605 


\:m 


40 


333 


262 


0.621 


1.231 


1-235 


40 


275 


242 


0.825 


so 


332 


261 


a624 


1.236 


1.240 


50 


274 


242 


0.829 


1. 61 3 


I.6I4 


61 00 


331 


261 


a627 


1.241 


1.245 


71 00 


273 


242 


0.833 


1. 62 1 


1. 62 1 


10 




261 


0.630 


1.247 


1.251 


10 


273 


242 


0.837 


1.629 


1.629 


20 


260 


0.633 


1.252 


1.256 


20 


272 


241 


0.841 


1.636 


1.637 


30 


327 


260 


0.636 


11 


1. 261 


30 


271 


241 


0.845 


1.644 


1.645 


40 


326 


260 


0.639 


1.266 


40 


270 


241 


0.849 


1. 000 


1.653 


SO 


325 


259 


0.642 


1.272 


50 


269 


241 


0.854 


I.66I 


6200 
10 


324 
323 


259 


^S^ 


1.273 
1.279 
1.284 


1.282 


7200 
10 


2 


240 
240 


0.858 
0.862 


1.669 
1.677 


1.669 
1.677 


20 


322 


0.651 


1.288 


20 


267 


240 


0.866 


1.685 


1.686 


30 


321 


258 


0.654 


1.290 


1-293 
1.298 


30 


266 


240 


0.871 


1.694 


1.694 


40 


320 


257 


t^ 


1.295 


40 


266 


239 


f^ 


1.702 


1.702 


50 


319 


257 


1.301 


1.304 


50 


265 


239 


1.710 


1.711 


6300 


318 


257 


0.663 
0.666 


1.306 


1.309 


7300 


264 


239 


0.884 


nit 


1.720 


10 


3^7 


256 


1.312 


1-3*5 


10 


264 


239 


0.889 


1.728 


20 


316 


256 


0.669 


1.318 


1.320 


20 


263 


238 


0.893 


1-737 


1-737 


30 


31S 


256 


0.672 


1-323 


1.326 


30 


262 


238 


0.898 


1.745 


1.746 


40 


3H 


255 


0.676 


1.329 


1.332 


40 


261 


^3f 


0-903 


1-754 
1.703 


1.764 


50 


313 


255 


0.679 


1-335 


1-337 


50 


261 


238 


0.907 


6400 


312 


255 


a682 


1.341 


1-343 


7400 


260 


238 


0.912 


1.772 


1-773 


10 


3" 


254 


0.685 
0.688 


1.346 


1-349 


10 


259 


237 


0.917 


1.782 


1.782 


20 


310 


254 


1-352 


1-355 


20 


259 


237 


0.922 


1.791 


1. 791 


30 


^ 


254 


a692 


1-358 


1.360 


30 


258 


237 


0.927 


1.800 


1 .801 


40 


253 


0.695 


1.366 


40 


257 


237 


0.931 


1.810 


1.810 


50 


307 


253 


0.698 


1.370 


1.372 


50 


257 


236 


0.936 


1.820 


1.820 


6500 


306 


253 


0.701 


1.376 


1.378 


7500 


256 


236 


0.941 


1.829 


1.830 


10 


305 


252 


0.705 
0.708 


1.382 


1.384 


xo 


255 


236 


0.946 


1.839 


1.839 


20 


304 


252 


1.388 


1.390 


20 


255 


236 


0.952 


1.849 


1.849 


30 


303 


252 


0.7 1 1 


1.394 


1.396 


30 


254 


236 


0.957 
0.962 


\i^ 


;:ll| 


40 


302 


251 


0.715 
0.718 


1.400 


1.402 


40 


254 


23s 


50 


301 


251 


1.406 


1.408 


50 


253 


235 


0.967 


1.879 


1.880 


6600 


300 


251 


a72i 


1.413 


1. 414 


7600 


252 


23s 


0.973 
0.978 


1.890 


1.890 


10 


'^ 


250 


0.725 
a728 


1.419 


1.421 


10 


252 


235 


1.900 


1. 901 


20 


250 


1.425 


1.427 


20 


251 


235 


0.984 


1. 91 1 


I.9II 


30 


297 


250 


0.732 


1.432 


1-433 


30 


250 


234 


0.989 


1.922 


1.922 


40 


296 


249 


0-735 


1438 


1.440 


40 


250 


234 


0.995 


1-933 


1-933 


SO 


29s 


249 


0.739 


1.444 


1.446 


50 


249 


234 


1.000 


1.944 


1.944 


6700 


294 


249 


0.742 


1.451 


1.452 


7700 


'^ 


234 


1.006 


;:^9^ 


\''J^ 


10 


293 


^ 


a746 


1.484 


1.459 
1.465 


10 


234 


1. 01 2 


20 


292 


0.749 


20 


248 


233 


1.018 


1.978 


1.978 


30 


291 


248 


0-753 
0.756 
0.760 


M70 


1.472 


30 


247 


233 


1.024 


1.989 


1.989 


40 




248 


1-477 


1.478 
1.485 


40 


247 


233 


1.030 


2.001 


2.001 


SO 


247 


1.484 


50 


246 


233 


1.036 


2.013 


2.013 


6800 


280 


247 


0.763 


1. 491 


1.492 


7800 


245 


233 


1.042 


2.025 


2.025 


10 


288 


247 


0.767 


1.497 


1.499 


10 


245 


233 


1.048 


2.037 


2.037 


20 


287 


246 


0.771 


1.504 


1.505 


20 


244 


232 


1.054 


2.050 


2.050 


30 


286 


246 


0.774 


1.511 


1.512 


30 


244 


232 


1. 061 


2.062 


2.062 


40 


285 


246 


0.778 


1.518 


1.519 


40 


243 


232 


1.067 


m 


l-^ 


50 


284 


246 


0.782 


1-525 


1.526 


SO 


243 


232 


1.074 


6900 


283 


245 


0.786 


»-532 


1-533 


7900 


242 


232 


1.081 


2.I0I 


2.101 


10 


282 


245 


0.789 


1-539 


1.540 


10 


242 


232 


1.087 


2.1 14 


2.114 
2.128 


20 


282 


245 


0.793 


1.546 


1-547 


20 


242 


231 


1.094 


2.128 


30 


281 


244 


0.797 


1-553 
1.561 


^•554 


30 


241 


231 


I.IOI 


2.142 


2.142 


40 


280 


244 


0.801 


1.562 


40 


241 


231 


1.108 


2.156 


2.156 


SO 


279 


244 


a8o5 


1.568 


1.569 


50 


240 


231 


X.116 


2.170 


2.170 


7000 


278 


244 


0.809 


1-575 


1.576 


8000 


240 


231 


1.123 


2.184 


2.184 



Smitm«onian Taslcs. 



73 



Tablk 16. 
LOGARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATI- 
TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRi ANGULATION. 

UNIT = THE METRE. 

[Derivmtion and lue of table explained on p. be.] 






«1 


h=ci 


Of 


h 


^« 


^ 


tfl 


«l=a 


at 


^ 


^ 


o°oo' 


8.51268 


8-S0973 


— 00 


— 00 


1.404 


io°oo' 


8.51254 


8.50968 


t^ 


a958 


1.430 


10 


268 


973 


8.871 


9.169 


1.404 


10 


254 


^ 


1.431 


20 


268 


973 


9.172 


9470 


iu|04 


20 


253 


968 


0.668 


0.973 


1.432 


30 


268 


973 


9.348 


9.646 


1.404 


30 


253 


^ 


°-f25 


a98o 


1.433 


40 


268 


973 


9.473 


9.771 


1.404 


40 


253 


968 


a682 


0.987 


M34 


SO 


268 


973 


9.S70 


1.404 


50 


252 


967 


0.6S9 


0.99s 


M3S 


I oo 


267 


973 


9.649 


9-947 


1.404 


II 00 


252 


967 


0.695 


1.002 


1.436 


lO 


267 


973 


9.716 


aoi4 


1.404 


10 


251 


967 


a702 


1.009 


M36 


20 


267 


973 


9.774 


ao72 


1.404 


20 


251 


967 


0.709 


1. 01 5 


1.437 


30 


"& 


973 


9.825 


0.123 


1.405 


30 


250 


967 


0.715 


1.022 


1.438 


40 


267 


973 


9.871 


0.169 


1.405 


40 


250 


^ 


0.722 


1.029 


M39 


so 


267 


973 


9.912 


a2ii 


1.405 


SO 


249 


966 


0.728 


1.035 


1440 


200 


267 


972 


9.950 
9.985 


a248 


1.405 


12 00 


^ 


966 


0.734 


1.042 


1441 


10 


267 


972 


0.283 


1.405 


10 


^ 


0.740 


1.048 


1.442 


20 


267 


972 


0.017 


0.315 


1.405 


20 


248 


966 


0.746 


1.055 


1.444 


30 


266 


972 


0.047 


0.346 


1.406 


30 


247 


9^ 


a752 


i.o6i 


1.440 


40 


266 


972 


0.075 


0.374 


1.406 


40 


246 


^ 


0.758 
0.764 


1.067 


so 


266 


972 


aioi 


0.400 


1.406 


SO 


246 


96s 


1.073 


1-447 


300 


266 


972 


0.126 


0.425 


1.406 


1300 


245 


965 


0.770 


1.080 


1.448 


xo 


266 


972 


0.150 


0.449 


1.407 


10 


245 


?fs 


a776 
0.781 


1.086 


1-449 


20 


266 


972 


0.172 


0.471 


1.407 


20 


244 


96s 


1.092 


1.450 


30 


266 


972 


0.193 


0.492 


1.407 


30 


244 


96s 


0.787 


1.097 


1.451 


40 


266 


972 


0.214 


0.513 


1.408 


40 


243 


?f* 


a792 


1.103 


1.452 


50 


266 


972 


0.233 


0.532 


1.408 


SO 


242 


964 


0.798 


1.109 


1.454 


400 


265 


972 


0.252 
0.269 


0.551 
0.569 


X.408 


1400 


242 


964 


0.803 


1.115 


1.456 


10 


265 


972 


1.409 


10 


241 


964 


0.809 


1.120 


20 


265 


972 


a286 


0.586 


1.409 


20 


241 


964 


a8i4 


1.126 


M57 


30 


265 


972 


0.303 


0.602 


1.409 


30 


240 


963 


0.819 


1.132 


M58 
1.460 


40 


265 


972 


0.319 


0.618 


X.410 


40 


239 


963 


a824 


1.137 


so 


264 


972 


0.334 


0.634 


1.410 


so 


239 


963 


0.830 


I.I43 


1 .461 


500 


264 


972 


0.349 


a649 


1. 411 


1500 


238 


963 


a835 


1.148 


1^62 


10 


264 


971 


0.363 


0.663 


1.411 


10 


237 


963 


aS^o 


1.153 


M63 


20 


264 


971 


0.377 


0.677 


1.411 


20 


237 


962 


0.84s 


I.I 59 


1.465 


30 


264 


971 


0.390 


a69i 


1.412 


30 


236 


962 


0.850 


1.164 


1.466 


40 


263 


971 


a40^ 
0.416 


0.704 


1.412 


40 


235 


962 


a854 


1.169 


M67 


so 


263 


971 


0.717 


1.413 


so 


235 


962 


0.859 


1.174 


M69 


600 


263 


971 


a^28 


0.729 


1.413 


1600 


234 


961 


o|64 


1.179 
1.185 


1.470 


10 


263 


971 


a440 


0.741 


M14 


10 


233 


961 


0.869 


1.471 


20 


262 


971 


0.4S2 


0.753 


1.415 


20 


233 


961 


0.873 


1.190 


1.473 


30 


262 


971 


a464 


0-764 
a776 
0.787 


MIS 
1.416 


30 


232 


961 


0.878 

°!!3 


1.195 


1474 


40 


262 


971 


0.47S 


40 


231 


961 


1.200 


M7S 


so 


261 


971 


0.485 


1.416 


so 


231 


960 


0.887 


1.205 


1-477 


700 

10 


261 
261 


970 
970 


0.496 
0.506 


m 


1.417 
1.417 
1418 


1700 
10 


230 


l§ 


0.892 
0.896 


1.210 
1.214 


1.478 
1.480 


20 


260- 


970 


0.516 


a8i8 


20 


960 


0.901 


1.219 


1481 


30 


260 


970 


a526 


a828 


M19 


30 


328 


959 


0.905 


1.224 


1482 


40 


260 


970 


0.536 


^^ 


X.419 


40 


227 


959 


a9io 


1.229 


1.484 


so 


259 


970 


0.545 


0.848 


1.420 


50 


226 


959 


0.914 


1.234 


1.485 


800 

10 


259 


970 
970 


0.S5S 
0.564 


& 


1.421 
1.421 


1800 

10 


225 
22s 


959 
958 


a9i8 
a922 


1.238 
i!248 


1.487 
1.489 


20 


970 


0.573 


0.875 


1.422 


20 


224 


958 


0.927 


1.490 


30 


^58 


969 


0.581 


a884 


X.423 


30 


223 


958 


0.931 


1.252 


1491 


40 


258 


969 


0.590 


0.893 


1.424 


40 


223 


958 


0.93s 


1.2|7 


1.493 


so 


257 


969 


0.598 


0.902 


1.424 


so 


222 


957 


0.939 


1. 261 


1.495 


900 


2S7 


969 


0.607 


0.910 


1.426 


1900 


221 


957 


0.943 


1.266 


1.496 


10 


256 




0.615 


0.918 


10 


220 


957 


0.947 


1.271 


1.498 


20 


256 


969 


a623 


0.927 


1.427 


20 


219 


957 


0.951 


1.275 


1.499 


30 


256 


969 


0.630 


0.935 


1.428 


30 


218 


956 


0.955 


1-279 


1.501 


40 


25s 




0.638 


0.942 


1.428 


40 


218 


956 


0.959 
0.963 


1.502 


50 


25s 


968 


0.646 


0.950 


1.429 


so 


217 


956 


1.288 


1.504 


10 00 


254 


968 


0.653 


0.958 


1.430 


20 00 


216 


955 


0.967 


1-293 


1.506 



Smithsonian Tables. 



74 



Table 16. 
LOGARITHMS OF FACTORS FOR COMPUTING DIFFERENCES OF LATI- 
TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. 

UNtT = THE METRE. 

[Derivation and oae of table explained on p. be] 



f 


tfi 


h=ci 


a% 


h 


c% 


^ 


«i 


^=a 


As 


^ 


ct 


20«b(/ 


8.51216 


8.50955 


0.967 


1.293 


1.506 


30^00' 


8.51157 


8.50936 


I.167 


1.528 


1.625 


10 


215 


955 


0-97I 


1.297 


1.507 


10 


156 


936 


1.170 


1.532 


1.627 


20 


214 


955 


0-975 


1.301 


1.509 


20 


155 


935 


1.173 


1.535 


1.630 


30 


214 


955 


a979 
a983 


1.306 


1.511 


30 


154 


935 


I.I76 


1.539 


1-632 


40 


213 


954 


1.310 


X.512 


40 


153 


934 


1.178 
I.18I 


1.548 


1.635 


50 


212 


954 


0.987 


1.314 


1.514 


50 


152 


934 


1.637 


21 00 


211 


954 


0.990 


1-319 


1.516 


31 00 


151 


934 


I.184 


1.550 


1.639 


10 


210 


953 


a994 


1.323 


1.518 


10 


\% 


933 


1.187 


1-554 


1.642 


20 


209 


953 


0.998 


1.327 


1.519 


20 


933 


1.190 


1.557 


1.644 


30 


208 


953 


1.002 


I.33J 


1.521 


30 


147 


933 


1.193 


1.561 


1.646 


40 


207 


953 


1.005 


1-336 


1.523 


40 


146 


932 


1.195 


'•564 


1.649 


SO 


207 


952 


1.009 


1.340 


1.524 


SO 


145 


932 


1.198 


1.568 


X.651 


22 00 


206 


952 


1.0x3 
1.010 


1*348 


1.526 


3200 


144 


931 


I.20I 


1.572 


;:§ 


10 


205 


952 


1.528 


10 


143 


931 


1.204 


1-575 


20 


204 


951 


1.020 


1.352 


1.530 


20 


141 


931 


1.207 


1.579 


1.659 


30 


203 


951 


IX>23 


1-356 
1.300 


1.532 


30 


140 


930 


1.209 


'•582 


1.661 


40 


202 


951 


1.027 


1.534 


40 


'39 


930 


1.212 


1.586 


l.DOO 


SO 


201 


951 


1.030 


1.364 


1.535 


50 


138 


929 


1.215 


1.590 


2300 


200 


950 


1.034 


1.368 


1.537 


3300 


'?J 


929 


1.2X8 


1-593 


1.669 


10 
20 


\^ 


950 
950 


1.037 
1. 041 


1.372 
1.376 


1.539 
1.541 


10 
20 


136 
134 


920 
928 


1.220 
1.223 


1. 000 


1.671 
1.674 


30 


197 


949 


1.044 


i.^ 


1.543 


30 


133 


928 


1.226 


1.604 


1.676 


40 


197 


949 


ix>48 


'•^5 


1.545 


40 


132 


927 


1.229 


1.607 


1:^1 


SO 


196 


949 


i/)5i 


1.388 


1.547 


SO 


131 


927 


1.231 


1.611 


2400 


»9S 


948 


1.058 
I.05I 


1.392 


1.549 


3400 


'30 


927 


1.234 


1.615 
1.618 


1.684 


10 


194 


948 


1.396 


1.550 


10 


128 


926 


1.237 


'•ff7 


20 


193 


948 


1.400 


1.552 


20 


127 


926 


1.239 


1.622 


1.689 


30 
40 


192 
191 


947 
947 


1.065 
1.068 


'•404 
1.408 


1.556 


30 
40 


126 
"5 


925 
925 


1.242 
1.248 


1.625 
1.629 


1.692 
1.695 


SO 


190 


947 


ijorji 


1.412 


1.558 


50 


124 


925 


1.632 


1.697 


2500 


:i 


946 


1.075 
1.078 
1.081 


1416 


1.560 


35 00 


122 


924 


1.250 


1.636 


1.700 


10 


946 


1.420 


1.562 


10 


121 


924 


1.253 
1. 256 


1.639 


1.702 


20 


187 


946 


1.424 


1.564 


20 


120 


923 


1.643 


1.705 


30 


186 


945, 


1.084 
1.088 


1.427 


1.566 


30 


"? 


923 


1.258 


1.647 


1.708 


40 


*!s 


945 


M3I 


1.568 


40 


118 


923 


1.261 


1.650 


1.711 


SO 


184 


945 


1.091 


1.435 


1.570 


SO 


116 


922 


1.264 


1.654 


1.713 


2600 


'|3 


944 


1.094 


1.439 


1.572 


3600 


115 


922 


1.266 


i.6|7 


1.716 


10 


183 


944 


1.097 


1.443 


1-575 


10 


114 


921 


1.269 


1.661 


1.719 


20 


181 


944 


I.XOO 


1-447 


1.577 


20 


113 


921 


1.271 


1.664 


1.721 


30 


180 


943 


I.I04 


1.450 


\W^ 


30 


111 


921 


1.274 


1.668 


1.724 


40 


i;i 


943 


X.I07 


1.454 
1.458 


40 


110 


920 


1.277 


1.672 


1.727 


SO 


943 


I.IIO 


1-583 


so 


109 


920 


1.279 


1.675 


1.730 


2700 


'77 


942 


1. 116 


1.462 


1.585 


3700 


108 


919 


1.282 


1.679 


1.732 


10 


176 


942 


1.465 


1.587 


10 


106 


919 


1.285 


1.682 


1738 


20 


175 


942 


1. 119 


M69 


1.589 


20 


105 


919 


1.287 


1.686 


30 


174 


941 


1. 122 


M73 


1.591 


30 


104 


918 


1.290 


1.689 


1.741 


40 


172 


941 


1.128 


1.477 


1.594 


40 


103 


918 


X.292 


1-693 


1.744 


50 


171 


941 


1^80 


1.596 


SO 


102 


917 


1.295 


1.697 


1.747 


2800 


170 


940 


1.131 


\-& 


1-598 
1.600 


3800 


100 


917 


1.298 


1.700 


1.749 


10 


1§ 


940 


1.134 


10 


^ 


916 


1.300 


1.704 


1.752 


20 


940 


1.137 


1.492 


1.602 


20 


916 


1-303 


1.707 


1.755 


30 


167 


939 


1.140 


1.495 


1.605 


30 


097 


916 


::fJ 


1.711 


1.758 
1.761 


40 


166 




1. 146 


1.499 


1.607 


40 


095 


915 


1.7x5 
1.718 


50 


i6s 


938 


1.503 


1.609 


SO 


094 


915 


1.310 


1.764 


2900 


164 


938 


1.149 


1.506 


1.611 


3900 


093 


914 


1.313 

1.316 


1.722 


1-767 


10 


163 


938 


1.152 


1.510 


1.614 
1.616 


10 


092 


914 


1.725 


1.770 


20 


162 


937 


I.I55 


1.514 


20 


090 


914 


1.318 


1.729 


1.773 


30 
40 


161 
160 


937 
937 


\\t 


1-517 
X.52X 


1.618 
1.620 


30 
40 


S§l 


913 
913 


X.32I 
1.326 


1.736 


1.776 

1-779 
1.781 


SO 


158 


936 


1. 164 


1.525 


1.623 


50 


086 


912 


1.740 


3000 


IS7 


936 


1.167 


1.528 


1.625 


4000 


085 


912 


1.328 


1.743 


1.784 



•■mMeNMM Tamc*. 



75 



16. 

LOGARITHMS OF FAOTOR8 FOR COMPUTING DIFFERENCES OF LATI- 
TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. 

UNIT=THE METRE. 

[Deiivmtioa aad om of table friplainwl on pw Iz.] 



♦ 


«i 


h=ci 


Of 


h 


^2 


4 


«i 


^=a 


at 


h 


^ 


40l°bo' 


8.51085 


8.50912 


1.328 


1.743 


1.784 


5o**oo' 


8.51008 


^s°^ 


.^80 


1.971 


1.987 


lO 


084 


911 


1.33" 


1.747 


1.787 


10 


007 


886 


14S2 


1.975 


1.990 


20 


083 


911 


1-333 


1.751 


1.790 


20 


006 


885 


1.485 


1.980 


1.994 


30 


081 


911 


'•336 


1-754 


1.793 


30 


005 


H5 


1^87 


^'^ 


1.9* 


40 


080 


910 


1.338 




1-797 


40 


003 


155 


M90 


1.988 


2.002 


50 


079 


910 


1.341 


1.800 


SO 


002 


884 


1492 


1.992 


2X)06 


4100 


078 


909 


1-344 


1-765 


1.803 
1.806 


5100 


001 


S* 


:ip 


1.996 


2jOIO 


10 


076 


^ 


1.346 


1.769 


10 


000 


883 


2UX)0 


2jOI4 


20 


07S 


1.349 


1.772 


1.809 


20 


8.50998 


883 


1.500 


24XH 


2jOI7 


30 


074 


9^ 


1.351 


1.776 
1.780 


1.812 


30 


997 


882 


1.503 


2.008 


2.021 


40 


072 


908 


1354 


1.815 
i.8i8 


40 


996 


882 


\:^ 


2.013 


2.025 


SO 


071 


907 


1-356 


1.783 


SO 


994 


882 


2.017 


2U)29 


4200 


070 


907 


1.359 


1.787 


1. 821 


5200 


993 


88x 


1.510 


2U:>2I 


2.033 


10 


069 


906 


1.361 


1.791 


1.824 


10 


992 


881 


1.513 
1.516 


2u:>25 


2.037 


20 


067 


906 


1.364 


1.794 


1.828 


20 


991 


880 


2.030 


2a>4i 


30 


066 


905 


1.366 


1.798 
1.802 


1-831 


30 


P? 


880 


1.518 


2.034 


2.045 


40 


065 


905 


1.369 


1.834 


40 


880 


1.521 


2/)38 


2.049 


50 


063 


905 


1.371 


1.805 


1.837 


SO 


987 


879 


1.523 




2.053 


4300 


062 


904 


1.374 


1.809 


1.840 


5300 


986 


U 


1.526 


2.047 


tsj 


10 


061 


904 


1.376 


1.813 


1.843 


10 


985 


1.529 


2.051 


20 


060 


903 


1.379 


1.817 


iA»7 


20 


983 


878 


1.531 


2.055 


2.066 


30 


058 


903 


1.381 


1.820 


1.850 


30 


982 


Vf 


I.S34 


2J060 


2.070 


40 


057 


902 


)^ 


1.824 

1.828 


1-853 
1.856 


40 


981 


!" 


1537 


*-^ 


2^4 


50 


056 


902 


SO 


980 


877 


I-S39 


2.068 


2.078 


4400 


054 


902 


1.389 


1.832 


1.860 


54 00 


978 


!'! 


1.542 


2.073 


2.082 


10 


053 


901 


1391 


1-835 


1.863 
1.866 


10 


977 


876 


1544 


2,077 
2.081 


2.086 


20 


052 


901 


1.394 


1.839 


20 


970 


87s 


1.547 


2.091 


30 


051 


900 


1.396 


1.843 


1.870 


30 


97S 


f'S 


1.550 


2.086 


2.095 


40 
50 


^ 


^ 


1-399 

I^OI 


1.847 
1.850 


\%i 


40 
SO 


973 
97a 


874 


1.552 
1.555 


2.090 
2.095 


2.099 
2.104 


45 00 


047 


fw 


1.404 


'•f54 


1.880 


55 00 


97» 


|7* 


1.5S3 
1-500 

1563 


2.099 


2.108 


xo 

20 


045 
044 


§8 


1.407 
1.409 


1.858 
1.862 


1.883 
X.886 


10 
20 


970 
969 


§73 
873 


2.104 
2.108 


2.112 
2.1x6 


30 


043 


898 


1.412 


1.865 


1.890 


30 


967 


§73 


1.566 


2.113 


2.121 


40 


042 


897 


1.414 


1.869 


1.893 


40 


966 


872 


X.568 


2.1 17 


2.125 


50 


040 


897 


1417 


1.873 


1-897 


SO 


96s 


872 


1.571 


2.122 


2.130 


4600 


S^ 


^ 


1.419 


;l5? 


1.900 


5600 


964 


|7' 


1-574 


2.126 


2.134 


10 


896 


1422 


1.903 


10 


963 


§7' 


1.577 


2.131 


2.138 


20 


036 


896 


1.424 


1.885 


1.907 


20 


961 


871 


1.579 


2.136 


2.143 


30 


03s 


!9S 


1427 


1.888 


1.910 


30 


960 


870 


1.582 


2.140 


2.147 


40 


034 


195 


1.429 


^^l 


1.914 


40 


'S 


870 


!:iy 


2.145 


2.152 


y> 


033 


894 


1.432 


1.896 


1.917 


SO 


869 


2.150 


2.156 


4700 


031 


894 


1434 


1.900 


1.921 


57 00 


957 


i§ 


1.590 


2.154 


2. 1 61 


10 


030 


593 


1-437 


1.904 


1.924 


10 


956 


IS 


1.593 
1.596 


t\^ 


2.166 


20 


029 


893 


1439 


1.908 


1.928 


20 


954 


2.170 


30 


027 


593 


1.442 


1. 91 2 


1-932 


30 


953 


868 


I.S99 


2.169 


2.x 75 


40 


026 


892 


1.444 


1. 91 6 


1.935 


40 


952 


^7 


1. 601 


2.173 
2.178 


2.179 
2.184 


so 


025 


892 


1-447 


1.920 


1.939 


SO 


951 


867 


1.604 


4800 


024 


!9' 


1.449 


1.923 


1.942 


5800 


950 


867 


1.607 


2.183 

2.188 


2.189 


10 


022 


!9' 


1.452 


1.927 


1.946 


10 


949 


866 


1.610 


2.193 
2.1^ 


20 


021 


890 


1.454 


1.931 


1.950 


20 


947 


866 


1.613 


2.193 


30 


020 


^ 


1457 


1.935 


1.953 


30 


946 


866 


1.615 
1.618 
X.621 


2.197 


2.203 
2.208 
2.213 


40 
SO 


019 
017 


^ 


1.459 
1.462 


1.939 
1-943 


1-957 
1.961 


40 
SO 


945 
944 


86s 
865 


2.202 
2.207 


4900 


016 


889 


1.464 


1.947 


''^ 


5900 


943 


864 


1.624 


2.212 


2.217 


10 


015 


880 


1467 


1.951 


1.968 


10 


942 


!*♦ 


1.627 


2.217 


2.222 


20 


013 


888 


1.469 


1.95s 


1.972 


20 


941 


864 


1.630 


2.222 


2.227 


30 


012 


888 


1.472 


1.959 
i-9§3 


1975 


30 


l^ 


?*3 


1.632 


2.227 


2.232 


40 


on 


if7 


1-475 


1.979 
1-983 


40 


5f3 


I:g 


2.232 


2.237 


SO 


010 


887 


1.477 


1.967 


SO 


937 


863 


2.237 


2.242 


5000 


008 


886 


1.480 


1-971 


1.987 


6000 


936 


862 


1.641 


2.242 


«.247 1 



8iiiTH«oNiAN Tabus. 



76 



Table 16. 
LOGARITHMS OP FACTORS FOR COMPUTING DIFFERENCES OF LATI- 
TUDE, LONGITUDE, AND AZIMUTH IN SECONDARY TRIANGULATION. 

UNIT = THE METRE. 

[Derivatum and use of table ezphined on p. be] 



f 


a\ 


*i=^i 


<t 


^ 


^« 


^ 


tfi 


*l=a 


«i 


h 


c^ 


6<A)o' 


8.50936 


8.S0862 


I.64I 


2.242 


2.247 


70^00' 


8.50877 


S.5<^42 


1.841 


2.607 


2.608 


lO 


93S 


862 


1.644 


2.247 


2.252 


10 


876 


842 


1.845 


2.615 


2.616 


20 


934 


861 


1.647 


2.253 


2.257 


20 


875 


842 


1.849 


2.622 


2.623 


30 


933 


861 


1.650 


2.2C8 
2.2S3 
2.268 


2.262 


30 


f75 


842 


•'•!53 


2.630 


2.631 


40 
SO 


932 
• 931 


861 
860 


1.653 

1.655 


2.267 
2.272 


40 
SO 


874 
873 


841 


1.857 


2-637 
2.64s 


2.638 
2.646 


6100 
10 


928 


860 
860 


1:^' 


2.273 
2.279 
2.284 


2.277 
2.283 
2.288 


71 00 
10 


872 
871 


841 


1.865 
1.869 


^^ 


2:^? 


20 


927 


859 


X.665 


20 


871 


840 


1-873 


2.668 


2.669 


30 
40 


926 
925 


859 
858 


1.668 
1.671 


2.289 
2.295 


2.29J 
2.298 


30 
40 


870 
86^ 


840 
840 


'lis? 


2.676 
2.684 


l%\ 


50 


924 


858 


1.674 


2.300 


2.303 


50 


840 


1.886 


2.692 


2.693 


6200 


923 


858 


1.677 


2.30s 


2.309 


7200 


868 


839 


1.890 


2.701 


2.701 


10 


922 


!S7 


1.680 


2.311 


2.314 


10 


^l 


839 


;a 


2.709 


2.709 
2.7x8 


20 


921 


8S7 


1.683 


2.316 


2.320 


20 


866 


839 


2.717 


30 


920 


!s2 


1.686 


2.322 


2.325 


30 


2^5 


i 


1.903 


2.725 


2.726 


40 


9x0 
918 


fsf 


1.689 


2.327 


2.330 


40 


1^5 


1.907 


2.734 


2.734 


SO 


856 


1.692 


2.333 


2.336 


SO 


864 


838 


1 912 


2.742 


2.742 


6300 


917 


856 


;:|i 


2.338 


2.341 


7300 


5^3 


§35 


1. 916 


2,760 


2.700 


xo 


916 


8SS 


2.344 


2.347 


10 


862 


838 


1.921 


20 


91 S 


85s 


1. 701 


2.350 


2-352 


20 


862 


837 


1.925 


2.769 


2.769 


30 


9'3 


5ss 


1.704 


2.3S5 
2.301 


2.358 
2.364 


30 


861 


!37 


1.930 


2.786 


2.778 
2.787 


40 


912 


8S4 


1.708 


40 


860 


837 


1.935 


so 


911 


854 


I.7II 


2.367 


2.369 


SO 


860 


837 


1.939 


2-795 




6400 


910 


854 


I.7I4 


2.373 
2.378 


2.375 


7400 


li 


836 


1.944 


2.804 


2.80s 


10 


^ 


853 


1.717 


2.381 


10 


836 


1.949 


2.814 


2.8x4 


20 


8S3 


1.720 


2.384 


2.387 


20 


858 


836 


1-954 


2.823 


2.823 


30 


907 


853 


1.724 


2.390 


2.392 


30 


V>1 


836 


1-958 
i!96^ 


2.832 


2.833 


40 


906 


852 


1.727 


2.396 


2.398 


40 


!s6 


836 


2.842 


2.842 


SO 


90s 


852 


1.730 


2.402 


2.404 


SO 


856 


835 


2.851 


2.852 


6500 


904 


852 


1-733 


2.408 


2.410 


75 00 


Sss 


83s 


1.973 
1.978 


2.861 


2.861 


10 


903 


851 


1-737 


2.414 


2.416 


10 


854 


53s 


2.8^1 


^'IV 


20 


902 


851 


1.740 


2.420 


2.422 


20 


854 


83s 


1.984 


2.881 


30 


90X 


2S' 


1.743 


2.426 


2.428 


30 


fS3 


834 


1.989 


2.891 


2.89X 


40 


900 


850 


1.747 


2.432 


2434 


40 


|5* 


!34 


1-994 


2.901 


2.90X 


SO 


900 


850 


1.750 


2.438 


2^40 


SO 


852 


834 


1-999 


2.9II 


2.912 


6600 


g 


850 


1.753 


2445 


2.446 


7600 


.85. 


834 


2.005 


2.922 


2.922 


10 


849 


1.760 


2.451 


2.453 


10 


fs' 


§34 


2.010 


2.932 


2.933 


20 


897 


849 


2457 


2.459 


20 


850 


833 


2.015 


2.943 


2.943 


30 


596 


849 
848 


1.764 


2.464 


2.465 


30 


849 


533 


2.021 


2.954 
2.976 


2.954 
2.965 
2.976 


40 


!9S 


1.767 


2.470 


2472 


40 


its 


233 


2.027 


SO 


894 


848 


1.771 


2.476 


2.478 


50 


833 


2.032 


6700 


893 


848 


1.774 


2.483 


2.484 


7700 


848 


833 


2.038 


2.987 
2.998 


2.987 
2.998 


10 


^ 


847 


\lt 


2.489 


2491 


10 


5^7 


!3* 


2.044 


20 


891 


847 


2.496 


2.497 


20 


847 


83* 


2X>50 


3.010 


3.010 


30 


890 


f-*' 


1:7^11 


2.502 


2.504 


30 


846 


f3^ 


2.056 
2.0S2 


3.021 


3.02X 


40 


889 


f^z 


2.509 


2,510 


40 


845 


53* 


3.033 


3-033 


SO 


888 


846 


1.792 


2.516 


2.517 


50 


84s 


83* 


2.068 


3.045 


3-045 


6800 


^ 


!t6 


I.79S 


2.522 


2.524 


7800 


844 


832 


2.074 
2.080 


3.057 


3-057 


10 


887 


846 


1.799 


2.529 


2.531 


10 


844 


83' 


3.069 


3-069 


20 


886 


84s 


1.803 


2.536 


2.537 


20 


843 


831 


2.086 


3.082 


3-082 


30 


Ifs 


84s 


X.806 


2.543 


2.544 


30 


843 


f3' 


2.093 


3.094 


3-094 


40 


884 


84s 


1.810 


2.550 


2.551 


40 


842 


83« 


2.099 


3.107 


3.107 


50 


883 


844 


1.814 


2.557 


2.558 


SO 


842 


831 


2.100 


3.120 


3.120 


6900 


883 


844 


1.818 


2.564 


2.565 


7900 


b' 


831 


2.1 13 


3133 
3.146 


3133 
3.146 


10 


881 


844 


X.821 


2.571 


2.572 


xo 


841 


830 


2.1X9 


20 


880 


844 


1.825 


2.578 


2.579 


20 


840 


830 


2.126 


3.160 


3160 


30 


880 


843 


1.829 


2.585 


2.586 


30 


840 


830 


2.133 


f;y 


v:^ 


40 


'^ 


843 


1.833 


2.000 


2-594 


40 


839 


830 


2.140 


SO 


843 


1.837 


2.601 


SO 


839 


830 


2.148 


3.202 


3.202 


7000 


877 


842 


1.841 


2.607 


2.608 


8000 


839 


830 


2.155 


3.216 


3.216 



SMimaomAM Tabic*. 



77 



Table 1 7. 

LENGTHS OF TERRESTRIAL ARCS OF MERIDIAN. 

P>rinaioo of tiUe wrplainwl on p. zlvi] 





Latitnde 


Ladtnde. 


Latitode. 


Latitude. 


Ladtnde. 


Latitude. 






IntemL 


o<» 


1° 


2° 


3" 


4" 








F4tt, 


F«tt, 


FeH. 


FtH. 


F€€i, 






lO" 


1007.66 


1007.66 


lOOJ.t/J 


1007.68 


1007.71 






ao 


3015.31 


3015.33 


•015.34 


aoi5-37 


3015.41 






y> 


3022.97 
4030.6J 


3022.98 


J033.01 


3023.06 


3033.13 






40 


4030.64 


4030.68 


4030.74 


4030.83 






t 


5038.38 
6045.94 


^* 


S52J5 


5038.4a 
6046.11 


^ti 






lO' 


60459-4 


60459.6 


60460.3 


60461.1 


60463.^ 
130934.^ 






30 


130918.8 


130919.3 


130930.4 


130932.3 






30 


181378-3 


181378.8 


181380.6 


181383.3 


181387.3 






40 


341837.7 


341838.4 


341840.8 


a4»844.4 


341849.7 






g 


302397.1 


903398.0 


302301.0 


362766.6 


903311.1 






362756.5 


363757.6 


362761.3 


363774.5 








f 


(P 


7^ 


^ 


9° 






low 


1007.73 


1007.77 


1007.81 


1007.86 


1007.01 
3015.83 






30 


aoi5.47 


3015.54 


3015.63 


3015.71 






30 


3033.30 


3023.31 


3033.43 


3033.56 


3033.73 






40 


4030.94 


4031.08 


4031.34 


4031.43 


4031.63 






£ 


5038.67 


5038.84 


5089.O4 


5039.a8 


503954 








6046.61 


6046.85 


6047.13 


6047.45 






to' 


130930.3 


60466.1 


60468.5 


60471.3 


60474.5 






30 


"0933.3 


130937.1 


130943.6 


130949.0 






30 


2E1 


181398.4 


181405.6 
341874.' 


181413.9 


181433.4 
341897.9 






40 


341864.6 


341885.3 






S 


363784.6 


303350.7 
363796.8 


JSIS:J 


»l 


r^v^ 








I0« 


1I«> 


I2« 


13° 


14^ 






\t/t 


1007.97 


1008.03 


1008.10 


1008.18 


1008.36 






30 


«M5-93 


3016.06 


3016.30 


3016.35 


3016.51 






30 


3033.90 


3034.09 


3034.30 


3oa4.5a 


3034.77 






40 


4031.86 


4033.13 


4033.40 


6049.05 


4033.03 






s: 


5039-83 
6047.80 


1^:1 


es:s 


5041.38 
6049.54 






lO' 


60478.0 


60481.8 


60486.0 


60400.5 
130981.0 


60495.4 






30 


120955.9 


130963.6 


130972.0 


\^i 






30 


181433-9 
34i9«i.8 


181445.4 


181458.0 


181471.5 






40 


341927.3 


341944.0 


341963.0 


YA 






F 


JSI^I 


302409.0 


302430.0 


302453.5 






60 


362890.8 


362916.0 


363943.0 


S««97»-» 








IS- 


i6« 


17« 


i8« 


I9P 






10" 


1008.34 


1008.44 


1008.53 


1008.63 


1008.74 
3017.48 






30 


3016.69 


S016.87 


3017.06 


3017.37 






30 


3025.03 


3025.30 


3025.60 


3025.90 


3026.33 






40 


4033.37 


4033-74 
5042.18 
6050.61 


4034.13 


4034.54 


4034.97 






1: 


5041.7* 
6050.06 


5043.66 
6051.19 


6051.81 


5043.71 
6053.45 






.O' 


6o5oa6 


60506.1 


60511.0 
131023.8 


60518.1 


60534.5 






30 


121001.3 


121012.3 


12 1036.3 


121049.0 






30 


181501.7 


181518.3 


181535.8 


181554.3 


181573.6 






40 


342002.3 


342024.4 


342047.7 


342072.4 


343O9S.I 






5** 


302502.9 


363036.6 


302559.6 


302590.5 


302623.6 






60 


363003.5 


363071.5 


363108.6 


363147.1 








20« 


2I« 


22° 


23" 


24° 






j&t 


1008.86 


1008.97 


1009.10 


1009.32 


1000.35 
3018.70 






ao 


2017.71 


aoi7.95 


2018.19 


3018.44 






30 


3026.56 


3026.92 


3027.28 


3037.66 


3038.06 






40 


4035.4a 


4035.89 


4036.38 


4036.88 


4037.41 






S 


5044.a8 


5044.86 


5045.48 


5046.10 


5046.76 






6053.13 


6053.84 


6054.57 


6055.33 


6056.lt 




1 '^ 


60531.3 


60538.4 


60545.7 


60553.3 


60561. I 




1 90 


1 2 1063.6 • 


I 2 1076.8 


121091.4 


121 106.5 
181659.8 


131123.3 




W s"" 


181593.9 


181615.1 


181637.1 


181683.4 




II ^ 


'*^i'!' 


a42i53.5 


242182.8 


242213.0 


343244.5 




II ^ 


302656.5 


302691.9 


302728.5 


302766.3 


303805.6 




I 

•• 


ho 


363187.8 


363330.3 


363274.3 


363319.6 


363366.7 




n^^^ 


IAN TaBLI« 


. 


I.Q 


Digit 


ized by V^jC 


' 



>8i 



Table 17. 
LENGTHS OF TERRESTRIAL ARCS OF MERIDIAN. 

[Derivation of table exidained on p. zlvi.] 



Latitude 


Latitude. 


- ■ 

Latitude. 


Latitude. 


Latitude. 


Latitude. 


Interval. 


250 


26° 


2t 


28° 


29^ 




Fe€t. 


Ft€t. 


F€*U 


Feet. 


Feet, 


lO" 


1000.49 
aoi8.97 


1009.63 


1009.77 


1009.93 
3019.83 


1010.07 


ao 


^^ 


3019.54 


3030.13 


30 


3038.46 


3039.31 


3039.75 


3030.30 


40 


4037.9s 


4038.51 


S'S 


4039.67 


4040.37 


1; 


5047.44 
6056.9a 


i^.^ 


5049.58 
6059.50 


irji 


lO' 


60569.3 
131138.5 


60577.6 


60586.3 


60595.0 


60604.0 

13 1308.0 


30 


131 155.3 


131173.3 


131 190.0 
181785.0 


30 


181707.7 


181733.7 


181758.5 


i8i8i3.o 


40 


343376.9 


343310.3 


343344.7 


342379.9 


343416.0 


50 


303846. 1 


303887.9 


303930.9 


303974.9 


303019.9 


60 


3634«5-4 


363465.S 


3635171 


363569.9 


363633.9 




300 


31" 


320 


33" 


34" 


to'/ 


ioio.aa 


ZOIO.38 


ZOI0.54 


1010.70 


ioia86 


ao 


3030.44 


aOaO.75 


aoal.07 


3031.40 


ao3i.73 


30 


3030.66 


303».»3 


3031.61 


3033.10 


3033.59 
4043.46 


40 


404a88 


4041.51 


4043.1J 

6063.3a 


4043.80 


S 


I2;:S 


6063.36 


S^5S 


5054.33 
6065.19 


lO' 


60613.3 


60633.6 


60633.3 


60643.0 
131383.9 


60651.0 
131303.8 


ao 


131336.4 


131345-3 


z8l896!6 


30 


181839.7 


181867.9 


181935.9 


181955-7 


40 


343453.9 


a4a49o.5 


343538.8 


343567.9 


343607.6 


50 


303066.1 


303113.3 


303«6i.i 


303309.9 


303359.4 


60 


3636793 


363735.8 


363793.3 


363851.8 


36391 1.3 




35" 


36" 


37" 


38" 


39° 


lO'' 


1011.03 


loii.ao 


1011.37 


1011.55 


1011.73 


ao 


ao33.o6 


3033.40 


aoa3.75 


a033.o9 


3033.44 


30 


3033.10 


3033.61 


3034.1a 


3034.64 


3035.17 


40 


4044. >3 






4046.19 


4046.89 


U 


^% 


Sg:« 


5057.74 
6069.39 


5058.61 
6070.34 


vJ 


60661.9 


60673.1 


60683.4 


181385.7 


60703.4 


ao 


131333.9 


IliJttJ 


13 1364.9 


131406.7 


30 


181985.8 


183047.3 


1831 10. 1 


40 


343647.8 


34a688.5 


343739.? 


343771.4 


343813.4 


£ 


303309.7 


30336a6 


303413.3 


303464.3 


303516.8 


363971.7 


364033.8 


364094.6 


364«57.« 


364330.3 




40° 


41" 


42- 


43" 


44" 


10" 


1011.90 
3033.80 


1013.08 


1013.35 


1013.43 


1013.61 


ao 


3034.15 


3034.51 


3034.87 


3035.33 


30 


3035-70 


3036.33 


3036.77 


303730 


3037-84 


40 


4047.60 


4048.31 


4049.03 


4049.74 


4050.46 


1; 


5059-50 


5060.38 


5061.38 


5063.17 


5063.07 


6071.39 


6073.46 


6073.53 


6074.61 


6075.69 


lo' 


60713.9 


60734.6 


60735.3 


60746.1 


60756.9 


ao 


131437.9 
183141.8 


131449.3 


I3i47a6 


13 1493.3 


131513.7 


30 


183173.8 


183306.0 


183338.3 


183370.6 


40 


343855.8 


343898.4 


34394«.3 


343984.3 


243037.4 


50 


303569.7 


303633.0 


303676.6 


303730.4 


303784.3 


60 


364283.7 


364347.6 


364411.9 


364476.5 


364541.3 




45" 


46° 


47° 


48" 


49^ 


10" 


IOIa.79 


1013.97 


1013.15 


1013.33 


1013.51 


ao 


3035.59 
3038.38 


3035.95 
3038.93 


3036.31 


3036.67 


3037.03 


30 


303946 


3040.00 


3040.54 


40 


4051.18 


4051.90 


4053.63 


4053-34 


4054.05 


50 


5063.97 


5064.87 


5065.77 


5066.67 


5067.56 


60 


6076.77 


6077.8s 


6078.93 


6080.00 


6081.08 


to' 


60767.7 


60778.5 


60789.3 

183367.8 


60800.0 


60810.8 


ao 


131535.3 


131556.9 


I3160O.I 


131631.5 


30 


183303.0 


183335.4 


183400. 1 


183433.3 


40 


343070.6 


343113-9 


343157.0 


343300.1 


343343.0 


S 


303838.3 


J» 


303946.3 


304000.1 


304053.8 


364606.0 


364735-5 


364800.3 


364864.5 



.MtTHSOWAtt TaSLC*. 



J by 



Google 



79 



Table 17. 

LENGTHS OF TERRESTRIAL ARCS OF MERIDIAN. 

[Derivation of taUe explained on p. zlvi] 



Latitude 


Latitude. 


Latitude. 


Latitude. 


Latitude. 


Latitude. 


Ijatitnde* 




Interval. 


Soo 


51" 


520 


53** 


54^ 


55^ 






Fttt. 


Fett. 


Ftet. 


Feet. 


Fut. 


Ftet. 




lO". 


1013.69 
3027.38 


1013.87 


1014.04 


10x4.33 


Sajl 


1014.56 




ao 


3037.74 


3038.09 


3028.44 


. ao39.ia 




30 


3041.07 


3041.60 


3043.13 


3043.65 


3043.17 


3043.68 
4058.34 




40 


S 


4055.47 


4056.17 


4056.87 


4057.56 




1^ 


^VL 


ISJ:n 


K 


« 




v/ 


60831.5 


60833.x 


60843.6 
13x685.3 


60853.1 


60863.5 


60873.7 




30 


131643.9 


13 1664.3 


Z3I706.S 


X3I 736.9 


131747.3 




30 


»J 




183537.7 


183559.3 


183590.4 
343453.8 


183631.0 




40 


a433a8.3 


343370.3 


343413.3 


343494.6 




£ 


JSJiatI 


304x60.4 
36499a.5 


304313.9 
S65055.5 


365118.5 


365x80.1 


304368.3 
365343.0 






56O 


S?*' 


S8o 


59° 


60O 


61O 




«o" 


1014.73 


X014.90 


1015.06 


X015.33 


1015.38 


1015.53 




ao 


3039.46 


3039.79 


3030.13 


3030.44 
3045.66 


3030.76 


»Q3i.o7 




30 


3044. »9 


3044.69 
4059.58 


3045.18 
4060.34 


3046.14 


3046.60 




40 


4058.9a 


4060.88 


4061.53 


4063.14 




^ 


l^^i 


« 


IS:|2 


5076.10 
6091.33 


5076.90 
6093.37 


5077.67 
6093.30 




lo' 
ao 


60S83.8 
131767.6 


60803.8 
131787.5 


60903.6 
131807.3 


131836.5 

183739.8 


;Si 


60933.0 
X3ii64.i 




30 


183651.4 


18368Z.3 


183710.8 


183796.1 




40 


'43535'a 


JS^.t 


343614.4 
3045 '80 


343653.0 


343691.0 


343738.3 




50 


304419.0 


304566.3 


3046x3.7 


304660.3 




60 


3653<».8 


365363.6 


365431.6 


365479.6 


365536.4 


365593.3 






62O 


63^ 


64^ 


65° 


66° 


67O 




10" 


1015.69 


10x5.83 


X015.98 


1016.13 


1016.26 


X016.39 




ao 


ao3»-37 


ao3x.67 


3031.96 


3032.34 


3033.5 X 


3033.78 




50 


3047.06 


3047.50 


3047.94 


3048.36 


3048.77 
4065.03 


3049.16 
4065.5s 




40 


4063.74 


4063.34 


4063.93 


5080.60 




50 


5078.43 


5079.17 


5079.90 
6095.87 


5081.38 


5081.94 




60 


6094,13 


6095.00 


6096.71 


6097.54 


6098.33 




It/ 


131883.3 


60950.0 


60958.7 


60967.x 


60975.4 


^^1 




ao 


13x900.x 
X83850.1 


;ii2J?:J 


13 1934.3 


121950.7 


131966.6 




30 


183833.5 


J,w 


183936.1 


X83949.8 




40 


343764-6 


343800.3 


343835.0 


343901.4 
304876.8 


343933.1 




50 


304705.8 


304750.3 


304793.7 


304815.7 


J?3CJ 




60 


365647.0 


365700.3 


365753.4 


365803.8 


365852.3 






680 


690 


700 


71° 


720 


73* 




10" 


1016.5a 


ioi6.6« 
»o33.a8 


X016.76 


1016.87 


1016.98 


10x7.09 




ao 


3033.03 


3033.53 


3033.75 


3033.96 


3034-17 




30 
40 


3049.55 
4066.07 
5083.58 


"^^ 


3050.38 
406704 


3050.63 
4067.49 


3050.95 
4067.93 


^^ 




50 


5083.30 


5083.80 


5084.36 


6101.89 


5085.43 
6103.53 




60 


6099.10 


6X99.84 


6x00.55 


6XOX.34 




lO' 


60991.0 
12x983.0 


6X998.4 


6x005.5 


6x0x3.4 


61018.9 

1330S7.8 


61035.3 




ao 


12 1996.8 


X330IX.X 


122024.8 


132050.3 




30 


183973.1 


182995.2 


X83016.6 


X83037.X 


183056.8 


183075.5 




40 


a43964.« 


a43993.6 


244032.3 


244049.5 


344075.7 


344100.6 




50 


304955.' 


304992.0 


305027.7 


305061.9 




305125.8 




60 


365946.1 


365990.4 


366033.3 


366074.3 


366113.5 


366151.0 






74^ 


75^ 


76O 


JT" 


780 


790 




loff 


1017.18 


1017.28 


1017.37 


1017.45 


1017.53 


10x7.60 




ao 


ao34.37 


3034.56 
3051.84 


3034.73 


3034.90 


3035.05 
3053.58 


3035.19 




30 


3051.56 


3052. xo 


"^^ 


3053.79 




40 


4068.74 


4069.13 


4069.46 


4070.10 
5087.63 




50 


5085.93 


5086.40 


5086.83 


S087.34 




60 


6x03.11 


6103.67 


6104.30 


6104.69 


6105.16 


6.05.58 




lo' 


6x031.1 


61036.7 


61043.0 
X 33083.9 


6x046.9 


6I05I.6 


6.055.8 




ao 


123062.3 


X33073.5 


123093.9 
X83I40.8 


133 103.1 


X33IXX.5 




30 


183093.3 


183x10.3 


183x25.9 
344167.8 


183154.7 


.83x67.3 




40 


244x34.4 


344«470 
305183.7 


344187.8 


344306.3 


SI 




50 


^li:il:l 


305209.8 


305334.7 


305357.8 




60 


366330.4 


366251.8 


366281.6 


366309.4 


V 



Smithsonian Tables. 



80 



Digitized by^ 



Table 18. 
LENGTHS OF TERRESTRIAL ARCS OF PARALLEL. 

[DeriTatioQ of table explained on p. zlix.] 



Longitude 


Latitude. 


Latitnde. 


Latitude. 


Latitude. 


Latitude. 


Interval. 


OO 


I« 


2« 


f 


4^ 




Ftei. 


Fnt. 


/W/. 


Put. 


Fttt, 


lO" 


1014.5a 


10x4.37 
3028.74 


XOX3.9X 
3027.82 


XOX3.14 


X012.07 


ao 


3029.05 


ao36.39 


2024.14 


30 


3043.57 


3043. u 


3041.73 


3039-43 


3036.2X 


40 


4058.10 


4057.48 


4055.64 






U 


« 


K 




ffi 


S^;JJ 


x</ 


6087..4 


60863.3 


60834.6 


60788.6 


60724.2 
X21448.4 
182 I 72.6 


ao 


X21742.9 


'^^\ 


1 21669.2 


12x577.2 


30 


182614.3 


183503.8 


X82365.7 


40 


•43485.8 


343449.0 


243338.4 


243154.3 


343896.8 


£ 


304357.2 


304311.3 


304173.0 


303943.9 


303621.0 


365228.6 


365173.6 


365007.6 


364731.S 


364345.2 




5° 


6° 


t 


8« 


9" 


low 


10x0.69 
2021.38 


X009.00 


X007.0X 


X004.73 


I003.X3 


ao 


3018.0X 


8014.03 


2009.43 


3004.33 
3006.3s 


30 


303a.o7 


3037.01 


302x04 


4018.87 


40 


4043.76 


4036.03 


4028.05 
503506 


4008.47 
50x0.58 


50 


£U;tJ 


504503 


5023.58 


60 


6054.0a 


6043.08 


6038.30 


60x3.70 


ly 


.JSI.1 


60540.3 


60430.8 


60383.0 


60137.0 


ao 


12x080.5 


X3084X.6 


x8olw.x 


X303C4.0 
18038X.X 


30 


181924.3 


X81630.7 


18x262.3 


40 


343565.6 


34316X.0 


24x683.1 


341x33.1 


340508.x 


50 


303207.0 


302701.2 


302x03.9 


30x4x5.x 
36x698.1 


300635.x 


60 


363848.4 


363341.4 


362524.7 


300703.x 




10° 


11° 


12° 


13^ 


14° 


loff 


999-31 
'998.43 
3997.64 


996.0X 


992.50 
1985.00 


98860 
1977.38 


984.58 


ao 


':^^ 


1969. X7 


30 


297730 


3966.07 


2953.75 


40 


3996.85 


3984.03 


3970.00 


395476 


3938.34 


& 


4996.06 


4980.04 


4962.50 


4943.46 


4922.9a 


S995.a8 


5976.04 


S955.0O 


5933.X5 


5907.50 


xt/ 


599Sa.8 


59760.4 

X 19530.8 

X7938X.3 


59550.0 


S933X.5 


59075-0 


ao 
30 


1« 


X 19 100.0 
X78650.0 


X 18643.9 
237285.8 


X18150.X 
177225. X 


40 


239811.1 


358563.5 


338300.0 


236300.2 


£ 


•99763-9 
3597*6.7 


397750.0 
3S730O.0 


355928.8 


295375.2 
3S4450.2 




i!f 


\(P 


I70 


180 


Xff 


10" 


980. x8 


975-47 


970.48 


965. x8 


959.60 


ao 


«96o.35 


1950.95 


X940.9S 


1930.36 
3895.55 


3838.38 


30 


3940.53 


3926.42 


^:.l? 


40 


3930.71 
4900.88 


390X.90 


3860.73 


S 


4877.37 


'^t 


4825.91 


4797.98 


5881.06 


5852.84 


579J-09 


5757.58 


xo' 


58810.6 


58528.4 


58338.5 


.f??:!:i 


57575-8 


ao 


X1762X.3 


XX 7056.9 
175585.3 
234113.8 


1x6457.0 


"Si5».S 


30 


X76431.9 


174685-5 


173732.8 


172727.3 


40 


335»43.S 


3329x4.0 


33x643.7 


230303.0 


50 


394053.1 


292643.2 


39XX43.5 


289554.6 


287878.8 


60 


353863.7 


35 "70.6 


34937«o 


347465.5 


345454-6 




20° 


21° 


22^ 


23° 


24° 


10// 
ao 


953.7a 


947.5s 
X895. xo 


1883. 19 


.^t 


1854.67 


30 


2842.66 


2823.29 
3764.38 


8803.07 


a782xx> 


40 


3814.87 


3790.2X 


3737.43 


3709-33 


SO 


4768.59 


4737.76 


4705.48 


4671.78 


4636.66 


60 


5733.3 X 


5685.3« 


5646.58 


5606. X4 


5564.00 


It/ 


57323.x 


56853.1 


56465.8 


56061.4 

X 13X22.8 


55640.0 


ao 


"4446.2 


1 13706.3 


"3931.5 


X 1x280.0 


30 


I7I669.2 


"70559.4 


169397.3 


168184.3 


X66919.9 


40 


228892.3 


227412.5 


225863.0 


224245.7 


222559.9 


£ 


286x15.4 
343338.S 


284265.6 
341118.7 


282328.8 


280307.1 


278199.9 


338794.6 


336368.5 


333839.9 



8mit 



81 



/Google 



Table 18. 
LENGTHS OF TERRESTRIAL ARCS OF PARALLEL. 

[DeriTatioa of table explained on p. zlix.] 



Longitude 


Latitude. 


T.«^rit»iiU 


Ladtude. 


Latitude. 


Latitude. 


Interval. 


250 


260 


270 


28O 


290 




Ft€t. 


FMt. 


FttU 


Ftti. 


F*€t. 


xo" 


930103 


,0 


X809.X6 


^<& 


888.03 


ao 


1840.05 


X 776.06 


3o 


vjbfi.%& 


3737.33 


3618.32 
4533.89 


2689.32 


2664.09 


40 


36S0.XX 


3649.77 


3585.76 


3S53.X2 


1: 


4600.14 


4562.21 


4482.20 


SSII 


SSao. 17 


5474.65 


5437.47 


5378.64 


lO' 


55aox.7 


54746.5 


Si 


53786.4 


S338X.8 


ao 




109493.0 


107573.9 


106563.S 


30 


165605.0 


164339.5 


161359-3 


159845.3 


40 


aao8o6.6 


218986.1 


2x7099.0 


Si^*l:J 


V^l 


SO 


a76oo8.3 


373733.6 


371373.7 


60 


33iao9.9 


328479.1 


325648.4 


322718.6 


319690.6 




30^ 


31" 


32" 


33" 


34" 


xo" 


879.35 
1758.70 


870.40 
1740.80 


861.18 


851-71 


1S3.94 


ao 


1733.37 


1703.41 


30 


a638.o4 


261X.20 


3583.55 


3555.13 


3367.88 


40 


3517.39 


3481.59 


3444.74 


3406,83 


1; 


4396.74 


4351.99 


4305.93 


4358.53 


4309.85 


5276.09 


5332.39 


5x67. xo 


5110.24 


5051.8a 


xo' 


53760.0 
xo5sai.8 


52223.9 


5x671.0 


51 102.4 
X02204.8 


505x8.2 


ao 


103343. 1 


101036.4 
151554.6 


3© 


X58a8a.6 


155013.1 


153307.3 


40 


aiio43.5 


308895.7 


206684.2 


304409.7 


ao2072.8 


S 


363804.4 


3611x9.6 


358355.3 

310026.3 


355513.1 


252591.0 


316565.3 


313343.5 


306614.S 


303109.3 




3f 


36" 


37" 


38" 


39" 


toff 
ao 


831.98 
X663.95 


Si:? 


8x1.33 


800.48 
X600.97 


is^t? 


30 


a495.9J 


3a86.9t 


3433^69 


3401.45 


2368.48 


40 


3327.91 
4x59.88 
4991.86 


3344.92 


320X.93 


3157.97 


S 


4108.64 
4930.37 


Sl^isi 


4002.42 
4802.90 


3947.46 
4736.95 


xo' 


49918.6 


49303.7 


48673.8 


48029.0 


47369.5 


ao 


99837.3 


98607.4 


97347-6 


96058.0 


94739.1 


30 


149755-8 


X4791X.2 


146031.4 


X44087.0 


142x08.6 


40 


199674.3 


^3i 

295822.3 


194695.3 


192116.0 


189478.2 


£ 


a4959».9 
399511.5 


3433690 
292042.8 


240145.0 
288174.0 


284217.2 




40° 


41" 


42O 


43" 


44" 


x&f 


778.26 


766.79 
1533.58 


755.08 


7il'S 


730.98 


20 


1556.53 


1510.17 


X486.29 


X46X.96 


30 


3334.78 


3300.37 


2265.25 


2229.44 


3x92.95 


40 


3113.04 


3067.X6 


3020.33 


3973.59 


3933.93 


£ 


« 


3833.94 
46oa73 


377543 
4530.50 


JJJi:§ 


Sitt; 


xo' 


*S«9S.6 


46007.3 


45305.0 


44588.8 


43858.9 
87717.9 


ao 




93014.7 


90610.0 


89177.6 


30 


140086.7 


138022.0 
184029.3 


i359»5o 


133766.4 


131576.8 


40 


186782.3 


i8i22ao 


178355.3 


175435.8 


so 


333477-9 
380173.5 


230036.7 


226525.0 
271830.x 


222944-0 


219294.7 


60 


276044.0 


267532.8 


263153.6 




45" 


46° 


47" 


48" 


49" 


lO" 


718.59 


705.99 


693. x6 


680. X2 


666.87 


ao 


1437.19 
3155.78 


1411-97 


X386.32 


1360.24 


133375 


30 


2117.96 


2079.48 


2040.36 


2000.62 


40 


3874.38 


3823.94 


3773.64 


2720.49 


2667.50 


50 


3593.97 


3529.93 


4158.96 




3334.37 


60 


4311.56 


4335.91 


4080.73 


4001.25 


xo' 
ao 


SlsJit 


84718.2 


41589.6 

.S;s:7 


40807.3 
8x614.6 


40012.5 
80024.9 


30 


129346.9 


127077.3 


122421.9 


130037.4 


40 


173462.5 


169436.5 


166358.3 


163229.2 


X60049.9 


SO 


315578.2 

358693.8 


2x1795.6 


207947.9 


204036.4 


200062.3 
240074.8 


60 


354154.7 


349537-5 


344843.7 



Smithsonian Tables. 



82 



Digitized by 



r^oogle 



Table 18. 
LENGTHS OF TERRESTRIAL ARCS OF PARALLEL. 

[Derivadon of tmble ocpfadiied on p. zlbc] 



Longitude 


Latitude. 


Latitude. 


Latitude 


Latitude. 


Latitude. 


Latitude. 


Interval. 


50^ 


510 


520 • 


53^ 


54" 


55" 




Fett. 


Fwt. 


FmL 


Ftet, 


F*€t, 


F*tt. 


lO" 


653.4a 
i3o6.5s 


639.77 


635.92 
1251.84 


611.88 


597-65 


583.23 


30 


"7954 


1233.76 


1195.30 


1x66.47 


30 


1960.27 


«9«9.3« 


1877-76 


1835.63 


1792.94 


1749.70 


40 


3613.69 


'559.08 
3198,85 


3503.68 


2447.5" 


3*JSJ2 


2332.93 


50 


3367.13 


3139-60 


3059.39 


3916.16 


60 


39»o.54 


3838.63 


3755.52 


3671.37 


3585.89 


3499-40 


lO' 


78410.8 
117616.1 


38386.3 


37555.2 


367J2.7 


35858.9 
7x7x7.8 


?m: 


ao 


76772.4 


75"0.4 


73425.4 
110x38.0 


30 


XX5158.6 


113665.6 


107576.6 


X0498X.9 


40 


156831.S 


«53544.8 


150220.8 
187776.0 


146850.7 
183563.4 


143435.5 


139975.9 


P 


196036.9 


19x931.0 


179294.4 


174969.9 


60 


a35a3a-3 


330317.3 


325331.2 


330376.1 


215153-3 


209963-9 




56- 


57^ 


58- 


59" 


6o<» 


610 


!<// 


568.64 


553.87 


538.93 


523.82 


508.55 


493.13 


ao 


Ii37.a8 


XX07.74 


X077.86 


1047.65 


10x7. XI 


986.36 


30 


1705.93 


1661.61 


16x6.79 


I57I.47 


1535.66 


1479.38 


40 


3374.56 


3315.48 


2155.72 


3095.39 


3034.33 


1972.52 
3465.64 
3958.77 


S 


a843.ao 


2769.35 


2694.64 


3619.13 


2542.77 


34«i.83 


3333.33 


323357 


3142.94 


3051.33 


lO' 

ao 


tt 


33232.3 

^1 


V^W 


mi 


VSSLl 


29587.7 


3© 


1O33SS-0 


97007.3 


94388.1 


91539.9 


40 


«36473-4 


133938.8 


"29343.0 


"57175 


133053.3 


X1835X.0 


so 


170591.7 


i66t6x.o 


161678.7 


ISlJtl 


147938.7 


60 


304710.0 


199393.2 


194014.4 


177526.4 




ea*' 


63" 


64" 


65° 


66*» 


67" 


i&i 


477-55 


461.83 


445.96 




413.83 


397.55 


ao 
30 


955.10 
1433.66 


1847.31 


891.^ 
1337.88 


837.63 
1241.44 


795.10 
1192.64 


40 


1910.31 


1783.84 


1719.81 


1655.26 


1590.19 
1987.74 


SO 


V^t 


3309.14 




3149^76 


ao69.o8 


60 


3770.96 


2675.75 


2579.72 


3482.89 


238529 


lo' 


38653.1 


37709.6 


26757.S 


25797.2 


S 


33853.0 


ao 
30 


57306.3 
85959.4 


Sits; 


s;i:4 


5»594.4 
103x88.7 


40 


114613.5 
143365.6 
17x918.7 


•10838.5 


107030.3 
133787.7 


99315.6 


95411.5 


1^ 


138548.1 


138985.9 


124144.5 


119364.4 


166357.7 


160545-2 


154783.1 


148973.4 


143117.3 




68« 


69° 


700 


7i« 


720 


73" 


xdf 


381.16 


364.65 


348.P3 


331.30 


JXJJ 


297.54 


ao 


763.33 


729-30 


696.06 


663.60 


30 


"43-47 


;X4 


1044.09 


993.90 


1357.88 


40 


«5«4-63 


1392.12 


1335.30 


tX9ai6 


£ 


iS-^' 


1833.35 
2187.90 


'740. »4 
3088.17 


!*4^S 


:si:it 


148770 
1785.23 


lo' 


33869.5 


3x879.0 
65637.0 


ao88x.7 


19878.1 


18868.1 


17852.3 


ao 


^: 


4«763.S 


39756.1 


37736.3 


35704.7 


30 


63645.3 


59634.2 


56604.4 


53557.0 


40 


91477.9 


87516.0 


83537.0 


795"-2 


75472.6 


i^:J 


so 


"43474 


109395.0 


104408.7 


99390.3 


ii33o8i8 


60 


X37>«6.9 


X3 1274.0 


"5290.4 


1x9268.4 


107x14.0 




74^ 


75^ 


76O 


77" 


78° 


79" 


lo'/ 


380.53 


263.41 


346.33 


338.96 


31X.63 


1§J'4J 


ao 


561.04 


536.83 


492.44 


*^j& 


423.24 


30 


841.56 


790.33 


738.66 


634.85 


5*^Sl 


40 


XX33.08 


1053-64 


984.88 


915.83 


846.47 


776.86 


t. 


X403.60 


1317.06 


1331.10 


1144.78 


X058.09 


971.08 


X683.II 


1580.47 


«477.33 


1373.73 


1369.71 


1165.39 


td 


X6831.I 


15804.7 


'4773.3 


13737.3 


13697.1 


11653.0 
23305.8 
34958.7 


ao 


33663.3 


3*609.3 


29546.5 
44319.8 


27474-6 


25394.2 


30 


67324.6 


63218.6 


4121X.9 


38091.3 


40 


5(9093.0 




50788.3 


4661 X.6 


S 


loo^is 


79023.3 
94828.0 


73866.3 
88639.6 


68686.5 
8342 j.§ 


63485.4 
76183.5 


58164.5 
69917.4 


Amitusam 


AM TaBI^VS 








'ig 


tized by V3V. 



83 



>8i 



Table 19. 

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE iW^rrr- 
[Derivation of table explained on pp. Uii — Ivi.] 



•8 . 


Meridional dis- 
tances from 
even degree 
paraUels. 


CO-ORDINATES OF DEVELOPED PARALLEL FOR- 1 


15' longitude. 


Zd loBgitnde. 


45' longitude. 


lO lon^tude. 1 


X 


y 


X 


y 


X 


y 


X 


y 




Inehtt, 


IncJuu 


ImcJut, 


Incfus. 


Inck4». 


Inck4t. 


Inckts. 


Inches. 


Inckts. 


0<»00' 

45 


13-059 


4.383 
4.383 
4.383 
4.382 


.000 
.000 
.000 
.000 


8.766 
8.766 
8.76s 
8.765 


JQOO 
.000 
.000 
.001 


13.148 
13.148 
13.148 
13.147 


.000 
.000 
.001 

.001 


17.531 
17.531 
17.530 
17.530 


.000 
.001 
.001 
.002 


I 00 

IS 
30 
45 


17.412 


4.382 

4.382 
4.381 
4.381 


.000 

.000 
.000 
.000 


8.764 

8.764 
8.763 
8.762 


.001 

.001 
.001 
.001 


13.146 

13-145 
13-144 
13.142 


.001 

.002 
.002 
.003 


17.528 

17.527 
17.525 
17-523 


X)03 

.003 
.004 
.005 


13-059 


200 

30 
45 


17.412 


4.380 

4.379 
4.379 
4.378 


.000 

.000 
.000 
.000 


8.760 

8.759 
8.757 
8.755 


.001 

.001 

JOOl 

.002 


13.141 
13-138 

I3.»36 
13.133 


.003 

.003 
.004 
.004 


17.521 

17.518 
17.514 

175" 


JOdS 
.007 
.007 


13059 


300 

IS 
30 
45 


17-413 


4.377 

4.376 
4.375 
4.373 


.001 

.001 
.001 

.001 


8.753 

8.751 
8.749 
8.747 


.002 

.002 
.002 
.002 


13.130 

13.127 
13.124 
13.120 


.004 
.005 


17.507 

17.503 
17-498 
17.494 


.008 

.008 
.009 
.009 


13.060 


400 

IS 
30 
45 


17.413 


4.372 
4.371 


.001 

.001 
.001 
.001 


8.744 

8.742 
8.739 
8.736 


.003 

.003 
.003 
.003 


13.116 

13.112 
13.108 
13.104 


.006 

.006 

.007 
.007 


17488 

17.483 
17.478 
17.472 


.010 

.Oil 
.012 
.013 


4.353 
8.707 
13.060 


500 

15 
30 
45 


17.413 


4.366 

4.364 
4.363 
4.361 


.001 

.001 
.001 

.001 


8.732 

8.729 
8.72s 
8.722 


.003 

.003 
.004 
.004 


13.099 

\\^ 
13.082 


•007 

.008 
.008 
.008 


17.465 

17.458 
17.451 

17.443 


.013 
.014 

x>i4 
.015 


4-353 

8.707 

13.060 


600 

15 
30 
45 


17-414 


4.359 

4.357 
4.355 

4-353 


.001 

.001 
.001 

.001 


8.718 

8.714 
8.710 

8.705 


.004 

.004 
.004 
.004 


13.076 

13.071 
13.064 
13-058 


.009 

.009 
.010 

.010 


17.435 

17.428 

17419 
17.410 


.016 

.017 
.017 
.018 


4.354 

8.707 

13.061 


700 

'5 

30 
45 


17.414 


4.350 

4.348 
4.346 
4.343 


.001 

.001 
.001 
.001 


8.701 

8.696 
8.691 
8.686 


.005 

.005 
.005 
.005 


13.051 

13044 
13.036 
13.029 


.010 

.011 
•Oil 
X>1I 


17.401 

17-392 
17.382 
17.372 


.019 

x>i9 
.020 

JQ20 


4.354 
8.707 
13.061 


800 

15 
30 
45 


17.415 


4.340 

4.338 
4.335 
4.332 


.001 

.001 
.001 
.002 


8.681 

8.67s 
8.670 
8.664 


.005 
.006 


13.021 

13-013 
13.005 
12.996 


.012 

.012 
.013 
.013 


17.362 

17.351 
17-340 
17.328 


.021 

.022 
.022 
.023 


13.062 


900 

15 
30 

45 


17.416 


4.329 

4.326 

4.323 
4.320 


.002 

.002 

.002 
.002 


8.658 

8.652 
8.646 
8.640 


.006 

.006 
.006 


12.987 

12.979 
12.969 
12.960 


.013 

.014 
.014 
.014 


17.316 

17.305 
17.292 
17.280 


.024 
.024 
.020 


13.062 


1000 


17.417 


4.317 


.002 


8.633 


.006 


12.950 


.015 


17.266 


.026 





Smithsonian Tables. 



84 



Table 19. 
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE jTzhv- 
[Derivation of table explained on pp. liii — Ivi.] 



'S . 


Meridional dia. 
Unces from 
even degree 
parallel*. 


CO-ORDINATES OF DEVELOPED PARALLEL FOR — 


IS' longitude. 


y/ longitude. 


45' longitude. 


i^ longitude. 


X 


y 


z 


y 


X 


y 


X 


y 




Inck4s, 


Inches. 


Inches. 


Inches. 


Inches. 


Inches, 


Inches. 


Inches, 


Inches, 


loPbo' 

30 
45 


4-354 

8.709 

13-063 


4.317 
4.313 
4.3<o 
4.306 


.002 
.002 
.002 
.002 


8162^ 
8.620 
8.613 


.006 
.007 
.007 
.007 


12.950 
12.940 
12.930 
12.919 


.015 
.015 
.Ol| 
.016 


17.266 

«7.253 
17.240 
17.226 


.026 
.027 

!o28 


II 00 

30 
45 


17.418 


4.303 

4.299 
4.295 
4.292 


.002 

.002 
.002 
.002 


8.606 

8.598 
8.591 

8.583 


.007 
.007 


12.908 

12.875 


.016 

.016 
.017 
.017 


17.211 

17.IQ6 
17.182 
17.166 


.029 

.029 
.030 
..031 


4.355 

8.709 

13.064 


1200 

15 
3D 
45 


17.419 


4.288 

4.284 
4.280 
4.275 


.002 

.002 
.002 
.002 


8.575 

8.567 
8.559 

8.55* 


.ooR 

.008 
.008 
.008 


12.863 

12.851 
12.839 
12.826 


JOI7 

.018 
.018 
.019 


17.150 

17.134 
17.118 
17.102 


.031 

.032 
.032 
.033 


4.355 
8.710 
13.065 


1300 

15 
30 
45 


17.420 


4.271 

4.267 
4.262 
4.258 


.002 

.002 
.002 
.002 


8.542 

8.534 
8.516 


.008 

.009 
.009 
.009 


12.813 
12.800 

12.787 
12.774 


.019 

.019 
.020 
.020 


17.084 

17.067 
17.050 
17.032 


.034 

.034 
•035 
•035 


4.355 
8.7 1 1 
13.066 


1400 

>5 

30 
• 45 


17.421 


4.253 

4.249 
4.244 
4.239 


.002 

.002 
.002 
.002 


8.507 

It 

8.479 


.009 

.009 
.009 
.009 


12.760 

12.746 
12.732 
12.718 


.020 

.021 
.021 
.021 


17.013 

16.976 
16.957 


.036 

.036 

.037 
.038 


4.356 
8.7 1 1 
13.067 


1500 

>5 
30 
45 


17.423 


4.234 

4.229 
4.224 
4.219 


.002 

.002 
.002 
.002 


8.469 

8.459 
8.449 
8.439 


.010 

.010 
.010 
.010 


12.703 

12.688 
12.673 
12.658 


.022 

.022 
.022 
.022 


16.938 

16.918 
16.898 
16.877 


.038 

.039 
.039 
.040 


4.356 

8.712 

13.068 


1600 

'5 

30 
45 


17.424 


4.214 

4.209 
4.204 
4.198 


.003 

.003 
.003 
.003 


8.428 

8.417 
8.407 
8.396 


x>io 

.010 
.010 
.oil 


12.642 

12.626 
12.610 
12.594 


.023 

.023 
.023 
.024 


16.856 

16.835 
16.814 
16.792 


.041 

.041 
.042 
.042 


4.356 
8.713 
13.069 


1700 

"5 
30 
45 


17.426 


4.192 

4.187 
4.181 
4.175 


.003 

.003 

.003 

/•OO3 


8.385 

5-374 
8.362 

8.351 


.oil 

.011 
.oil 
.oil 


12.577 

12.561 
12.544 
12.526 


.024 

.024 
.025 
.025 


16.770 

16.748 
16.725 
16.702 


.043 

.043 
.044 
.044 


4.357 

8.714 

13.071 


1800 

15 
30 
45 


17.427 


4.170 
4.152 


.003 

.003 
.003 
.003 


8.339 

f'327 
8.316 

8.303 


JOll 

.oil 
.012 
.012 


12.509 

12.491 
12473 
12.455 


.025 
.026 
.026 


16.679 

16.631 
16.606 


.045 

.046 
.046 


4.357 

8.715 

13.072 


1900 

15 
30 
45 


17.429 


4-145 

4.139 
4.133 
4.127 


.003 

.063 
.003 
.003 


8.291 

8.278 
8.266 
8.253 


.012 

X)I2 
.012 
.012 


12.436 

12.418 
12.309 
12.380 


.026 

.027 
.027 
.027 


16.582 
16.557 
16.506 


.047 

x>48 
.048 


13.073 


2000 


17.43' 


4.120 


.003 


8.240 


.012 


12.360 


.028 


16.480 


.049 





8mitm«oiiiaii Tables. 



8s 



Tablk 19. 

CO-ORDINATES FOR PROJECTION OF MAPS. 

[DeriTStioB <d tabia espUaad on pp. UB-ItL] 



SCALE ttAvy^ 



IS 

30 

45 
21 00 

15 
30 
45 

2200 

IS 
30 
4S 

2300 

IS 

30 
45 

2400 

IS 

30 
45 

2500 

15 
30 

45 

2600 

15 

30 

45 

2700 

IS 

30 

45 

2800 

IS 
30 
45 

2900 

IS 
30 
45 

3000 




Jnekgt, 



4.358 
8.717 
13^75 

17433 



8.718 
13-076 

17.435 



4.359 
8.719 
13-078 

17.437 



4.360 

8.720 

13.080 

17-439 



4.360 

8.721 

i3»o8i 

17.442 



4.361 
8.722 
13-083 

17444 



4.362 

8.723 



52 

.723 
13.085 



17.446 



1-362 

8.724 

13.087 

17-449 



13.088 
17.451 



4.363 

8.727 

13.091 

I74S4 



CO-ORDINATES OF DEVELOPED PARALLEL FOR— 



is' longitiMle. 



Jmhe*. 

4.120 
4.II4 
4.107 
4.100 

4.094 

4.087 
4.080 
4-073 

4.066 

4.058 
4.051 
4.044 

4.036 

4-029 
4.021 
4.014 

4.006 

3-998 
3990 
3.982 

3-974 

3.966 
3-958 
3-950 

3-942 

3-933 
3-925 
3.916 

3-908 

3.899 



3.873 

3.863 
3.854 
3.845 

3836 

3-827 

3'5'7 
3.808 

3-799 



.003 
.003 
.003 
.003 

.003 

.003 
.003 
.003 

•003 

.003 
.003 
.003 

.003 

.003 
.003 
.004 

.004 

.004 
.004 
.004 

•004 

.004 
.004 

4XH 

.004 

.004 
.004 
.004 

.004 

.004 

J0O\ 

«H 

.004 

.004 
.004 
.004 

.004 

.004 
.004 
.004 

.004 



so' kmptnde. 



Jnckgt. 

8.240 
8.227 
8.214 
8.200 

8.187 

8.173 
8.IS9 
8.145 

8.131 

8.117 
8.102 
&088 

8.073 
8.058 

8.028 



8.012 

7.997 
7.^1 
7.965 

7.949 

7.933 
7.916 
7.900 

7.883 

7.866 
7.849 
7.833 

7.816 

7.798 
7.780 
7.763 

7.745 

7.727 
7.709 
7.691 

7.673 

7.654 

7-635 
7.616 

7.598 



Inckgt* 

.012 
.012 
.013 
.013 

.013 

.013 
.013 
.013 

.013 

^13 
.014 
.014 

.014 

.014 
.014 
.014 

.014 

.014 
.014 
.015 

•015 

.015 
.015 
^15 

.015 

.015 
.015 
.015 

.015 

.016 
.016 
.016 

.016 

.0x6 
.016 
.016 

.016 

.016 
.016 
.016 

.017 



45^ longitade. 



Imckes. 

2.360 
2.340 
2.321 
2.301 

2.280 

2.260 
2.230 
2.218 

2.197 

2.175 
2.154 
2.132 

2.109 

2.087 
2.064 
2.041 

2.018 

1.99s 
I.971 
1.948 

1.923 

1.899 

1.874 
1.850 

1.825 

1.800 
1.774 
1.749 

1.723 

1.697 
1.67 1 
1.644 

I.618 



1.591 
1-563 
1.536 

1509 

1. 48 1 

^453 
1.425 

11.396 



.028 
X>28 
.028 
.029 

.029 

.029 
.029 
.030 

x>2P 

.030 
^30 
•031 

.031 

.031 
.031 
.032 

.032 

.032 
.032 
.033 

•033 

.033 
.033 
.034 

^34 

.034 
.034 
.035 

.035 

.035 

.036 

.036 

.036 
.036 
.036 

.036 

•037 
.037 
.037 

.037 



>loi«itiide. 



64S0 

as 

[6401 
6.374 

6.346 
6.318 
6.291 

6.262 

6.234 
6.205 
61176 

6.146 



6.1 16 
6.086 
6.055 

6.024 

5-993 
5.962 

5.930 

5JJ98 

5.865 
5.832 
5Ax> 

5.767 

5-733 
5.699 
5-665 

5.631 

5.596 
5-561 
5.526 

5490 

5454 
5418 
5.382 

5-345 

5.308 
5.270 
5.233 

15.195 



Inches. 
.049 

x>50 
.050 

.051 
.051 

.052 

.052 
.053 

.053 

-054 
-054 
.05s 

■OSS 

.055 
•056 
.056 

.057 

.057 
J058 
.058 

•059 
.059 

.060 

X36l 
X36l 
X36l 

.062 

.062 

1^ 

.063 
.064 

.065 
.065 

!o66 
.066 

.066 



SmTHSONIAN TaBUB. 



86 



Digitized byLjOOQlC 



TABUE19. 

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE iW^inr* 
[Derivation of table explained on pp. liii-lvi.] 



•3 

•S2 



30*00' 
IS 
30 
45 

31 00 

15 

30 
45 

3200 

15 
30 
45 

3300 

>S 
30 
45 

3400 

15 
30 
45 

3500 

15 

30 
45 

3600 

15 
30 

45 

3700 

«5 
30 
45 

3800 

15 
30 
45 

3900 

»5 
30 

45 

4000 






Jncks$. 



4-364 

8.728 

13.092 

17457 



4-365 
8.730 
13095 

17.460 



5-73' 
13^7 

17462 



4.366 

8-733 

'3099 

17.465 



4.367 
8.734 
13.101 

17.468 



4.368 

8.735 

i3-'03 

17.471 



4.368 

8.736 
13.105 

17-473 



13.108 

«7-477 



4.370 

8.740 

13.110 

17.480 



4.371 

8.741 

13.112 

17.483 



CO-ORDINATES OF DEVELOPED PARALLEL FOR— 



15' longitude. 



jHchg*. 

V^ 

3-779 
3-770 

3760 

3.750 
3-740 
3-730 

3-720 

3-7 >o 
3-700 
3-690 

3-679 

3^648 
3637 

3.626 
3.616 
3.605 

3-594 

3.583 
3572 
3-561 

3-550 

3-539 
3-527 
3-5>6 

3504 

3470 

3-458 

3.446 
3434 
3.422 

34" 

3.386 
3-374 

3-362 



Jmcktt. 

.004 
.004 
.004 
.004 

.004 

-004 
.004 
.004 

JOOA 

.004 
.004 
.004 

.004 

.004 
.004 
.004 

.004 

.004 
.004 
.004 

.004 

.004 
.004 
.005 

.005 

.005 
.005 
.005 

.005 

.005 
.005 
.005 

.005 
.005 

.00$ 

xyos 

•005 

•005 
.005 
.005 

.005 



y/ longitude. 



IncJus. 

7.598 
7.578 

7.559 
7.540 

7.520 

7.5^0 
7480 
7.460 

7.441 

7.420 
7.400 
7-379 

7.359 

7.338 
7.317 
7.296 

7.27s 

7.253 
7.231 
7.210 

7.188 

7.166 

7.»44 
7.122 

7.100 

7.077 
7.054 
7.032 

7.009 

6.986 
6.963 
6.939 

6.916 

6.892 
6.869 
6.845 

6.821 

6.797 
6^74^ 

6.724 



Juckes. 

.017 
.017 
.017 
.017 

.017 

.017 
.017 
.017 

.0x7 

.017 

.017 
.017 

.017 

.018 
X)i8 
.018 

.018 

.018 
.018 
.018 

.018 

.018 
.018 
.018 

.018 

.018 
.018 
.018 

x>i8 

.018 
.018 
.018 

.019 

.019 
.019 
.019 

.019 

.019 
.019 
.019 

.019 



45' longitude. 



I ticket 

'.396 
1.3^ 

>.3: 

«.309 
1.280 

1.250 
1.22 1 
1. 191 

i.z6i 

1.130 
1. 100 
f.069 

1.038 

1.007 
0.975 
0.943 

0.912 

0.879 
0847 
0.815 

0782 

0749 
0.716 
a6S3 

a65o 

0.616 
0.582 
0.547 

0.513 

0.479 
0.444 
0409 

0.374 

0.339 
0.303 
0.267 

0.232 

0.195 
0.159 
0.123 

iao86 



Inches. 

.037 
.037 
.038 
x>38 



.C38 
.038 
.038 

.039 

.039 
.039 
.039 

.039 

•039 
.040 
.040 

.040 

.040 
.040 
.040 

.040 

.041 
.041 
-041 

.041 

.041 
.041 
.041 

.041 

.041 
.042 
.C42 

.042 

.042 
.042 
.042 

.042 

.042 
.042 
.042 



1^ longitude. 



'ncheu 

5-»9S 
5.156 
5.1 18 
5-079 

5.040 

5.001 
4.961 
4.921 

4.881 

4.840 
4-799 
4-758 

4.718 

4.676 

4-633 
4.591 

4-549 

4-506 
4-463 
4.420 

4.376 

4332 
4.288 

4.244 
4.200 

4.154 
4.109 
4.063 

4.018 

3.972 
3.925 
3.879 

3-832 

.3-785 
3.737 
3690 

3642 

3.594 
3-545 
3-497 



.042 13448 



Imche*, 

.066 
.067 
.067 
.067 

.068 

.c68 
x)68 
.068 

.069 

.069 
.069 
.070 

X70 

J070 
.070 
.071 

.071 

.071 
.071 
.072 

.072 

.072 
.072 
.073 

.073 

.073 
.073 
.073 

.074 

.074 

.074 
.074 

.074 

.074 
.075 
.075 

.075 

.075 
.075 
.075 

.075 



Smithsonian Tables. 



87 



.•igitizedbyVjODgtC 



Tablk 19. 

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE irAlT 

[Derivatum of table explained on p, Hia-lvi.] 





Meridional dis. 
tauces from 
even degree 
parallels. 


CO-ORDINATES OF DEVELOPED PARALLEL FOR- 1 


15' longitude. 


SC longitude. 


45Monjdtude. 


lO longitude. II 


z 


y 


z 


y 


z 


y 


X 


y 




/t$cJk4*. 


IncJkM. 


Inck4s. 


JncJus, 


Inches, 


iMckes. 


Imck4». 


Inchu. 


lnck€U 


40O00' 

IS 

30 

45 


4^371 
8743 
13.114 


3-362 

3-350 
3.337 
3.325 


.005 
.005 
.005 
.005 


6.724 

^^ 
6.675 

6.650 


.019 
X>19 
.019 
/)I9 


10.086 

iox>49 
iaoi2 

9-975 


X>42 
.042 
.043 
.043 


13-448 
13.399 
13.349 
13-300 


•075 

.070 
.076 


41 00 

30 
45 


17.486 


3.312 

3.300 
3.287 
3-275 


.005 

.005 
.005 
.005 


6.625 

6.600 
6.575 
6.549 


.019 

.0x9 
.0x9 
/>I9 


9.937 
9-824 


-043 

.043 
.043 
.043 


13.250 

13-200 
13149 
13.098 


.076 

.076 
.076 
•O76 


4.372 

8.744 

131 17 


4200 
15 
45 


17.489 


3.262 

3-249 
3.236 
3-223 


•005 

.005 
.005 
.005 


6.524 

6.498 
6.472 
6.447 


.019 

.019 
.019 
.0x9 


9.786 

9-747 
9.709 
9.670 


.043 

.043 
.043 
.043 


13.048 

12.996 
12.045 

I2i93 


.076 

x>76 
.076 
/176 


13.119 


4300 

15 
30 

45 


17.492 


3.210 

3.197 
3.184 
3.170 


.005 

.005 
.005 

.005 


6.421 

^^ 

6.342 


.0x9 

.019 
.019 
.019 


9-631 

9.592 
9-552 
9-5«3 


.043 

.043 
.043 
.043 


12.842 
12.789 


.076 
xyj6 


4.374 
8.747 
13.121 


4400 

15 
30 
45 


17495 


3-158 

3-144 
3.131 
3.1 18 


.005 

.005 
.005 
.005 


6.316 

6.289 
6.262 
6.235 


.019 

.019 
X)I9 
.019 


9-473 

9.433 
9-393 
9.353 


-043 

.043 

.043 

• .043 


12.631 

12.578 

X 2.524 

I247I 


.077 

.077 
.077 
.077 


4.375 
8.749 
13.124 


4500 

15 

30 
45 


17.498 


3.104 

3-091 
3-077 
3-063 


.005 

.005 
.005 
.005 


6.209 

6.181 
6.154 
6.127 


.019 

.0x9 
.019 
.019 


9-313 

9.272 
9.231 
9.190 


.043 

.043 
.043 
.043 


12.417 
12.363 

12.308 
12.254 


.077 

.077 
.077 
.077 


4.375 
8.751 
13.126 


4600 

15 
30 
45 


17.501 


3.050 

3.036 
3.022 
3.008 


.005 

.005 
.005 
.005 


6.100 

6.072 
6.044 
6.017 


.019 

.019 
.019 
.019 


9.150 

9.108 
9.067 
9.025 


.043 

.043 
.043 
.043 


12.200 

I2.X44 
12.089 
12.033 


.077 

.077 
.077 
.077 


4.376 
8.752 
13.128 


4700 

15 

30 
45 


17.504 


2.994 

2.980 
2.966 
2.952 


.005 

.005 
.005 
.005 


5.989 

5.961 
5-933 
5.904 


.019 

.019 
.019 
.019 


8.983 

us 

8.857 


.043 

.043 
.043 
.043 


n.978 

11.922 
IX.865 
IX.809 


.076 

.076 
.076 
.076 


4-377 
8.754 


4800 

15 

30 
45 


17.508 


2.938 

2.924 
2.009 

2.895 


.005 

.005 
.005 
.005 


5.876 

5.848 
5.819 
5.790 


.019 

.019 
.019 

x)X9 


8.814 

8.771 
8.728 

8.686 


.043 

.043 
.043 
.043 


11.752 

11.638 
II.581 


.076 

.076 
.076 
.076 


4.378 

8.755 

13.133 


4900 

15 
30 
45 


17.511 


2.881 

2.866 
2.852 
2.837 


.005 

.005 
.005 
.005 


5.762 

5.733 
5.704 
5.675 


.019 

.019 
.019 
.0x9 


8.643 

8.599 

8.555 
8.512 


-043 

.043 
.043 
X)42 


IX.524 

X 1.465 

11.407 
11.349 


.076 

.076 
.076 
.076 


4.378 

8.757 

13.13s 


5000 


17.514 


2.823 


•005 


5646 


.0x9 


8.468 


.042 


1 1. 291 


.076 




SlIITMaOIIIA 


M Tablci 


u 










Digitized 


bytjOl 


L/V 



88 



Tablk 19. 
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE mAnnr- 
[Derivation of taUe expbined on p. liii-Ivi.] 



^-i 


Meridional dis- 
tances from 

parallels. 


CO-ORDINAT£S OF DEVELOPED PARALLEL FOR— 1 


1$' longitude. 


30^ longitude. 


45^ longitude. 


1° longitude: 1 


z 


y 


z 


y 


z 


y 


z 


y 




ImcJk^s. 


iHcJkes. 


Inck4U 


Jnckgs, 


InchMt, 


Incfut. 


Inches. 


Inck4s. 


Inches, 


SoPbo' 
IS 

45 




2io8 

2.793 
2.779 


.005 
.005 
.005 
.005 


S.646 
5.616 
5-587 

5-557 


.019 
.019 
.019 
.019 


8.468 
8.424 
8.380 
8.336 


.042 
.042 
.042 
.042 


1 1. 291 
IX.232 

11.174 
XI.II4 


.076 
.075 
.075 

.075 


5100 

'S 

30 
45 


17-517 


2.764 

2.749 
2.734 
2.719 


•005 

.005 
•005 
•005 


5-5*8 

5.438 


.019 
.019 

x>i9 
.019 


8.291 

8.247 
8.202 

8.157 


.042 

.042 
.042 
XH2 


11.055 

10.996 
10.036 
10.876 


.075 

.075 
.075 

.075 


13.140 


5200 

>5 

30 
45 


17.520 


2.704 

2.689 

2.674 
2.659 


•005 

.005 
.005 
.005 


5408 
5.378 

5-347 
5-317 


.019 
.019 

.018 


8.II2 

8x)67 
8.021 
7.976 


.042 

.042 
.041 


ia8i6 

10.756 
ia695 
10-634 


.074 

.074 
.074 
.074 


13.142 


53 00 

15 

30 
45 


17.523 


2.643 

2.628 
2.613 
2.597 


•005 

.005 
.005 
•005 


5.287 

5.256 

5.225 

5195 


.018 

.018 
.018 
.018 


7.930 
7.792 


.041 

.041 
.041 


10.573 

10.512 
10.451 
10.389 


.074 

.074 
.073 
.073 


13-144 


5400 

'5 
30 
45 


17.526 


2.582 

2.566 

2.551 
2.535 


.005 

.005 
.005 
.005 


5.164 

5.133 
5.102 
5.070 


x>i8 

.018 
.018 
.018 


7.745 
7.699 


.041 

.041 
.041 
.041 


10.327 

10.266 
10.203 
10.X41 


•073 

^3 
.073 
-072 


13-147 


5500 

15 
3D 
45 


17529 


2.520 

2472 


•005 

.004 
.004 
.004 


5.039 

5.008 
4.976 
4.945 


.0x8 

.0x8 
.018 
.018 


7.559 

7.512 
7.465 
7.417 


.041 

x>40 
x>40 
.040 


iao78 

10.016 
9.953 
9.890 


^2 

xyj2 
.072 
x)7i 


13.149 


5600 

15 

30 
45 


17.532 


2456 

2.441 
2.425 
2.409 


.004 

.004 
.004 
.004 


4.913 

4.881 

4.849 
4.817 


.018 

.018 
.018 
.0x8 


7.370 

7.322 
7.274 
7.226 


.040 

.040 
.040 
x>40 


9.826 

9-763 
9.699 

9.635 


.071 

.071 
.071 
.070 


tf4 

13-151 


57 00 

15 

3D 
45 


17.535 


2.393 

2.377 
2.361 

2.344 


.004 

.004 
.004 
.004 


4.785 

4-753 
4.721 
4.689 


.018 

.017 
.017 
.017 


7.178 

7.130 
7.082 

7.033 


.039 

.039 
.039 
.039 


9.571 

9.507 
9.442 

9-378 


xyjo 

.070 
.070 
.069 


13-153 


5800 

IS 

30 
45 


17.537 


2.328 

2.296 
2.279 


.004 

.004 
.004 
.004 


4.656 

4.624 
4591 
4.559 


.017 

.017 
.017 
.017 


6.985 
6.838 


•039 

.039 
.038 
.038 


9.313 

9.248 
9-183 
9.117 


.069 

.068 


4-385 
8.770 

13-155 


5900 

IS 
30 
45 


17.540 


2.263 

2.246 
2.230 
2.214 


.004 

.004 
.004 
.004 


4.526 

4.493 
4.460 
4-427 


.017 

.017 
.017 
.017 


6.789 

^^ 
6.690 

6.641 


.038 

.038 
.038 
.038 


9.052 

8.986 
8.920 
8.S54 


.068 
.068 


4.386 
8.772 
13-157 


6000 


17.543 


2.197 


.004 


4-394 


.017 


6.591 


•037 


8.788 


Xfy, 





SMiTMaoNUN Tables. 



89 



Tablk 19. 

CO-ORDINATES FOR PROJECTION OP MAPS. SCALE ifAir 

(DerivBtioo of tabk aplaioed o« pp. Un-IrL] 



60POO' 

30 

45 
61 00 

IS 
30 
45 

6200 

>5 

30 
45 

6300 

15 
30 
45 

6400 

15 
30 
45 

6500 

15 
30 
45 

6600 

15 

30 
45 

67 00 

»5 
30 
45 

6800 

»5 
30 
45 

6900 

>5 

30 
45 

7000 



ImcJktt, 



4.386 
8.773 

13' 59 

17.546 



4.387 

8.774 

13-161 

17.548 



4.388 
8.776 
13163 

»7.55i 



8.777 
13.165 

17.554 



m 

13.167 
17.556 



4.390 
8.779 
13.169 

17.559 



4390 
8.780 

I3-I71 
17.561 

4-39» 
8.782 

13.172 

»7.563 

8.783 
13.174 

17.565 



4-392 
8.784 
13.176 

17.568 



CO-ORDINATfiS OP DK\fiLOP£D PARALLEL FOR- 



ly longitttde. 



/t$cJUs. 

2.107 
2.1S0 
2.164 
2.147 

2.130 

2.II4 
2.097 
2.080 

2.063 

2.046 
2.029 
2.012 

1-995 

1.978 
I. 961 
1.944 

1.926 

1.909 
10^92 
1-875 

1.857 

1.840 
1.823 
1.S05 

1.788 

1.770 
1-753 
1-735 

1.7x7 

1.700 
1.6S2 
1.664 

1.647 

1.629 
1. 61 1 
1-593 

1-575 

1-557 
1.540 
1.522 

1.504 



Imckn. 

.004 
.004 
.004 
.004 

•004 

.004 
.004 
.004 

■004 

-004 
-004 
.004 

.004 

.004 
.004 
■004 

■004 

■004 
■004 

.004 

•004 

.004 
•004 
.004 

■004 

-004 
.004 
^3 

.003 

.003 
.003 
.003 

■003 

.003 
.003 
.003 

x)03 

.003 
.003 
•003 

•003 



jy kmgiiode. 



Imeket 

4.394 
4.361 

4.327 
4-294 

4.261 

4.227 

4.194 
4.160 

4.126 

4-092 

4.058 
4-024 

3990 

3956 

3-853 

3.819 
3.784 

3-749 
3-71 5 

3.680 

3-645 
3.610 

3-575 

3.540 
3-505 
3-470 

3-435 

3400 
3.364 
3329 

3293 

3-258 
3.222 
3.186 

3.151 

3."5 
3-079 
3-043 

3-007 



Jucktt. 

J017 

.016 
.016 

woi6 

.016 
.016 
.016 

woi6 

.016 
.016 
woi6 

•oiS 

-015 
•015 
•015 

.015 

.015 
.015 
•OIS 

^15 

^15 
.014 
.014 

^14 

.014 
.014 
-014 

■014 

.014 
.014 
.013 

.013 

.013 
.013 
•013 

•013 

.013 
-013 
.012 

.012 



45' 



IttcAes, 

6.591 
6.541 
6491 
6441 

6.391 

6.340 
d290 

6.240 

6.189 
6.138 

6.036 
5-985 

m 

5-831 
s-780 

5-728 
5-676 
5.624 

5-572 

5-468 
5415 

S-363 

5.310 
5-258 
5.205 

5.152 

509? 

5.046 

4.993 
4.940 

4.886 
4.873 
4-780 

4.726 

4.672 
4.618 
4564 

4.510 



ImcAm, 

•037 
•037 
•037 
•037 

•037 

.036 
.036 
.036 

•036 

WO36 
•035 
•035 

•035 

•035 
•034 
•034 

■034 

-034 
•034 
•033 

^33 

•033 
•033 
JC32 

.032 

•032 
.032 
.031 

-031 

•031 
-031 
.030 

.030 

-030 
.029 

X>29 

.029 

J02Q 
.028 
.028 

.028 



1^ longitude. 



8.788 
8.722 

8.521 

8.320 
8.252 
8.184 

8.117 
8/>48 

7.980 

7.012 
7-844 
7-775 

7.706 

7499 

7430 

7-360 
7.290 
7.220 

7.151 

7J0S0 
7.010 
6.940 

6.870 

& 

6.658 
6.586 

6.515 
6.444 
6-373 

6.301 

6.230 
6.158 
6.086 

6.014 



ImcAn. 

-067 
.066 
.066 
i066 

x)65 

-064 
^064 

^064 
-063 

X)63 

.068 

X360 

J060 
W060 
■059 

•059 

.og 
.058 

-057 

-056 
^56 

■055 

•055 
•054 
.054 

•053 

•053 
•052 
^52 

•051 

•051 
•051 
-050 

■049 



Smithsonian Tjislcs. 



90 



Digitized byLjOOQlC 



Tablk 19. 
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE thW 

[Derivation of uble explained on pp. Uii-lvL] 



"8 


Mend onal dis 
tances from 
even decree 

parallels. 


CO-ORDINATES OF DEVELOPED PARALLEL FOR — 


isMongiiude. . 


30^ longitude. 


45' longitude. 


1° longitude. 


X 


y 


X 


y 


X 


y 


X 


y 




Inck4s, 


IncAt*. 


ImcJUs, 


Inckts. 


Inekes. 


tnchts. 


IncJus, 


Incfus, 


Jnckgt, 


45 




1.467 
1.449 


.003 
.003 
•003 
•003 


2.971 
2.935 
2.899 


.012 
.012 
.012 
.012 


4.510 
4456 
4402 
4.348 


.028 
.028 
.027 
.027 


6.014 
5.942 
5-870 

5-797 


.049 
.045 


71 00 

45 


17.570 


1431 
1413 

1-395 
1-377 


.003 

.003 
.003 
.003 


2.862 

2.826 

2.790 
2.753 


.012 

.012 
.Oil 
.011 


4.294 

4.2J9 

4.185 
4.130 


.027 

.026 
.026 
.026 


5.725 

5.652 
5.580 
5.507 


.047 

.047 
.046 
.046 


13-179 


7200 

IS 
30 
45 


17-572 


1.358 

i.3to 
1.322 
1.304 


.003 

.003 
.003 
.003 


2.717 

2.681 

2.644 
2.607 


.Oil 

.Oil 
.Oil 
.Oil 


4.075 

4.021 

3.966 
3.911 


.025 

.025 
.025 
.024 


5434 

5-361 
5.288 
5.215 


.045 

.045 
.044 
.044 


13.180 


7300 

IS 
30 

45 


17.573 


1.285 

1.267 

1.249 
1.230 


.003 

.003 
.003 
.003 


2.571 

2.534 
2.497 
2.461 


.Oil 

.011 

.010 
.010 


3.856 

3.801 
3.746 
3.691 


.024 

.024 
.024 
.023 


5.142 

5.068 

4.994 
4.921 


.043 

•043 
.042 

.041 


13-181 


7400 

15 
30 
45 


17-575 


1.2x2 
1-193 


.003 

.003 
.002 
.002 


2424 

2.387 
2.350 
2.313 


.010 
.010 

.010 
.010 


3.636 

3.580 

3.525 
3.470 


.023 

.023 
.022 
.022 


4.848 

4.774 
4.700 
4.626 


.041 

x>40 
.040 
.039 


13-183 


7500 


17-577 


1.138 


XX>2 


2.276 


.010 


3414 


.022 


4.552 


.038 


15 

30 
45 


13.184 


1. 119 

I.IOI 

1.082 


.002 
.002 
.002 


2.239 
2.202 
2.165 


.009 

.009 

.009 


3.358 
3303 

3-247 


.021 
.021 
.021 


4478 
4.404 

4.329 


.038 
.037 
.037 


7600 

«5 

30 
45 


17.579 


1.064 

1.045 
1.026 
1.008 


.002 

.002 
.002 
.002 


2.127 

2.090 
2.053 

2X>l6 


x)09 

,009 
.009 
.009 


3.191 

3-135 
3.079 
3.023 


.020 

.020 
.020 
.019 


4.255 

4.X80 
4.106 
4.031 


.036 

.036 
•035 
•034 


4-395 
8.790 
13.185 


7700 

15 
30 
45 


17.580 


0.989 

0.970 
0.952 
0.933 


.002 

.002 
.002 
.002 


1.978 
1.941 


.008 

.008 
xx)8 
.008 


2.967 

2.QII 
2.855 
2.799 


.019 

.010 
.0X8 
.0X8 


3.956 

3.882 
3.807 
3.732 


.034 

•033 
•033 
.032 


4.395 
8.791 
13.186 


7800 

15 
30 

45 


17.582 


0.914 

0.895 
0.877 
0.858 


.002 

.002 
.002 
XX>2 


1.828 

1.791 
1.753 

1.716 


.008 
.008 


2.743 

2.686 
2.630 
2.573 


/>i8 

.017 
.017 

.017 ' 


3.657 

3.582 
3.506 
3-43' 


.031 

.031 
.030 
.030 


4.396 
8.7QI 
13.187 


7900 

IS 
30 
45 


17.583 


0.839 

0.820 
0.801 
0.782 


.002 

.002 
.002 
XX>2 


1.678 

1.640 

1.603 
1.565 


.007 

.007 
.007 
.007 


2.517 
2461 


.016 

.016 
.016 

.0x5 


3.356 

3-281 
3.205 
3.130 


.029 

/)28 

.028 
.027 


4.396 


8000 


17.584 


0.764 


.002 


1.527 


.007 


2.291 


•015 


3-054 


.026 







Smithsonian Tables. 



i 



91 



Tablk 20. 

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE iWinnr 
[Derivation ci table explained on ppL liii~ Ivi.] 



^ 


tances from 
even decree 
parallels. 


ABSCISSAS 


OF DEVELOPED 


PARALLEL. 


^W%V%V^V A fWVStfV ^^«B 
















ORDINATES OF 














DEVELOPED 


s- 


10' 


15- 


20^ 


25^ 


30' 


PARALLEL. 


longitude. 


longitude. 


longitude. 


longitude. 


longitude. 


longitude. 






lMek4*. 


Inck0t. 


Imk4*, 


Jmckgs. 


Inck4s. 


Inches. 


InclUs. 


It 






cPoc/ 




2.922 


5.844 


8.765 


11.687 


14.609 
14.608 


17-531 


o« 


I** 


10 


"5.804' 


2.922 


5-843 


8.765 


11.687 


17-530 


j5 






20 


11.608 


2.922 
2.922 


5.843 
5.843 


8.765 
8.765 


II 686 


14.608 
14.608 


17530 
17-530 








30 


17.412 


11.686 




Imckes. 


ImcAet. 


40 


23.216 


2.922 


5.843 


8.764 


11.686 


14.608 




5' 

10 


0.000 


0.000 


50 


29.020 


2.921 


5-843 


8.764 


11.686 


14.607 


.000 


.000 


I 00 




2.921 


5-843 


8.764 


11.685 


14.606 


17.528 


15 

20 


.000 
.000 


.000 
JOOl 


10 


"V-f4o' 


2.921 


5-842 


8.763 


11.684 


14.606 


17.527 


25 

30 


.000 


.001 


20 


11.608 


2.921 


5.842 


8.763 


11.684 


14.604 


17.525 


000 


.001 


30 


17.412 


2.921 


5.841 


8.762 


n.683 


14.604 


17.524 






40 


23.216 


2.920 


5.841 


8.761 


11.682 


14.602 


17.522 








so 


291020 


2.920 


5.840 


8.761 


11.681 


14.601 


17.521 














200 


* "5.804' 


2.920 


5.840 
S-839 


8.760 

5-759 
8.758 


11.680 
11.678 


14.600 
14-598 


17.520 
17.518 




2* 


3^ 


10 


2.920 








20 


11.608 


2.919 


5.83S 


11.677 


14.596 


17.516 


5 


0.000 


0.000 


30 


17.412 


2.919 
2.918 


5-757 


11.676 


14-594 


17.513 


10 


.000 


.000 


40 


23.216 


5-!37 


8.756 


11.674 


14.592 


17.511 


15 


.001 


X)OI 


SO 


29.020 


2.918 


5.836 


8.755 


11.673 


14.591 


17.509 


20 


.001 


.002 


300 




2.918 


5.836 


8.753 


11.671 


14.589 


17.507 


25 
30 


.0Q2 
.003 


.003 
.004 


10 


Vi^' 


2.917 


5-835 


8.752 


11.669 


14.586 


17.504 








20 


11.608 


2.917 
2.916 


5.834 
5.832 


8.750 
8.749 


11.667 
11.665 


14.584 


17.501 








30 


1 7413 


14-581 


17.497 








40 


23.217 


2.916 


5^3' 


8.747 


11.663 


14.578 


17.494 




4* 


f 


50 
400 


29.021 


2.915 
2.915 


5.830 

11^2? 


8.746 
8.744 


11.661 
11.659 


14.576 
14-574 


17.491 
17488 








5 


0.000 


0.000 


10 


"Vioi' 


2.914 


8.742 


11.656 


14.570 


17484 


10 


.001 


.001 


20 


11.609 


2-913 


5.827 


8.740 


11.654 


14.567 


17480 


15 


.001 


.002 


30 


17-413 


2-913 


5.825 


8.738 


II. 651 


14.564 


17.476 


20 


.002 


.003 


40 


23.217 


2.912 


5.824 


8.736 


11.648 


14.560 


VM 


25 


.004 


.005 


50 


29.022 


2.911 


5.823 


8.734 


11.646 


14-557 


30 


.005 


.007 


Soo 




2.911 


5.822 


8.732 


11.643 


H-554 


17465 








10 


"Vi^" 


2.910 


5-?^S 


8.730 


11.640 


14.550 


17-459 




6« 


7^ 


20 


11.609 


2.900 
2.908 
2.908 
2.907 


5.818 


8.727 


11.636 


14.546 


17455 




30 
40 

so 


I7414 
23.218 
29.022 


5.817 
5.815 
5.813 


8.725 
8.722 
8.720 


"•633 
11.630 
11.627 


14.542 
14.538 
14.534 


17450 
17.445 
17.440 








5 
10 


0,000 
.001 


0.000 
.001 


600 




2.906 


5.812 


8.718 


11.624 


14.530 


17.435 


15 
20 

25 
30 


.002 


.002 


10 


'"i^s 


2.905 


5.810 


8.715 


11.620 


14.524 


17.429 


^ 


■^ 


20 


11.609 


2.904 


5.808 


8.712 


11.616 


14.520 


17.424 
17418 


.008 


.009 


30 


I74I4 


2.903 


5.806 


8.709 


11.612 


14515 


40 


23.219 


2.902 


5.804 
5.802 


8.706 
8-703 


11.608 
11.604 


14.510 
14.506 


174»3 








50 


29.024 


2.901 


17.407 








700 




2.000 


5.800 


8.701 


1 1. 601 


14.501 


17.401 




8^ 




10 


"5*805* 


2.099 


5.798 


8.697 


11.596 


14.496 


17.395 








20 


II.6I0 


2.890 


5.796 


8.694 


11.592 


14.490 
14484 


^7-3^7 


5 


0.000 




30 


17415 


2.897 


5794 


8.690 
8.687 


11.587 


17.381 


10 


JOOl 




40 


23.220 


2.896 


5-791 


11.583 
11.578 


14.478 


17.374 


15 


.003 




so 


29.025 


2.89s 


5.789 


8.684 


14-473 


17.368 


20 
25 
30 


.005 
x)07 
010 




800 




2-894 


5.787 


8.680 


11.574 


14.468 


17.361 





Smithsonian Tables. 



92 



Digitized by V^OO^ltT 



Table 20* 
CO-ORDINATES FOR PROJECTION OP MAPS. SCALE rwifWV' 

[Derivation of table explained on pp. liii — IvL] 



8°oo' 

lO 

20 

30 
40 

50 

900 

10 
20 

30 
40 

SO 
1000 

10 
20 
30 
40 
50 

11 00 

10 

20 

30 
40 

50 

12 00 
10 
20 

30 
40 

50 

1300 
10 
20 

30 
40 

50 

1400 
10 
20 

30 
40 

50 

1500 
10 
20 
30 
40 

50 
1600 



ill. 



Inches. 



5.80s 
II. 610 
17.416 
23.221 
29.026 



S&Q6 
II.6II 

I74I7 

23.222 
29.028 



5.806 

II.6I2 

17.417 

23.223 
29.029 



5^)6 
11.612 
17.419 
23.225 
29^)31 



5-807 
11.613 
17420 
23.226 
29^33 



5.807 
1 1. 614 
17421 
23.228 
29-035 



5.808 
11*615 
17422 
23.230 
29.038 



5.808 
II. 616 
17424 
23.232 
29.040 



ABSCISSAS OF DEVELOPED PARALLEL. 



longitude. 



Inches. 

2.894 
2.892 
2.891 
2.890 

2.888 
2.887 

2.886 
2.885 
2.883 
2.882 
2.881 
2.879 

2.878 
2.876 
2.875 
2.S73 
2.872 
2.870 

2.869 
2.867 
2.865 
2.864 
2.862 
2.860 

2.858 
2.857 
2|55 
2.853 
2.851 
2.849 

2.847 
2.846 
2.844 
2.842 
2.840 
2.838 

2.836 

2.834 
2.831 
2.829 
2.827 
2.825 

2.823 
2.821 
2.818 
2.816 
2.814 
2.812 

2.809 



10' 

loDgitade. 



Inches* 

5.787 
5.784 
5.782 

5-779 
5-777 
5-775 

5-772 
5-769 
5-767 
5764 
5.761 

5-758 

5.755 
5-752 
5-749 
5.746 

5-743 
5.740 

5.737 
5-734 
5730 
5.727 
5.724 
5.720 

5.717 
5.713 
5.709 
5.706 

5.698 
5.695 

5-53' 
5.687 

5.683 

5.679 

5.675 

5.671 
5.667 

5.654 
5.650 

5.646 
5.641 
5637 

5.628 
5.623 

5.619 



15- 

longitude. 



Inches, 

8.680 
8.677 
8.673 
8.669 
8.666 
8.662 

8.658 

8.654 
8.650 
8.646 
8.642 
8.637 

8.628 
8.624 
8.619 
8.614 
8.610 

8.606 
8.601 
8.596 

If 

8.580 

8.575 
8.570 

8.564 

8.559 

8.548 

8.542 
8.536 
8.530 
8.524 
8.519 
8.513 

8.507 
8.500 

8.494 
8.488 
8.481 
8475 

8.469 
8462 

8.448 
8.441 
8.435 

8.428 



20^ 
longitude. 



Inches. 



.569 
-.S64 
•559 
.554 
.549 

•544 
-539 

.522 
.516 

.511 
.504 
498 
492 
.486 
.480 

474 
468 
461 
.454 
.447 
•440 

434 
426 

419 
.412 

.404 
•397 



■374 
.366 
■358 
350 

342 
334 
326 

3'Z 
.308 

.300 

.202 
,282 

.274 
,264 



.246 



11.237 



25' 

longitude. 



Inches, 

14.468 
14.461 

14455 
14.448 
14442 
14.436 

14430 
I442A 
I44IO 
I44IO 
14402 
14.396 

14.388 
14.380 

\w> 

14.358 
14.350 

14.342 
14.334 
14.326 
14.318 
14.309 
14.300 

14.292 
14.282 

14.274 

14.264 

14.256 

14.246 

14.237 

14.228 
14.218 
14.208 

14.198 
14.188 

14.178 
14.168 
14.157 

14.146 

14.136 
14.125 

I4.II4 
14.103 

14.092 
14.000 

14.069 

14.058 
14.046 



30' 

longitude. 



Inches, 



.026 



16.856 



ORDINATES OF 
DEVELOPED 
PARALLEL. 



8<> 



Inches, 
0.000 
.001 
.003 
.005 
.007 
.010 



10" 



0.000 
.001 

•009 
^13 



I2*» 



0.000 
.002 
.004 
.007 
.Oil 

.016 



14° 



5 
10 


0.000 
.002 


15 
20 


■:^ 


25 

30 


.012 
.018 



16° 



aooi 
.002 
.005 
.009 
.014 
.020 



Inches, 

aooo 

.001 
.003 

.008 
.012 



aooo 
.002 

.006 
.010 
.014 



13" 



OJOOO 
J0O2 
•004 
.007 
J012 
.017 



15^ 



0.001 
.002 
•005 
.009 
.013 

x>i9 



Digitized by V^iJO^lC 



Smithsonian Tables. 



93 



Taslc 20. 

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ttAvt 
[Derivation of table explained on pp. liii-lvi.] 



II 



lO 
20 

30 
40 
50 

17 00 

10 

20 

30 
40 

SO 

1800 
10 

20 
30 
40 
50 

1900 
10 

20 

30 
40 
50 

2000 

10 

20 

30 
40 

50 

21 00 

10 
20 

30 
40 

50 

22 00 
10 
20 

30 
40 
50 

2300 
10 
20 

30 
40 

50 
2400 






ineJUs. 



5-fo9 
11.617 
17.426 
23234 
29-043 



ii.6i< 
17-427 
23.236 
29.046 



5.810 
11.619 
17.429 
23239 
29.049 



5.810 
11.621 

X7-43I 
23.242 
29.052 



5.811 
11.622 

"7433 
23244 
29^55 



5.812 
11.623 
»7.43S 
23-247 
29.058 



5.812 
11.625 

17.437 
23.250 
29002 



11.626 
17.439 



ABSCISSAS OP DEVELOPED PARALLEL. 



longitode. 



2.809 
2.807 
2.804 
2.802 
2.800 
2.797 

2.795 
2.792 
2.790 
2.787 
2.785 
2.782 



2.777 

2.774 
2.772 
2.769 
2.766 

2.764 
2.761 
2.758 

2.755 
2.752 
2.750 

2.747 
2.743 
2.741 

2.738 
2.735 
2.732 

2.729 
2.726 

2.723 
2.720 
2.717 
2.714 

2.710 
2.707 
2.704 
2.701 
2.697 
2.694 

2.691 
2.688 
2.684 
2.681 
2.677 
2.674 

2.671 



10' 



Imhit, 

5.619 
5.614 
5.609 
5.604 
5-599 
5-595 

5-590 
5.5I5 
5.580 

5-575 
5570 
5-564 

5-559 
5-554 
5-549 
5-543 
5538 
5-533 

5-527 
5.522 
5.516 
5.510 
5-505 
5-499 

5-493 
5-487 
5482 
5.476 
5.470 
5-464 

5-458 
5-452 
5-445 
5-439 
5-433 
5-427 

5.421 

5.414 
5.408 
5.401 

m 

5-382 

5.362 
5-355 

5-34» 
5-341 



15- 
longitude. 



Inchts. 

8428 
8.421 
8414 
8406 

8.399 
8.392 

8.385 

8.369 
8.362 
8.354 
8.347 

8-339 
8.331 
8.323 
8.315 
8.307 
8.299 

8.291 
8.282 

11^ 

8.257 
8.249 

8.240 
8.231 
8.222 
8.213 
8.204 
8.196 

8.187 

8.177 
8.168 
8.159 
8.150 
8.141 

8.131 
8.122 
8.112 
8.102 
8.092 
8.083 

8.073 
8.063 
&053 
8.042 
8.032 
8.022 

8.012 



20^ 
longitude. 



Smithsonian Tables. 



1.237 
1.228 
I.218 
1.208 
1. 109 
1.189 

1.180 
1. 170 
1.159 
1.149 

i-'39 
1. 129 

W^ 

1.007 
1.087 
1.076 
1.065 

1.054 

1-043 
X.032 
1. 02 1 
1.009 
0.998 

0.987 
0.975 
0.963 

0.9SI 
0.930 
0.928 

[a9i6 
0.003 
0.891 
0.878 
0.866 
0.854 

a842 
0.829 
0.816 
0.802 
0.790 
0.777 

0.764 
0.750 

0.737 
0.723 
0.710 
0.696 

10.683 



94 



25' 

kmgitttde. 



lMch4$. 

4.046 
4.034 
4.022 
4.010 
3 

y. 

3-974 
3962 
3-94? 
3-936 
3-924 
3-9" 

3-872 
3.859 
3-845 
3-832 

3.818 
3804 
3-790 
3-776 
3-762 
3-748 

3-734 
3-719 
3-704 
3-689 
3-674 
3-650 

3-645 
3.629 

3-614 
3-598 

3-568 

3-552 
3-536 
3-520 
3-503 
3-487 
3-47 » 

3-45: 
3-4:' 
3-421 
3-404 
3-3^7 
3-371 

13-354 



30' 
longitode. 



Inckr*. 



6.582 
6-565 
6.548 
6.531 
6.514 
6.497 

6.480 
6.462 

6.445 
6427 
6.409 
6.391 

6.373 

6.318 
6.300 
6.281 

6.262 
6.243 
6.223 
6.204 
6.184 
6.165 

6.145 
6.125 
6.105 
6.085 
6064 
6.045 

16.024 



ORDINATES OF 
DEVELOPED 
PARALLEL. 



It 



10 

»5 
20 

25 
30 



i6*» 



0.001 
.002 
.005 
•009 

X)I4 
.020 



i8« 



aooi 
.002 
.006 
.010 
.016 
.022 



aooi 

1^ 

.011 
.017 
.025 



5 


0.001 


10 


.003 


'5 


.007 


20 


.012 


2S 


.0f8 


30 


.027 



24" 



o.ooi 

.003 

X)07 
.013 
.020 
.028 



It 



Inches. 

OOOI 
J0O2 
.005 
.010 
.015 
.021 



19- 



aooi 

:^ 

.010 
.016 

X)24 



0.001 

.006 
.01 X 

.026 



23O 



aooi 
.003 
.007 

.01 2 
.0X0 
.028 



Digitized by V^OOQlC 



CO<^RDINATE8 FOR PROJECTION OF MAPS. 

[Derivation of uble explained on pp. Uii-lvi.] 



Table 20* 
SCALE TltWff- 



"3 . 



ill. 



ABSCISSAS OP DEVELOPED PARALLEL. 



S' 
longitude. 



10' 
longitude. 



IS' 

longitude. 



20' 
longitude. 



*s' 

longitude. 



3°' 

longitude. 



ORDINATES OF 
DEVELOPED 
PARALLEL. 



24*^00' 
10 
20 

30 
40 

50 

2500 
ID 
20 

30 
40 

50 

2600 
10 
20 

30 
40 

SO 

27 00 
10 
20 
30 
40 
50 

2800 
10 
20 

30 

40 

SO 

2900 
10 
20 
30 
40 
SO 

3000 
10 
20 
30 
40 
SO 

3« 00 
10 
20 
30 
40 
50 

3200 



InchM 



5.814 
11.628 
17-442 
23.256 



5.815 
11.629 
17.444 

23-259 
29.074 



5.816 
II.63I 
17.446 
23.262 
29.077 



5.816 

»«-633 
17-449 
23.265 
29.082 



5.817 
11.634 

29.086 



5.818 
11.636 

17.454 
23.272 
29.090 



11^638 

17-457 
23.276 
29.094 



5.820 
11.640 
17460 
23.280 
29.100 



2.671 
2.667 
2.664 
2.660 
2.657 
2.653 

2.650 
2.646 
2.642 
2.639 
2.635 
2.631 

2.628 
2.624 
2.620 
2.616 
2.613 
2.609 

2.605 
2.601 
2.597 
2.593 

2.586 

2.582 
2.578 
2.574 

2.566 
2.562 

2.558 

2-553 
2.549 

2.54s 
2.541 

2-537 

2.533 
2.528 

2.524 
2.520 
2.5x5 
2.51 X 

2.507 
2.502 
2498 
2493 
2489 
2.485 

2.480 



Imckts. 

5-341 
5-334 
5327 
5-320 
5-3»3 
5306 

5-299 
5.202 

5.2§q 

5-278 
5.270 
5-263 

5.256 
5.248 
5.240 
5233 

5.22q 
5.218 



4.960 



Inckit. 

8.012 
8.002 

•970 
.960 

1^ 

.916 

>5 



.883 
.872 
.861 
.84Q 
.838 
.827 

.816 
.804 
792 
.780 
.768 
•757 

.745 
733 
.721 
.709 

:^s 

;^ 
.648 
63s 

.622 
.610 

^f 
S85 

572 

546 
533 

520 

507 
494 
.480 
467 
.454 

7-441 



ImksM. 

0.683 
0.669 

0.655 
0.641 
0.627 
0.613 

0.509 
0.584 
0.570 

0.555 
0.540 
0.526 

0.511 
0.496 
0.481 
0.466 
0451 
0.436 

0.421 
0.405 
0.390 

0.3 4 
0.358 
0.342 

0.327 
0.3 1 1 
0.294 
0.278 
0.262 
0.246 



0.130 
0.113 
0.096 
0.078 
ao6i 
0.044 

0.027 
aoo9 
9.992 

9-974 
9.956 

9-938 
9.921 



Inckts. 

3-354 
3-336 
3-3'9 
3-301 
3-284 
3.266 

3-249 
3-231 
3.212 

3194 
3-176 
3-157 

3-»39 
3.120 
3.101 
3-082 
3-063 
3045 

3.026 
3.006 
2.987 
2.967 

2.947 
2.928 

2!889 
2.868 
2.848 
2.828 
2.808 

2.788 
2.767 
2.746 
2.725 
2.704 
2.683 

2.662 
2.641 
2.620 
2.598 

2.577 
2.555 

2.534 
2.512 
2490 
2467 
2.445 
2423 

1 2401 



inchts. 
6.024 

6w003 
5.982 
5.961 
5.940 
5-9»9 

5.898 
5-877 
5.854 

5-833 
5.811 
5-788 

5-767 
5-744 
5.721 

5.676 
5-654 

5.608 

5-584 
5.560 

5-537 
5-5M 

5.490 
5.466 
5-442 
5-418 
5-394 
5-369 

5-345 
5-320 

5-295 
5.270 

S-245 
5.220 

5-^95 
5.169 

5-M3 
5.1 18 

5.066 

5-040 
5.014 

4.987 
4.960 

4-934 
4.908 

14.881 



24- 



Inches, 

aooi 

.003 
.007 
.013 
.020 
.028 



26° 



0.001 

:^ 

.013 
.021 
.030 



28<> 



.014 
.022 
.032 



30° 



s 


0,001 


10 

IS 


■1^ 


20 


.015 


25 

30 


.023 
-033 



320 



0.001 
.004 

.009 
.015 

.024 

-034 



250 



Inch**, 
O.OOX 
.003 
.007 
.013 
.020 
.029 



27° 



0.001 

.003 
.008 
.014 

.022 
•031 



29O 



0.001 



.014 
.023 
.032 



31° 



.015 
.023 
.034 



SMmwoNiAii Tables. 



I(jlll2^d by • 



95 



Tablk 20. 

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE yW^vr 
[DwiTmtiott of table expUined oo pp. Hu-Iyl] 





il^i 


ABSCISSAS OF DEVELOPED 


PARALLEL. 






*8 














/^OT\fWAnrL 


E»0 ^W 
















VIKlilNAlbo vrr 

DEVELOPED 


^i 


jjSii 


5' 


l</ 


IS- 


20' 


25^ 


30' 


PARALLEI. 


^ 


longitude. 


loQgUude. 


lo&tKodo. 


langitnd*- 


loositude. 


longitode. 








Inches. 


Jmk0M. 


Imek»9, 


ImktM. 


ImeAet, 


InckM, 


Imkes. 


i-i 






32^00' 




2.480 


4.960 


7441 


9.921 


1 2401 


14.881 


fi 


32^ 


3^ 


10 

9r\ 


5.821 
11.642 


2476 
2471 


4.951 
4.942 


7427 
7413 


Wa 


12.379 
12.355 


14.854 
14.827 


_Q.S 






VJ 










2f> 


17462 


2467 


4.933 


7400 


^ 


12.333 


14.800 




ImeJkts. 


inekts. 


40 


23-283 


2462 


4.924 


7.386 


9.848 


"•3'0 


^^772 


10 


o,noi 


0.001 


50 


29.104 


2458 


4.915 


7-373 


9-830 


12.288 


14.745 


.004 


.004 


33 «) 




2448 


4.Q06 


7-359 


9.812 


12.265 


'^2o7 


15 

20 


.009 

.015 
.024 
.034 


^16 


10 


5^22* 


4.896 


73*5 


9.793 


12.241 


14.689 


25 
30 


.024 
-03s 


20 
30 


11.643 
17465 


2444 
2439 


^.87^ 


7.331 
7.316 


9.774 
9-755 
9.736 
9.718 


12.218 
12.194 


14.661 
14.633 


40 
50 


23.287 
29.109 


2.434 
2429 


4.868 
4.859 


7-302 
7.288 


12-171 


14.605 
14.570 








12.147 








3400 
10 


" 5-823' 


2425 
2420 


4.850 
4.840 


7.260 


^1 


12.124 
12.100 


14.549 
14.520 




34<» 


35*^ 








ao 


Vi% 


2.415 


4.830 


7.246 


9.661 


12.076 


14491 


s 


aooi 


0.001 


30 


2410 


4.821 


7.231 


9-642 


12.052 


14462 


10 


.004 


.004 


40 


23.291 


2.406 


4.811 


7.217 


9.622 


12.028 


14434 


15 


-009 


^16 


SO 


29.113 


2401 


4.802 


7.203 


9.604 


12.004 


14.405 


20 


.016 


3500 




2396 


4.702 
4.782 


7.188 


9.584 


11.980 


14.376 


25 
30 


.036 


-.^3^ 


10 


"Viii' 


^•^§i 


7.174 


9.565 


11.956 


14.347 
'4-318 
14.288 








20 
30 


11.647 
17471 


2.386 
2.381 


4.773 
4.763 


7.159 
7.144 


9545 
9.526 


11.932 

11.858 

Ills 














40 


23.294 
29.118 


2.377 


4.753 


7.130 


9.506 


14.259 




36** 


37** 


50 
3600 


2.372 
2.367 


4.743 
4.733 


7.115 

7.099 
7.085 


9486 
9.466 


14.230 
14.200 








5 


aooi 


aooi 


10 


"V-sU' 


2.362 


4.723 


9.446 


14.170 


10 


.004 


.004 


20 


11.649 


2.357 


4.713 


7.070 


9426 


11.783 


14.139 


15 


xxy9 


.016 


30 


17.473 


2.351 


4703 


7.05s 


9.406 


11.757 


14.100 
14.078 


20 


.016 


40 


23.297 


2.346 


'^\ 


7.039 


9.386 


11.732 


25 


.036 


.026 


50 


29.122 


2.341 


7.024 


9.366 


11.707 


14.048 


30 


.037 


37 «> 




2.336 


4.673 


7*000 


9.345 


11.682 


14.018 








10 


"5.8^6' 


2331 


4.662 


6.978 


7 j^j 
9325 


11.656 


13.987 




380 


39^ 


20 


11.651 


2.326 


4.652 


9304 


11.630 


13.956 




30 


17.477 


2.321 


4.642 


6.963 


9.284 


11.605 














40 


23.302 


2.316 


4.631 


6.947 


9.263 


11.579 


5 
10 


0.001 


0.001 


50 


29.128 


2.311 


4.621 


6.932 


9.242 


11.553 


13.864 


.004 


.004 


3800 




2.305 


4.611 


6.916 


9.222 


11.527 


13.832 


15 

20 


.009 
.017 
.026 


.009 
.026 


10 


' "5-8^7* 


2.300 


4.600 


6.900 
6.884 
6.869 


9.200 


11.501 


13.801 


25 
30 


20 
30 


11. 6 S3 
17480 


2.295 
2.200 
2.284 


4.590 
4.558 


9.179 
9.158 


11.474 
11.448 


13.769 
» 3.737 


.037 


.037 


40 


23.306 


6.837 


9137 
9.116 


11.421 


13705 
13-673 








50 


29133 


2.279 


11-395 








3900 
10 


"V-Sis' 


11^ 


4.548 
4.537 


6.821 
6.805 


9095 
9-073 


11.369 
11.342 


13.642 
13.610 




40" 








20 


11.655 
17483 


2.263 
2.258 


4.526 


6.789 


9.052 


W'M 


13-577 


5 


0.001 




30 


4-5' 5 


p 


9.030 


13.545 


10 


.004 




40 


23.3'o 


2.252 


4.504 


9.008 
8.987 


11.261 


13.513 


15 


.009 




50 


29.138 


2.247 


4493 


6.740 


11234 


13.480 


20 


.017 




















25 


.026 




4000 




2.241 


4.483 


6.724 


8.96s 


11.207 


13448 


30 


.038 





Smithsonian Tables. 



96 



Digitized byLjOOQlC 



Table 20. 
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE inAnnr- 
[Derivation of table explained on pp. liii-lvi.] 



h 


Meridional dia- 
tances from 
even degree 
parallels. 


ABSCISSAS 


OF DEVELOPED 


PARALLEL. 


ORDINATES OF 
DEVELOPED 














n 


s- 


10' 


IS' 


20' 


25' 


30' 


PARALLEL 


longitude. 


longitude. 


longitude. 


longitude. 


longitude. 


longitude. 






JncJUs. 


IfU^I, 


/meJke*. 


IhcA^s. 


ImcJUs. 


Inc^s. 


iMche*. 


Js 






40*»oo' 




2.241 


4-483 


6.724 


8.965 


11.207 


13.448 


400 


41° 


10 




2.236 


4472 
4.461 


6.691 


8.943 
8.921 

f|99 


11.179 
11.152 


134IS 
13-382 






20 


2.230 








39 


2.225 


4.450 


6.674 
6.658 


II. 124 


13.349 




Inches. 


InclUs. 


40 


23.3H 


2.219 


4.439 


H77 


11.097 


13.316 


5' 
10 


0.001 


0.001 


50 


29-M3 


2.214 


4.428 


6.641 


8.855 


11.069 


13.283 


.004 


.004 


41 00 




2.208 


4.417 


6.625 
6.608 


H34 


11.042 


13.250 


XS 
20 


.017 


.009 


10 


"5-830* 


2.203 


4.406 


8.81 1 


11.014 


13.217 


25 


.026 


.026 


20 
30 


17.489 


2.197 
2.192 
2.186 
2.180 


4.383 


6.591 

6.558 
6.541 


8.788 
8.766 


10.985 
10.958 


"3.183 
13.149 


30 


.038 


^38 


40 


23-319 


4-372 
4.360 


8.744 
8.721 


10.929 


13.1x5 
13.081 








50 


29.149 


10.901 








42 00 
10 


"5.831* 


2.169 


4.349 
4.338 


6.524 
6.507 


8.698 
8.676 


10.873 
10.844 


13.048 
X30I3 




42O 


43° 








20 


1 1. 661 


2.163 


4.326 


6.490 


8.653 


10.816 


12.979 


S 


aooi 


aooi 


30 


17.492 


2.157 


4.31 5 


6472 


8.630 


10.787 


12.945 


10 


.004 


.004 


AD 


23323 


2.152 


4.303 


t^ 


8.607 


10.759 


12.010 
12^76 


15 


.010 


.010 


y> 


29.154 


2.146 


4.292 


8.584 


10.730 


20 


.017 


.017 


4300 




2.140 


4.281 


6421 


8.561 


10.702 


12.842 


25 

30 


.026 
x)38 


^38 


10 
20 

30 


>749S 


2.135 
2.129 
2.123 


4.269 

4.257 
4.246 


6.368 


8.538 
8.514 


10.672 
10.643 
10.614 


12.807 
12.772 

X 2.737 














40 


23-327 


2.1 17 


4.234 


6.35X 


8.46S 


10.585 
10.556 

10.526 


12.701 




44^ 


45^ 


so 
4400 


29.159 


2.1 1 1 
2.105 


4.222 
4.210 


6.333 
6.316 


8444 

8421 


12.667 
X 2.631 








5 


aooi 


aooi 


10 
20 


'■^" 


2.099 
2.003 
2.087 


4.199 
4.187 


6.298 
6.280 


8.397 
8.373 


10.496 
ia467 


12.596 

12.560 


10 
XS 


.004 
.010 


.004 
.010 


30 


17.498 


4.17s 


6.262 


8.350 


10437 


12.524 


20 


.017 


.017 


40 


23-33' 
29.164 


2X>8l 


4.163 


6.244 


8.326 


ia407 


12.489 


25 


.038 


:og 


so 


2.076 


4.151 


6.227 


8.302 


10.378 


X 2.453 


30 


4500 

10 
20 




2.070 
2.064 
2.057 


4.139 
4.127 
4.1 1 5 


6.209 

6. 1 91 
6.172 
6.154 


8.278 

8.254 
8.230 

8.256 


10.348 

"^•317 
10.288 
10.257 


I24I7 








"Vfiti" 


X2.38I 

X2!308 




460 


47^ 


30 


17.501 


2.051 


4.103 








40 


23-335 
29.169 


2.045 


4.091 


^'36 


8.181 


10.226 


12.272 


5 
10 


aooi 


aooi 


so 


2.039 


4.079 


6.118 


8.157 


10.197 


12.236 


.004 


.004 


4600 




2.033 


4.067 


6.100 


lis 


10.166 


12.199 


XS 
20 


.010 
x>i7 


.010 
.017 


10 


"5-835' 


2.027 


4.054 


6.081 


10.136 


X2.I63 


25 
30 


.027 


.027 


20 


11.670 


2.021 


4.042 


6.063 


8.084 


10.104 


12.125 


.03S 


.038 


30 


17.504 


2.015 


4.030 


6.044 


8.059 


10.074 


12.089 




40 

50 


23-339 
29.174 


2.009 
2-003 


4.017 
4-005 


6.026 
6.008 


8.034 

8.010 


10.043 
10.013 


12.052 
12.015 










480 




4700 

10 


"5.836* 


1.996 
1.9QO 
1.984 


3.992 
3.980 


5989 
5-970 


7.985 
7.960 


9.981 
9.951 


11.978 
1 1. 941 












20 


11.672 


3.968 


5-95X 


7.935 


^212 


\m 


5 


aooi 




30 


17.508 


X.978 


3-955 


5-933 


7.910 


9.888 


10 


.004 




40 


23-344 


1.97 1 


3-943 


iUt 


H^l 


11.828 


«5 


.010 




SO 


29.180 


1.965 


3930 


7.860 


9.826 


11.791 


20 
25 


.017 
.026 




4800 




1-959 


3-9x7 


5-876 


7.835 


9.794 


11.752 


30 


.038 





SMiTMSOiiiAN Tables. 



97 



Taslc 20. 

CO-ORDINATES FOR PROJECTION OP MAPS. SCALE ttAtt- 
[Derivatkm of table ezplaiaed on pp. Uii-lvi.] 



•3 



48^00' 
10 
20 

30 
40 
50 

4900 
10 
20 

30 
40 

50 

5000 
10 
20 

3^ 
40 

50 

51 00 
10 
20 

30 
40 

SO 

5200 
10 
20 

30 
40 

50 

5300 
10 
20 

30 
40 

50 

5400 
10 
20 

30 
40 

50 

5500 
10 
20 

30 

40 

50 
5600 



-IS 



Inches, 



S-f37 
11.674 

17-5" 
23-34'' 
29.185 



11.676 

23352 
29.190 



5.839 
11.678 

'7-517 
23356 
29.194 



5-840 
11.6S0 
17-520 
23.360 
29.200 



5.841 
r 1.682 

17.523 

233^ 
29.204 



5.842 
11.6S4 
17.526 
23.368 
29.210 



5.843 
11.686 
17.529 
23.372 
29.214 



17.532 
23.376 
29.220 



ABSCISSAS OF DEVELOPED PARALLEL. 



5' 
longitude. 



10' 
longitude. 



Inches. 



1.882 

1.869 
1.862 
1.856 
1.849 

1.842 
1.836 
1.829 
1.823 
1.816 
1.809 

1.803 
1.796 
1.789 
1.782 
1.776 
1.769 

1.762 

i.'748 
1.742 

1.728 

1.721 
1.714 
1.707 
1.700 

1:^ 

1.680 

\^ 

1.659 
1.652 
1.645 

1.638 



Inches, 

3-9»7 
3.905 
3.S92 
3.879 
3.867 
3.854 

3.841 
3-828 
3.815 
3.803 
3.790 
3-777 

3.764 
3-75^ 
3-737 
3.724 
Z'7^^ 
3.698 

3.685 
3-^72 
3.658 

3.645 
3-!32 
3.618 

3.605 
3.592 
3.578 
3.565 
3-55' 
3.538 

3.524 
35" 
3-497 
3.483 
3.470 
3.456 

3.442 

3.429 

3.415 
3.401 

3-387 

3.373 

3.359 
3-345 
3.33' 
3-317 
3.303 
3.289 

3.275 



15^ 
longitude. 



Inches, 
5-876 

5.838 

5.819 
5.800 
5.781 

5.762 
5-743 
5-723 
5-704 
5.684 
5.665 

5.646 
5.626 
5.606 
5.587 
5.567 
5.547 

5.528 
5-527 
5.48S 
5.468 
5.448 
5428 

5.408 
5.388 
5.367 
5.347 
5.327 
5.307 

5.287 
5.266 
5.246 
5.225 
5.205 
5.184 

5.164 

5.143 
5.122 
5.101 
5.080 
5.060 

5.039 
5.018 

4.997 
4.976 

4-955 
4-934 

4.9^3 



20' 
longitude. 



longitude. 



Inches. 

7.835 
7.810 

7.784 
7-759 
7.733 
7.708 

7.682 
7.657 
7.631 



Inches. 

9.794 
9.762 

9.730 
9.699 
9.667 
9.635 

9.603 
9.571 
9.539 



30' 
longitude. 



7.605 


9.507 


7.579 


9474 


7.553 


9.442 


7.527 


9.409 


7.501 


9376 


7.475 


9-344 


7.449 


9.3^ 


7.422 


9-278 


7.396 


9.245 


7.370 


9.212 


7.343 


9.179 


7.317 


9.146 


7.290 


9."3 


7.264 


9.080 


7.237 


9.046 


7.210 

7.184 


t^ 


7.156 


8.946 


7.»3o 


8.912 
8.878 


7-103 
7.076 


8.844 


7.049 


8.81 1 


7.022 


8.777 


6-9!?4 


8.742 


6.967 


8.708 


6.940 


8.674 


6.912 


8.640 


6.885 


8.606 


6.8S7 


8-572 


6-830 


8-537 


6.802 


8.502 


61774 


8.468 


6.746 


8.433 


6.719 


8-398 


6.691 


8.364 


6.663 


8.328 


6.63s 


8.294 


6.607 


8.258 


6^579 


8.224 


6.551 


8.188 



Inches. 

11.752 
II.714 
1 1.677 
11.638 
11.600 
11.562 

11.523 
11.485 
11.440 
11.408 
11.369 

»'.330 

11.291 
11.251 
II. 212 

11.134 
n.094 

11.055 
11.015 

10.975 
10.036 
10095 
10.855 

10.8 16 

10.775 
10.734 
10.694 
10.654 
10.6(3 

'0.573 
'0.532 
10.491 
10.450 
10.409 
10.368 

10.327 
ia286 
10.244 
10.202 
10.161 
10.120 

loxfjZ 

10.036 

9-994 

9-952 

9.010 



9.826 



ORDINATBS OF 
DEVELOPED 
PARALLEL. 






A^ 



50° 



OXX>l 

.004 
.009 

.017 

.026 

.038 



49" 



Inches. 


Inches. 


0.001 


aooi 


X)04 
JQ\Q 


.004 

JQIO 


.026 
.038 


.017 
.026 
.038 



52" 



0.001 

.004 

.009 

.017 
.026 

.037 



0.001 

.004 
.009 
.016 
.025 
.036 



560 



0.001 

-004 

.009 
.010 
-025 
.030 



aooi 
.004 
.009 

.026 
.037 



53" 



0.001 
.004 
.009 
x>i6 

X)26 

•037 



55" 



aooi 
.004 
.009 
.016 
.025 
.03 



025 
030 



Digitized by^L^^^vlc 



Smithsonian Tables. 



98 



Table 20* 
CO<^RDINATE8 FOR PROJECTION OF MAPS. SCALE Twivww 
[DtfiTrntioa of table ocplained on pp. liii-4n.] 



1 



lO 

20 

3° 
40 

SO 

5700 
10 
20 
30 
40 

50 

5800 
10 
20 

30 
40 

SO 

5900 
10 
20 

30 
40 
SO 

6000 
10 
20 
30 
40 
50 

61 00 
10 
20 
30 
40 
SO 

6200 

10 
20 

30 
40 

50 

6300 
10 
20 

30 

40 

50 
6400 



lit 



ImcJUs. 



5^45 
11.690 

^7.535 
23-3»o 
29.324 



5.846 
11.692 
17.537 
23.383 
29.229 



S.847 
11.694 
17.540 
23.387 
29.234 



5.848 
11.695 

17.543 
23.39^ 
29.238 



5.849 
11.697 
17.546 
23.394 
29-243 



5.850 
11.699 
17.549 

233^ 
29.248 



5.850 
1 1.701 

'7.55« 
23.402 
29.252 



5.851 
11.702 
17-554 
23.405 
29256 



ABSCISSAS OF DEVELOPED PARALLEL. 



.638 
631 
.624 
.616 

.603 



S8i 

1^ 
559 

552 

f^ 

530 



509 
.501 

.494 
.487 

479 
.472 

.465 
.457 
450 
.442 

1^ 

.420 
413 

390 
383 

360 
353 



330 
322 
315 
307 
300 
292 



1.284 



10' 

loDgitiidc. 



Imckts. 

yvs 

3.261 
3.247 
3.233 
3.219 
3.204 

3.«90 
3.176 
3.162 
3.147 
3.133 
3. "9 

3-I04 
3090 

3075 
3.061 
3.046 
3.032 

3.017 

2973 
2.959 
2.944 

2.929 
2.914 
2.900 
2.885 
2.870 
2.855 

2.840 
2.825 
2.810 

2.795 
2.781 
2.766 

2.751 
2.736 
2.720 
2.705 
2.690 
2.675 

2.660 
2645 
2.630 
2.614 

2.569 



loBgitnde. 



Incks*. 

4.913 
4.892 
4.870 
4.840 
4.828 
4.807 

4.785 
4-764 
4.742 
4.721 

t§l 

4.656 
4.634 
4613 
4-591 
4.569 
4.547 

4.526 
4.504 
4.482 
4.460 
4.438 
4.4x6 

4.394 
4.372 
4.349 
4.327 
4.305 
4.283 

4.261 
4.238 
4.216 
4- 103 
4.171 
4148 

4.126 
4.103 
4.081 
4.058 

4-035 
4.013 

3.990 
3.967 
3.944 
3921 

3-!99 
3.876 

3-853 



20' 
longitude. 



Imchn, 

6.551 
6.522 

6.494 
6466 

6^437 
6.409 

6.380 
6.352 
6.323 

1^ 

6.237 

6.208 

6.179 
6.150 
6.122 
6.092 
6.063 

6.034 
6.005 
5.976 
5.946 

5-913 



Smithsonian Tables. 



5.858 
5.829 

5.799 
5-770 
5.740 
5.710 

5.681 
5.651 
5.621 

5-5?i 
5.561 

5-531 

5.501 

5.47" 
5.441 
5.410 
5.380 
S350 

5.320 
5.290 

5259 
5228 

5.168 

5-^7 



99 



25' 

longitude 



Inehtt. 

8.188 

f'53 
8.1 18 
8.082 
8.046 
8.011 



.976 
940 



832 
96 

760 

724 
688 
652 
616 
579 

470 
360 
HI 

249 
212 

138 



xoi 

.064 

.026 

6.988 

6.952 

6.914 



6.877 
6839 
6.801 
^763 
6.726 
6.688 

6.650 
6.612 

6.536 
6.498 
6.460 

6.422 



30; 

longitude. 



Inchtt, 

9.826 
9.784 
9-741 

9.656 
9-613 

9.571 
9.527 
9.485 
9-442 
9-398 
9.356 

9.313 
9.269 
9.226 
9.182 
9.>39 
9.095 

9.052 
0.008 
8.963 
8.920 
8.876 
8.831 

8.788 

8-743 
8.699 
8.654 
8.610 
8.566 

8.521 
8.476 

i% 
8.342 
8.297 

8.252 
8.207 
8.T61 
8.1 16 
8.071 
8.026 

7.980 
7.934 

7*843 
7.797 
7.751 

7.706 



ORDTNATES OF 
DEVELOPED 
PARALLEL. 



^•2 



10 

15 
20 

25 
30 



Inckts, 

0.001 

.004 

jo\6 
.02 c 
.038 



58** 



0.001 
.004 
.009 
.015 
.024 
.034 



6o« 



.004 
.008 
.015 
.023 
.033 



62« 



aooi 
.004 
.008 
.014 
.022 
.032 



64° 



aooi 
.ooj 

.013 
.021 
.030 



0.001 
.C04 
.009 
.016 
.024 
•03s 



59" 



aooi 

:^ 

.015 
.024 
.034 



6i«» 



.014 
.023 
.033 



63** 



aooi 
.ooj 

.014 
.022 
.031 



)igitized by Lj^^^^vlC 



Tablc 20« 

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE hAtt 

[Derivadoo of table explained on pp. liii-lvL] 



I 



10 
20 

30 
40 

50 

6500 
10 
20 
30 
40 
SO 

6600 
10 
20 

30 
40 

50 

6700 
10 
ao 
30 
40 

SO 

6800 
10 
20 
30 
40 
50 

6900 
10 
20 

30 
40 

50 

7000 
10 
20 

30 
40 
SO 

71 00 
10 
20 
30 
40 
SO 

7200 




/mcAm. 



5-852 
IX.704 
17.556 
23.408 
29.260 



5.853 
11.706 

17-558 
23.411 
29.264 



5.854 
11.707 
17.561 

23-4»4 
29.268 



5.854 
11.709 

17.563 
23.418 
29.272 



5.855 
11.710 

17.565 
23.420 
29.276 



5.856 
11.712 
17.567 

23.423 
29.279 



5.856 

".713 
17.570 
23.426 
29.282 



5.857 
1 1.7 14 
17.572 

23.429 
29.286 



ABSCISSAS OF DEVELOPED PARALLEL. 



lonptnde. 



Inck€t. 

284 
277 

.261 
.254 
246 

238 
231 
223 

215 
207 
.200 

168 
161 
153 

145 

129 
121 

\^ 

JO^ 
.000 

.082 

.074 
.066 
.058 

.050 
.042 

•034 

.026 

.018 

.010 

1.002 



.978 
.970 

.962 

.954 
.946 

.938 
•930 

.922 

.914 

.906 



10' 

loQgitttde. 



Inchtt. 

2.569 
2.553 
2.538 
2.523 
2.507 
2.492 

2477 
2^6l 

2.446 
2.430 
2.415 

2.399 

2.352 
2.337 
2.321 

2.305 

2.290 

2.27J 
2.258 

2.243 
2.227 
2.21 1 



M64 
M48 



2.1 
2. 
2.132 
2.II6 

2.T00 
2.084 
2.068 
2.052 
2.037 
2.021 

2.005 
1.989 
1.972 
1.956 
1.940 
1.924 

I. 

i.2$92 
1.876 
X.860 
1.844 
1.828 

I.811 



IS- 

longitude. 



Inckt*. 

3-853 
3.830 
3-807 
3.784 
3.761 
3.738 

3.7x5 
3-692 
3.668 

3.645 
3.622 

3.599 

3-575 
3.552 
3.529 
3.505 
3.482 

3.458 
3-435 

3.388 
3.364 
3-340 
3-317 

3293 
3.269 
3.246 
3.222 
3.198 
3.X74 

3.151 
3.127 
3-103 
3.079 
3.055 
3031 

3007 
2.983 
2-959 
2.935 
2.91 1 
2i86 

2.862 
2.838 
2.814 
2.790 
2.765 
2.741 

2.717 



20' 
longitude. 



Inches. 

5.137 
5.106 
5.076 

5-045 
5.014 
4.984 

4.953 
4.022 
4.891 
4.860 
4.820 
4.798 

4.767 
4.736 
4.705 
4.673 
4.642 
4.61 1 

4.580 
4.548 
4.517 
4.485 
4.454 
4422 

4.391 
4.359 
4.328 
4.296 
4.264 
4.232 

4.201 
4.169 

4.137 
4.105 

4.073 
4.041 

4.009 
3-977 
3.945 

'^. 

3.848 

3.816 
3-784 
3-752 
3-720 
3-687 
3-655 

3-623 



25^ 
longitude. 



Inches, 

6.422 
6.383 
6-345 

%^ 

6.230 

6.192 
6.153 
6.114 
6.075 
6.037 
5.998 

5-959 

5.842 
5-803 
5.764 

5.646 
5.607 

5.567 
5.528 

5.489 

5449 
5.410 
5.370 
5.330 
5.291 

5.251 
5.21 1 
5.171 

5."3i 
5.092 
5.052 

5.012 
4.972 

4.931 
4.891 
4.851 
4.81 1 

4.771 
4730 
4.690 
4.650 
4-609 
4.569 

4.529 



longitude. 



Inches. 

7.706 
7.660 

'■^ 

7.522 
7.476 

7430 
7.384 
7.337 
7.290 

7.244 
7.198 

7.151 
7.104 

7.057 
7.010 

6.910 

6.869 
6.822 

6.680 
6.634 

6.586 
6-539 
6.491 
6.443 
6.398 
6-349 

6.30X 

6.253 
61205 
6.157 
6.110 
6.062 

6.014 
5.966 

!|^ 

5.821 
5.773 

5.676 
5.628 

5-579 
5.531 
S.483 

5-434 



ORDINATES OF 
DEVELOPED 
PARALLEL. 



5- 

10 

15 

20 

25 
30 



Inches. 

0.00X 
.003 
.008 
.013 
.021 
.030 



66«> 



aooi 
.003 
.007 
.013 
.020 

X>29 



68» 



0.001 
.003 
•007 
.012 
.019 
.027 



700 



aooi 
.003 
.006 
.011 
.017 
.024 



72° 



aooi 

.006 
.010 
.016 
.023 



6^ 



Inches. 

OXX)X 
.003 
.007 
.013 
.020 
.029 



67O 



OJOOl 

.003 
.007 

.012 
.010 
.028 



69^ 



aooi 

Si 

JQW 
.018 
.026 



71' 



.003 
.006 
.010 
.016 
.024 



Digitized by Lj^^^V Iv^ 



Smithsonian Tablks. 



100 



Tablc 20« 
CO-ORDINATES FOR PROJECTION OF MAP8. SCALE iWm- 

[Derivation of table explained on pp. liii-lvi.] 



72**Oo' 
lO 
20 

30 
40 

50 

73 «> 
10 
20 

39 
40 

SO 

7400 
10 
20 
30 
40 
50 

7500 
10 
20 

30 
40 

50 

7600 
10 
20 

30 
40 

SO 

7700 
10 
20 

30 
40 

SO 

7800 
10 
20 

30 
40 

50 

7900 
10 
20 

30 

40 

SO 
8000 






Inches. 



5^58 
II.716 

'7-573 
23.431 
29.289 



5-858 
11.717 

17-575 
23-434 
29.292 



5-859 
11.718 
17-577 
23-436 
29.29s 



5.860 
11.710 
17.578 
23.438 
29.298 



5.860 
11.720 
17.580 
23440 
29.300 



5.860 
11.721 
17.582 
23.442 
29.302 



5.861 
11.722 

17.583 
23.444 

29-304 



5.861 
11.723 
17.584 
23-445 
29.306 



ABSCISSAS OF DEVELOPED PARALLEL. 



5' 
longitude. 



Iiteket, 



-717 



longitude. 



Inchtt, 
.811 

795 
779 
763 
746 
730 

,714 



!64^ 
■632 

.616 

i 

550 
534 

5«7 

-484 
.468 

•451 
•435 

418 

«402 

:^ 

•352 

•335 

•3"9 
.302 

.269 
.252 
-235 

.219 
.202 

.169 
.152 
•135 

.119 
.102 

:^ 

.052 
•035 



1.018 



'5- 

longitude. 



2.717 

\^ 

2.644 
2.620 
2.595 

2.571 
2.546 
2.522 
2.497 
2-47' 
2^ 



2.473 
2448 



2424 
2.399 
2.374 
2.350 
2.325 
2.300 

2.276 
2.251 
2.226 
2.201 
2.177 
2.152 

2.127 
2.102 
2.078 
2.053 
2.028 
2.003 

1.978 

1-953 
1.928 

1.853 

1.828 
1.803 
1.778 

1-753 
X.728 

1.703 
X.678 

l!62^ 

1.602 

1.577 
1.552 

1.527 



20' 
longitude. 



SMmraoNiAN Tablcs. 



Inchtt. 

3-623 
3-590 
3-558 
3-525 
3-493 
3-460 

3-428 

3-395 
3-362 
3-330 
3-297 
3264 

3232 
3-»?9 
3.160 

3-133 
3.100 

3067 

3-034 
3.002 
2.968 
2-935 

2.002 
2.870 

2.836 
2.803 
2.770 
2.737 
2.704 
2.671 

2.638 
2.604 
2.571 
2.538 
2.504 
2.471 

2.438 
2.404 
2.371 
2.338 
2.304 
2.270 

2.237 
2.204 
2.170 
2.136 
2.103 
2.070 

2.036 



lOI 



25- 
longitude. 



Inches, 

4.488 
4-447 
4-407 
4-366 
4.325 

4.285 
4.244 
4.203 
4.162 
4.121 
4.081 

4.040 
3-999 
3-957 
3.016 

3-875 
3-834 

3-793 
3752 
3-7II 

3-628 
3587 

3-546 
3-504 
3-463 
3.421 
3.380 
3-339 

3297 
3-256 
3-214 
3-172 
3-131 
3.089 

3-047 
3-005 
2.964 
2.922 
2.880 
2.838 

2.797 
2.755 
2.713 
2.671 
2.62^ 
2.587 

2.545 



30' 
longitude. 



Inckts, 

m 
\^ 

5-239 
5.190 

5.141 
5.092 
5.044 
4-994 
4.945 
4.897 

4^47 
4-798 
4.748 

4.699 
4.650 
4.601 

4-552 
4.502 

4.453 
4-403 
4-354 
4.304 

4.255 

4.205 

4.155 
4.105 

4-056 
4.006 

3-956 

'1 

3.806 

3-757 
3-706 

^^ 
3-606 

3-556 

3.506 

3456 

3-406 

3-356 
3-305 
3-255 
3-205 

3-155 
3.104 

3-054 



ORDINATES OF 
DEVELOPED 
PARALLEL. 






s 


0.001 


10 


.002 


15 


•005 


20 


.009 


25 


.014 


30 


.020 



720 



Inches. 
0.001 

:^ 

.010 
.016 
.023 



74° 



760 



0.001 
.002 

:^ 

.013 
.018 



780 



0.000 
.002 
.004 
.007 
.on 
.016 



73" 



Inches, 
0.001 
.002 
.005 
.010 
.015 
.021 



75° 



aooi 
.002 

•005 
.009 
.013 
.019 



77' 



0.000 
.002 
.004 
.007 
.012 
.017 



79^" 



0.000 
.002 
.00^ 
.006 
.010 
.014 



Digitized by VjUuQIC 



Tablc 21. 

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE n^rir 

[DerivatiuQ of table «xpIaiBed oo pp. liii-hri.] 



•8 


s5«2- 




CO-ORDINATES OF DEVELOPED 1 


PARALLEL FOR- 


1 


IS' lonfcitude. 


so' longitude. 


45' longitude. 


lO longitude. 1 


X 


y 


X 


y 


X 


y 


X 


y 




Inckt*. 


Ineius. 


inches. 


lH€kt*. 


Inckss. 


Inches. 


Inches. 


Inches. 


Inches. 


45 


17.176 
25.764 


8.647 
8.646 
8.646 
8.646 


.000 
.000 
.000 
.000 


17.293 
17-293 
17.292 
17.291 


.000 
.001 
.001 

.001 


25940 
25-939 
25-938 

25-937 


.000 
.001 
.001 
.002 


34.586 
34-585 
34.584 
34-582 


.000 
JOOl 
.003 
.004 


I 00 

15 

30 
45 


34.352 


8.645 

8.644 
8.643 
8.642 


.000 

.000 
.000 
.001 


17.291 

17.289 
17.287 
17.285 


.001 

.002 
.002 
.002 


25-936 

25933 
25-930 
25.927 


.003 

.003 
.004 
-005 


34.581 

34.577 
34.573 
34.569 


.005 
•009 


8.58S 
17.176 
25.764 


200 

15 
30 
45 


34-352 


8.64X 

8.640 
8.638 
8.636 


.001 
.001 

.001 
.001 


17.283 

17.279 
17.276 

17.273 


.003 

.003 
.003 
.004 


25-924 

25.919 
25.914 
25.909 


.006 
.007 


34.565 

34.559 
34552 
34.546 


JQll 

X>I2 
.014 
.015 


8.588 
17.176 
25765 


300 


34.353 


8.635 


.001 


17.270 


.004 


25.904 


.009 


34.539 


.016 


15 

30 
45 


8.588 

17-177 
25.765 


8.633 
8.630 
8.628 


.001 
.001 
.001 


17.200 
17.256 


.004 
.005 
.005 


25.898 


.009 
.010 
.Oil 


34-530 
34.521 
34.512 


.018 
.019 

.oao 


400 


34-353 


8.626 


.001 


17.251 


.005 


25.877 


.012 


34.502 


.021 


15 
3^ 
45 


8.589 
25.766 


8.623 
8.620 
8.617 


.oot 

.001 
.002 


17.245 
17.240 
17.234 


.006 
.006 
.006 


25.868 
25.859 
25.850 


.012 

-013 
.014 


34.491 
34.479 
34-467 


.023 

/>24 

.025 


500 


34-354 


8.614 


.002 


17.228 


.007 


25.842 


.015 


34.456 


.026 


15 

30 
45 


8.589 
17.177 
25.766 


8.610 
8.607 
8.603 


.002 

.002 
.002 


17.221 
17.200 


.007 


25.831 
25.820 
25.809 


.016 
.016 
.017 


34.441 
34.427 
34.412 


.028 

X)29 

.030 


600 


34.355 


8.600 


.002 


17.199 


.008 


25-799 


.018 


34.398 


•031 


15 
30 
45 


8.589 
17.178 
25.767 


8.595 


.002 
.002 
.002 


17.191 
17.182 
17.174 


.008 
.008 
.009 


25.786 

25-773 
25.760 


.019 
.020 
.021 


34.381 
34.364 
34.347 


■033 
■034 
•035 


700 


34356 


8.SS3 


.002 


17.165 


.009 


25-748 


.021 


34.330 


.037 


15 

30 
45 


8.589 
251768 


8.578 


.002 
.003 
.003 


17.155 
17.145 
17.136 


.009 
.009 
.010 


25-733 
25.718 

25.704 


.022 
.022 
.023 


34.310 
34.291 
34.272 


.038 

.040 

.041 


800 


34.358 


8.563 


.003 


17.126 


.0x0 


25.689 


.023 


34.252 


.042 


15 

30 
45 


.^:?8^ 
25.769 


8.558 
8.552 
8.546 


.003 
.003 
.003 


17.115 
17.104 
17.093 


.010 
.oil 
.oil 


25-673 
25.656 
25639 


.024 
.024 
.025 


34.230 
34.208 
34-186 


.044 

.046 


900 

15 
30 
45 


34359 


8.541 
l:fj 

8.522 


.003 

.003 
.003 
.003 


17.082 

17.069 
17.057 
17.045 


.012 

JQ12 
.012 

■o'3 


25.622 

25.604 
25-585 
25.567 


.026 
.027 


34.163 

34-138 
34-114 
34.089 


.047 
.048 

.050 

.051 


8.500 
17.180 
25-771 


1000 


34.361 


8.516 


.003 


17.032 


.013 


25.548 


.029 


34.064 


.052 





Smithsonian Tables. 



Digitized by 



102 



LjUO^ 



Tjuux 21 . 
CO-ORDINATES FOR PROJECTION OP MAPS. SCALE inW 

[Derivation of table explained on pp. liiHvL] 



•8^ 


Meridional di». 
tances from 
even decree 
paraUeU. 


CO-ORDINATES OF DEVELOPED PARALLEL FOR -- 1 


IS' longitude. 


so' longitode. 


45' longitude. 


lO longitude. 1 


X 


y 


X 


y 


X 


y 


X 


y 




ImJus. 


Inches. 


Inchtt, 


Inches. 


Inches, 


Inches, 


Inches, 


Inches. 


Inches, 


id'bo' 
15 

30 
45 


I7.181 
25-772 


8.516 
8.509 
8.502 
8.496 


•003 

.003 
.003 
.003 


17.032 
17.019 
17.005 
16.991 


.013 
.013 
.013 
.014 


25.548 
25.528 
25.507 
25.487 


.029 
.030 
.031 
.032 


34064 
34.037 
34.010 
33.982 


X>52 
.054 

.056 


II 00 

15 

30 
45 


34.363 


8^89 
8481 

14^ 


.004 

.004 
.004 

X)04 


16.977 

16.962 
16.947 
16.933 


.014 

.014 
.015 
.015 


25.466 

25.444 
25.421 
25399 


.032 

•033 
•033 
.034 


33-955 


.057 
.058 


8.591 
17.183 

25-774 


1200 

'5 
30 
45 


34.365 


8.459 

8.451 
8.443 
8.434 


.004 

.004 
.004 
.004 


16.918 
16.901 

i6i85 
16.869 


X)I5 

.016 
.016 
.016 


25.376 

25.352 
25.328 

25.304 


•03s 
.036 


33-835 

33803 
33-770 
33-738 


x6i 

•06s 


8.502 
17.18^ 
25.776 


1300 

IS 
30 
45 


34.368 


&426 

8418 
8.409 
8.400 


.004 

.004 
.004 
.004 


16.853 

i6.8?8 
16.800 


.017 

.017 
.017 
.018 


25.279 

25-253 
25.227 
25.201 


.037 

.038 

•039 
.040 


33-706 

33.671 
33-636 
33.601 


«66 

XfJO 


i?:?g] 
25.778 


1400 

15 
30 
45 


34.370 


8.391 

8.382 
5-373 
8.363 


.004 

•005 
.005 
.005 


16.783 
16.764 
16.720 


.018 
.018 
.019 


25.174 

25.146 
25.118 
25.090 


.040 

.041 
.041 
.042 


33.566 

33.528 
33-490 
33.453 


.071 

.072 

.073 
.074 


25.780 


1500 

'5 

30 
45 


34.373 


8.354 

8.344 
8.334 
8.324 


•005 

.005 
.005 
.005 


16.708 

16.688 
161668 
16.647 


.019 

.019 
.019 
X>20 


25.061 

25.031 
25.001 
24.971 


X)42 

.043 
.044 
.045 


33-415 

33-375 
33.335 
33-295 


.075 

.078 
•079 


3 

25.782 


1600 

15 

30 
45 


34.376 


8.314 

8.303 
8.202 
8.282 


•005 

.005 

■005 
.005 


16.627 
16.606 
16.564 


.020 

X>20 
.020 
.021 


24.941 

24.909 
24.877 
24.845 


•045 
.046 


33-255 

33.212 
33-170 
33-127 


.080 

.081 
.082 
.083 


8.595 
17.1Q0 

25.784 


1700 

15 

30 
45 


34.379 


8.271 

8.260 
8.249 
8.237 


.005 
.005 


16.542 

16.520 
16.497 
16.475 


.021 

.021 
.021 
/>22 


24813 

24-779 
24.746 
24.712 


.047 

.048 

.049 
.050 


33-084 

33039 
32.994 
32.949 


.084 


8.596 
17.191 
25.787 


1800 

15 
30 
45 


34.382 


8.226 

8.214 
8.202 
8.190 


.006 

.006 
.006 
.006 


16.452 

16.428 
16.404 
16.381 


.022 

.022 
.023 
.023 


24.678 

24.642 
24.607 
24.571 


.050 

.051 
.051 
.052 


32.904 

32.856 
32.809 
32.761 


.090 
.091 

X>92 


8.596 

17.193 
25.790 


1900 

15 
30 

45 


34.386 


8.178 

8.166 

8.153 
8.141 


.006 

.006 
.006 
.006 


16.357 

16.332 
16.307 
16.282 


.023 

.023 
.024 
.024 


24.535 

24.498 
24.460 
24.422 


.052 

.053 
.054 
.055 


32.714 

32.664 
32.614 
32.563 


■093 
.094 


8.597 
17.195 
25-792 


2000 


34.390 


8.128 


.006 


16.257 


X)24 


24.385 


.055 


32.513 


.097 





SniTNaoNiAN Tables. 



e 



103 



Table 21 . 

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE iWnr- 
(Derivaiioii of taUe oyptoinrd on pp. liU-lvi] 



•« 

I 



15 

45 

21 00 

15 
30 
45 



15 
30 

45 

2300 

15 
30 
45 

2400 

»5 
30 
45 

2500 

15 
30 
45 

2600 

15 

30 
45 

27 00 

15 
30 

45 

2800 

IS 
30 
45 

2900 

15 

30 
45 

3000 




Inckts. 



8.598 
X7-I97 
25-795 

34.394 



8.599 

17.199 
25-798 

34.398 



8.600 
17.201 
25.801 

34.402 



8.632 

17.203 
25.804 

34406 



8.603 

17.20^ 

25.808 
34.410 



8.604 
17.207 
25.811 

34.4x5 



8.605 

17.210 

25.814 
34.419 



8.606 

17.212 
25.818 

34.424 



8.607 
17.215 

25.822 

34430 



8.609 
17.217 

25.826 
34435 



CO-ORDINATES OF DEVELOPED PARALLEL FOR — 



ly longitude. 



Inclut. 

8.128 
8.115 
8.102 
8.089 

8.076 

8.062 
8.048 
8.035 

8.021 



8.006 
.992 
.978 

.963 

.948 

.933 
.918 

904 

.888, 

872 

.857 

.841 

.825 
.809 
•793 

.776 

.760 

.743 
.726 

.709 

,692 
,675 
.657 

.640 

.622 



550 
•531 

7.494 



Ineke*. 

.006 
.006 
.006 
.006 

.006 

.006 
.006 
•007 

.007 

.007 
joorj 

,cxyj 

.007 
.007 
.007 

.007 

.007 
.007 
.007 

.007 

.007 
.007 
.007 

.007 

^ 

.008 

.008 

.008 
.008 
.008 

.008 

.008 
.008 
.008 

.008 

.008 
.008 
.008 

.008 



3c/ longitude. 



Inches. 

16.257 
16.230 
16.204 
16.178 

16.152 

i6lI24 

16^)69 
16.042 
16.013 

15.984 

X5-955 
15.927 

15.897 
15.867 
15-837 

15.807 

15.776 
15.745 
15-713 

15.682 

15.650 
15.617 
15-585 

15-553 

15.519 
15.486 
X5452 



15.419 

384 
350 
315 



280 

X73 

137 

100 

5.065 

.026 

989 



InckMt. 

.024 
.024 
.025 
.025 

.025 

•02c 
.020 
.026 

.026 

.026 

.027 
.027 

.027 

.027 
.028 
X>28 

^28 

.028 
.029 
.029 

^29 

.029 
.029 
.030 

.030 

.030 
.030 
.030 

.031 

.031 
.031 
.031 

.031 

.031 
.032 
.032 

.032 

.032 
.032 
.033 

.033 



45' longitude. 



Inckts. 

24-385 
24.340 
24.306 
24.267 

24.227 

24.186 
24.145 
24.104 

24.062 

24.019 
23976 
23.933 

23.890 

23.845 
23.800 

23.756 

23.711 

23.664 
23.617 
23.570 

23.524 

23-475 
23.426 

23.378 

23.329 

23279 
23.229 

23.179 
23.128 

23.076 
23.024 
22.972 

22.920 

22.866 
22.813 
22.759 

22.705 

22.650 
22.594 
22.539 

22.483 



Inches. 

.055 
•050 
.056 
-057 

-057 

.058 
.058 
.059 

.059 

.060 
.060 
.061 

.061 

X)62 
.062 
.063 

.063 

.064 
.064 
.065 

.065 

.065 
.066 

x)67 



.068 

.069 

.069 
.070 
.070 

.071 
.071 
.072 

.072 

.072 
-073 
.073 

.074 



i^ longitude. 



Inches. 

32.513 
32461 
32408 
32.356 

32.303 

32.248 
32.193 
32.138 

32.083 

32.026 
31.968 
31.911 

31-853 

3X-794 
31.734 
3X-674 

31.614 

3X-552 
31.489 

3M27 
3x365 

3x300 

3X.235 
31.170 

31.106 

3X.039 
30.972 
30.905 

30.838 

30.769 
30.699 
30.630 

30.560 

30.489 
30.4x7 
30.345 

30.274 

30.200 
30.125 
30.05X 

29.978 



Inches. 



.099 
.100 

.101 

.102 

.103 
.104 

.105 

.106 

:;s 

.109 
.109 

.110 
.III 

.112 

•1x3 
.114 
.115 

.116 

.117 

■\\l 

.119 

.120 

.121 
.121 

.122 

-X23 
.124 
.124 

.125 

.126 
.127 
.127 

.128 

.129 
.130 
.130 

X3I 



Smithsonian Tabucs. 



104 



Digitized by V^OO^K^ 



Table 21. 
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE inVlT- 
[Derivation of table explained on pp. liii-lvi.] 



•8 


Meridional dis- 
tances from 
even degree 
parallel^ 


CO-ORDINATES OF DEVELOPED PARALLEL FOR- 1 


isMonsitude. 


so' longitude. 


45' longitude. 


lO longitude. 1 


X 


y 


X 


y 


X 


y 


X 


y 




Inchet. 


Inchet. 


Incfu$. 


titCmtt, 


Imhes, 


Inelu*, 


Inehis. 


Intlut. 


Incfus. 


3<A»' 
15 

45 


8.610 
17.220 
25^30 


7.494 
7.47s 
7.450 

7437 


.008 
.008 
.008 
.008 


14.989 
14.951 
14.913 
14.874 


•033 
.033 
.033 
•033 


22.483 
22.426 
22.369 
22.312 


.074 
.074 
.074 
.075 


29.978 
29.QO2 
29.825 
29.749 


.>3« 
•X3X 
.132 
.133 


3100 

IS 
30 
45 


34-440 


7.398 
7.379 
7.359 


.008 

.008 
.008 
.008 


14.836 

14.797 
14.758 
14.7X8 


•033 

•033 
.034 
.034 


22.254 

22.195 
22.137 
22.078 


.075 

.076 


29.672 

29-594 
29.515 

29-437 


•X33 

.134 
•X35 
.135 


8.61 1 
17.213 
25.834 


3200 

15 
30 
45 


34-446 


7.340 

7.319 
7.299 

7.279 


.008 

.008 
.009 
.009 


14.679 

14.630 

14.5^ 
14.558 


.034 

.034 
.034 
.034 


22.019 

21.837 


.076 

.077 
.077 
.077 


29.358 

29.278 
29.197 
29.116 


.136 

.136 
.137 
'^Z1 


8.613 
25-83^ 


3300 

«S 

30 
45 


34.451 


7.259 

7.238 
7.217 

7.»97 


xx)9 

.009 
.009 
.009 


14.518 
14.476 

M.43S 
M.393 


.034 

•035 
.035 
.035 


21.777 
21.714 

21.652 

21.590 


.078 

.078 
.078 
.078 


29.036 
28.786 


.138 

.138 
.X39 
.139 


8.614 
17.228 
25.842 


3400 

15 
30 
45 


34.456 


7.176 
7.154 

7.112 


.009 

.009 
.009 
.009 


X4.352 

14.309 
14.266 
14.224 


.035 

•035 
.035 
•035 


21.527 
21.464 

21.400 

21.336 


.079 
.079 


28.703 

28.618 

^•533 
28.44^ 


.140 

.141 
.141 
.142 


8.615 
17.231 
25.846 


3500 

15 
3° 
45 


34.462 


7.091 

7.069 
7.047 
7.025 


.009 

x)09 
.009 
.009 


14.181 

14.138 
14.094 
14.050 


•035 

.036 
.036 
.036 


21.272 
21.207 

21. 141 

21.076 


.080 

.oSo 
.080 
.080 


28.362 

28!?8l 
28.101 


.142 

.142 
.143 
.H3 


8.617 

17.234 
25.851 


3600 

15 

30 
45 


34.468 


7.003 
6.981 


.009 

.009 
.009 
.009 


14.007 

13.962 
13.917 
13.873 


.036 

.036 
.036 


21.010 
20.876 

2a8o9 


.081 

.081 
.oSi 
.081 


28.014 

27.924 
27-835 
27.745 


.144 

.144 
.144 
.145 


8.618 
17.237 
25.855 


3700 

15 
30 

45 


34.474 


6.914 
6.845 


.009 

.009 
.009 
.009 


13.828 

13.782 

13.736 
13.690 


.036 

.036 
.036 
.037 


20.742 

20.673 
20.604 
20.536 


.082 

.082 
.082 
.082 


27.655 

27.564 
27.472 
27.38X 


.145 

■'\ 

.146 


8.620 


3800 

15 

30 
45 


34.480 


6.822 

6.799 
6.775 
6.752 


.009 

.009 
.009 
.009 


X3.645 
13.598 

X3.504 


.037 

.037 
.037 
.037 


20.467 

20.397 
2a326 
20.256 


.082 

.083 
.083 
.083 


27.289 

27.196 
27.102 
27.008 


.147 

.147 
.147 

•M7 


8.621 


3900 

15 

30 

45 


34.485 


6.729 
6.705 

6.68? 
6.657 


.009 

•009 
.009 
.009 


'3-457 

13.409 
I3-36X 
X3.3X4 


.037 

.037 
.037 
.037 


20.t86 

2a 1 14 
2ao42 
19.970 


.083 

.083 
.083 
.084 


26.914 
26.819 


.148 
.148 


8.623 


4000 


34.491 


6^633 


•009 


13.266 


-037 


19.899 


.084 


26.532 


.149 





8mith«onian Tables. 



loS 



Tabu 21. 

CO-ORDINATES FOR PROJECTION OF MAP8. SCALE rwifwv 

[Derivalion of table nplAiiied on pp. liii-M.] 



40*W 
15 

30 
45 

4100 

15 

30 
45 

4300 

«5 

30 
45 

4300 

IS 

30 
45 

4400 

15 
30 
45 

45 00 

15 
30 
45 

4600 

IS 

30 
45 

4700 

15 
30 
45 

4800 

IS 
30 
45 

4900 

15 
30 
45 

5000 




ImcJUt. 



8.624 
17.249 
25-873 

34.497 



8.625 
17.250 
25.875 

34.500 



8.627 
34.510 



8.629 

34.515 



8.630 
17.201 
25.891 

34.522 



34-528 



8.633 
17.267 
25.901 

34.534 



8.635 
17.270 

25-905 
34.540 



8.637 

17273 
25.910 

34.546 



8.638 
17.276 
25.914 

34.552 



C(M)RD1NAT£S OP DEVELOPED PARALLEL FOR— 



15' longitude. 



Inehea* 



6.e 

6.584 

6.560 

6.535 

6.510 

6.485 

61460 

6435 

6.410 

6^385 

6.359 

6.334 

6.308 
6.282 
6.256 

61230 

6.203 
6.177 

6.151 
61I24 

6.097 

6.071 
6.044 

6.017 

5-990 
5.962 

5-935 
5.908 

5.880 
5.852 
5.824 

5796 

S-768 
5.740 
5.712 

5.684 

r.6^1 
5.598 

5.569 



.009 
.009 
.009 
.009 

.009 

.009 
.009 
.009 

•009 

.009 
.009 
-009 

.009 

.009 
.009 
•009 

.009 

xx)9 
.009 
.009 

JQO^ 

.009 
•009 
•009 

.009 

.009 
•009 
.009 

.009 

.009 
.009 
.009 

.009 

.009 
.009 
.009 

•009 

.009 
.009 
.009 

.009 



3</ loniptade. 



3.266 

3."9 

3-070 

3.020 
2.970 
2.920 

2.871 

2.820 
2.760 
2.718 

2.667 

2.615 
2.563 
2.512 

2.460 

2^407 

2.354 
2.301 

2.249 

2.195 
2.141 
2.088 

2.034 

1.979 
1.025 
1.870 

1.815 

1.760 
1.704 
1.648 

1-593 

M24 
1-367 

1.310 

1-253 
1.195 

11.138 



.037 
.037 
.037 
.037 

037 

.037 
.037 
.037 

.037 

.037 

.038 

-038 

.038 
.038 
.038 

-038 

.038 
.038 
.038 

.038 

.038 
.038 

^38 

x>38 
.038 
.038 

.038 

.038 
.038 
.038 



.038 
.038 
.037 

.037 

.037 
.037 
.037 

.037 



45^ longitude. 



9-899 
9.825 

9-752 
9.679 

9-605 

9.530 
9.456 
9-381 

9.306 

9.230 

9-154 
9.077 

9.001 

8.689 

8.610 
8.531 
8452 

8.373 

8.292 
8.212 
8.131 

8.051 

7.805 

7.723 

7.640 
7556 
7.473 

7-389 

7-305 
7.220 

7-135 
7.051 

6.065 
6.879 
6.793 

16.707 



Inches, 

.084 
.084 
.084 

.084 

.084 
.084 
.084 

.085 

.085 
.085 
.085 

.085 

.085 

.085 

.085 

.085 
.085 
.085 

.085 

^^ 
.085 

.085 

^^ 
.085 

.085 

.085 

.085 
.085 
.085 

.085 

.085 

/)84 
.084 

.084 

.084 
.084 
.084 

.084 



I® longitude. 



25.041 
5.841 



fmcJUt. 
26.532 
26.434 
26.336 
26.238 

26.140 

26.041 

25-j 

2SI 

25-741 

25.640 
25.538 
25.436 

25-335 

25-231 

25.127 
25.023 

24.919 

24.8IA 
24.708 
24.603 

24497 

24.390 
24.283 

24.175 
24.068 

23.959 
23.849 
23.740 

23.631 

23.520 
23.408 
23.297 

23.186 

23*073 
22.960 
22^47 

22.734 

22.620 
22.505 
22.391 

22.276 



Inekn. 

.149 
.149 
.149 
•149 

•ISO 

.150 
.150 
•150 

.150 

.150 
.151 
.151 

.151 

•151 
.151 
.151 

.151 

.151 

.151 
.151 

.151 

.151 
.151 
.151 

.151 

.151 
.151 
.151 

•151 

.151 
.151 
.151 

.150 

.150 
.150 
.150 

.150 

.150 
.150 
.150 

.150 



Digitized by V^OO^ltT 



Smithsonian Tables. 



106 



TABLK21. 
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE rvMv 

[Derivmdon of table explained on pp. liii-lvL] 



15 
30 

45 

5100 

IS 
30 
45 

5200 

15 

30 
45 

53 00 

IS 
30 
45 

54 00 

IS 

30 
45 

55 00 

IS 
30 
45 

5600 

15 

30 
45 

5700 

15 

30 

45 

5800 

15 
30 
45 

5900 

15 
30 
45 

6000 






Ineke*. 



8.640 
17.279 
25.919 

J4.S58 

8.641 
17.282 
25.924 

34.565 



8.643 
17.285 
25.928 

34.571 



8.644 
17.288 

25-932 
34.576 



8.646 
17.291 
25.937 

34.582 



8.647 
17.294 
25.941 

34.58s 



8.648 
17.297 
25.946 

34.594 



8.650 
17-300 
25.950 

34.600 



8.651 
17.303 
25.954 

34.605 



8.653 

17.305 
25.958 

34.611 



CO-ORDINATES OF DEVELOPED PARALLEL FOR — 



is' longitude. 



5-569 
5.540 
5.511 
5.482 

5453 

5423 
5.394 
5.364 

5-334 

5-305 
5.275 
5-245 

5.215 

5.185 

5.154 
5.124 

5.094 

5.063 
5.032 
5.OP2 

4.971 

4.940 

t^ 

4.846 

4.815 
4.784 
4.752 

4.720 

4.689 
4.657 
4.625 

4.593 

4.561 
4.529 
4.497 

4464 

4432 
4.399 
4.367 

4.334 



Inches, 

.009 
.009 
•009 
.009 

.009 

•009 
•009 
•009 

.009 
-009 

ux)9 
•009 

.009 

.009 
.009 
•009 

ux)9 

ux)9 
.009 
•009 

.009 

ux)9 
.009 
xx>9 

.009 

.009 
.009 
.009 

.009 

.009 
.009 
.009 

•009 

.008 
.008 
.008 

.008 

.008 
.008 
.008 

.008 



yif longitude. 



Imckes. 

I.138 
1.080 
1.022 
0.963 

0.905 

0.846 
0.787 

a728 
0.669 



a6o9 
0.549 
0490 

0.430 

0.369 
0.300 
a248 

0.187 

0.126 
ao64 
aoo3 

9.942 

9.879 
9.817 
9.755 

9.693 

9.630 

9-567 
9.504 

9.441 

9.377 
93M 
9.250 

9.186 

9.122 



^•993 
8.929 

8.864 
8.799 
8.734 

8.669 



Ittches. 

.037 
•037 
.037 
.037 

.037 

•037 
.037 
.037 

-037 

.036 
.036 
.036 

.036 

.036 
.036 
.036 

.036 

.036 
•036 
^36 

.036 

.035 
•035 
.035 

.035 

•035 
.035 
.035 

.035 

.035 
.034 
.034 

.034 

.034 
.034 
•034 

.033 

.033 
•033 
-033 

.033 



45' longitude. 



'ttckts. 

6.620 
6.532 
6.445 

6^358 

6.269 
6.181 
6.092 

6.004 



5.01- 
5.82 



U 
24 
5-734 

5-645 

5.554 
5.463 
5.372 

5.281 

5.189 
5-097 
5.004 

4.912 

4.819 
4.726 
4.633 

4.539 

4445 
4.3SJ 
4.256 

4.162 

4.066 
3-970 
3-875 

3-779 

3-490 
3.393 

3.296 
3.198 
3.100 

13.003 



Incket. 

.084 
.084 
.084 
.083 

-083 

.083 
.083 
.083 

.083 

.082 

.082 

.082 

.082 

.o8[ 
X)8i 

.081 

.081 
.080 
.080 

.080 

.080 

.079 
.079 

.079 

X>7Q 

.078 
.078 

.078 

.077 
■077 
.077 

.076 

.076 
.076 

.075 

•075 

.075 

-075 
■074 

.074 



i^ longitude. 



Imket, 

22.276 
22.160 

22.043 
21.927 

21. 8X0 

21.692 

21.574 

21.456 

21.338 

21.218 
21.099 
20.979 

20.860 
20.738 

20.617 
2a496 

2a374 

20.252 
2ai29 
20.006 

19.883 

19-759 
19-634 
19.510 

19.386 

19.260 

19-134 
19.008 

18.882 

18.754 
18.627 
18.500 

18.372 

18.244 
18.115 
17.986 

17.858 

17.728 
»7.597 
17.467 

17-337 



Imkts. 

.150 
.149 
.149 
.149 

.148 

.148 
.148 
•147 

•147 

.146 
.146 
.145 

•145 

.145 
.144 
.144 

.144 

.143 
.143 
.142 

.142 

.141 
.141 
.140 

.140 

.140 
.139 
.139 



.138 
.^37 
-137 

-136 

•'35 
-135 
.134 

.134 

•133 
•133 
•>32 

•131 



SMITNaOfllAN TaBLCS. 



107 



Tabuc 21. 

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ii^rir 

[Deri^tion of Cable explained on pp. liii-hri.] 



I 



3^ 



CO-ORDINATES OF DEVELOPED PARALLEL FOR- 



iS' longitude. 



i</ loQgitude. 



4S' longftude. 



6o«o</ 
IS 

30 

45 
61 00 

IS 
30 
45 

6200 

'5 

30 
45 

6300 

15 
30 
45 

6400 

15 
30 
45 

6500 

15 
30 
45 

6600 

IS 
30 
45 

6700 

IS 

30 
45 

68 00 

IS 
30 
45 

6900 

IS 
30 
45 

7000 






8,6w 
17.308 
25.962 

34.616 



8.655 
25.966 
34.621 



8.657 

i7-3«3 
25.970 

34.626 



8.658 
17.316 
25.974 

34.632 



8.659 
17.318 
25-977 

34636 



8.660 
17.321 
25.981 

34.641 

8.661 

17.323 
25.984 

34.646 



8.663 
34.650 



8.664 

17-327 
25.991 

34.655 



8.665 
17-329 
25-994 

34.659 



l^ 



ItuJUs. 

4.334 
4.30' 
4.269 

4.236 

4.203 

4.170 
4.136 
4.103 

4.070 

4.036 
4.003 
3970 

3-936 

\^ 

3-835 
3.801 

3767 

3664 

3630 
3-596 
3-561 

3-527 

3.492 
3-458 
3-423 

3.388 

3-353 
3.318 
3-283 

3.248 

3-213 
3.178 
3.143 

3.108 

3-072 
3.037 
3.002 

2.966 



JncktM. 

.008 
.008 
.008 

jocA 

JOC& 

.008 
.008 

jocA 

.008 
xxA 
.008 

.008 

.008 
.007 
.007 

.007 

.007 

.007 
.007 
.007 

.007 

.007 
JOO7 
.007 

.007 

.007 
.007 
.007 

.007 

.006 
.006 

.006 

.006 
.006 
.006 

•O06 



Inckts. 

8.669 
8.603 
8.537 
8.471 

8.406 

8.339 
8.273 
8.207 

8.140 

IS? 

7-939 
7.872 
7.804 

V^ 

7.602 

7.533 
7.465 
7.397 

7-329 

7.260 
7.191 
7-123 

7.054 

6.984 

6J46 

6.776 

6.706 

1% 

6.497 
6427 

l^ 

6l2i6 

6. MS 
6.074 
6.003 

5-932 



Jneket. 

.033 
.032 
.032 
.032 

.032 

.032 
.032 
.031 

.031 

.031 
.031 
.031 

.031 

.030 
.030 
.030 

.030 

.029 
X)29 

.029 
.029 
.028 

J07& 
.028 

.028 

.028 
.027 
.027 

.027 

.027 
.026 
.026 

.026 

.026 
.025 
.025 

.025 

.025 
.024 
.024 

.024 



JmcUs. 

3-003 
2.( 



2.707 

2.608 

2.509 
2.410 
2.310 

2.210 

2.1 10 
2.009 
1.909 

1.808 

1.707 
1.605 
1.504 

1.402 

1.300 
1.198 
1.096 

0.993 



a684 
a58i 

0477 

0.373 
a269 

0.165 

ao6o 

9-955 
9.850 

9.746 

9.640 
9-535 
9-429 

9-323 

9.217 
9.111 
9-005 

8.899 



InektM. 

•074 
.074 

.073 
-073 

.072 

.072 
.072 
.071 

.071 

.071 
.070 
XfJO 

-069 



.068 
.067 

.067 
.066 
.066 

.065 

.065 
.064 
.064 

.063 
.062 

X)62 

.061 
.061 

.060 

x)6o 

.059 

.050 
.058 
.058 

.057 

.057 
.056 
.056 

.055 



Jncku. 

17.337 
17.206 
17.074 
16.943 

id8ii 

\^ 

16413 

16.280 

16.146 
16.012 
15.878 

15-744 

15.609 
15-474 
15-338 

15.203 

15.067 
14-930 
14.794 

14.658 

14.520 
14.383 
14.245 

14.108 

13-969 
13-830 

13.692 

13.553 

13-413 
13-273 
13-134 

12.994 

12.854 

12.713 
12.572 

12.431 

12.290 
12.148 
12.006 

11.865 



.131 
.131 
.130 
.129 

.128 

.128 

.126 

.125 

.125 
.124 
.123 

.122 



.122 
.121 
.120 

.119 

.110 
.118 
.117 

.116 

.lis 

.114 

.113 
.112 

.III 
.III 
.110 

.109 

.108 

.106 

.105 

.104 
.103 
•102 

.101 

.100 



.097 



gitizedby^OO g= 



8iirTN«ONiAN Tables. 



108 



Tablk 21 . 
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE iWttt- 
[Derivation of Uble explained on pp. liii-lvi.] 



1^ 



7cA)o' 
15 
30 
45 

71 00 

'5 
30 
45 

7200 

IS 
30 
45 

7300 

15 
30 
45 

7400 

15 
30 

45 

7500 

15 
30 
45 

7600 

15 
30 
45 

7700 

15 
30 

45 

7800 

15 

30 
45 

7900 

IS 

30 
45 

8000 



I ill 



iHCMtS. 



8.666 
17-331 
25997 

34-663 



8.667 

17.333 
26.000 

34.667 



8.668 

17.33s 
26.003 

34-670 



8.668 
26.006 
34.674 



8.669 
»7. 



34.677 



8.670 
'7.340 
26.010 

34.680 



8.671 
17.342 
26.013 

34.684 



8.672 

17.343 
26.015 

34.686 

8.672 

17.344 
26.017 

34.689 

8.673 
17.340 
26.018 

34-691 



CO-ORDINATES OF DEVELOPED PARALLEL FOR- 



15' longitude. 



lucktt. 

2.966 
2.030 
2.89s 
2.859 

2.824 

2.788 
2.752 
2.716 

2.680 

2.644 
2.608 
2.572 

2.536 

2.500 
2463 
2.427 

2.391 

2.3S4 
2.318 
2.281 

2.245 

2.208 
2.172 
2.135 

2.098 

2.062 
2.025 
1.988 

1.951 

I.0I4 
1.877 
1.840 

1.804 

1.766 
1.729 
1.692 

1.655 

1.618 
1.581 
1.544 

1.506 



Incki*. 

.006 
.006 
.006 
.006 

.006 

.006 
.006 
.006 

.006 

.006 

.005 
•005 

x»5 

•005 
.005 
•005 

.005 

.005 

.005 
•005 

.005 

.004 
.004 
.004 

.004 

,004 
.004 
.004 

.004 

.004 
.004 
.004 

.004 

.004 
.004 
.004 

.004 

.003 
.003 
.003 

.003 



30^ longitude. 



Inchti. 

5-790 
5.718 

5.647 

5.576 
5-504 
5-432 

5360 

5.288 
5.216 
5-144 

5.072 

4.999 
4.927 
i854 

4.782 

4.636 
4.563 

4490 

4.417 
4-343 
4.270 

4.197 

4123 
4.050 
3.976 

3.903 

3.829 

3-5 
3.^ 

3.607 
3-533 

% 

3.310 

3.236 
3.162 
3.087 

3.013 



^?^? 



3.459 
3.38! 



Inchts. 

.024 
X>24 
.023 
.023 

.023 

.023 
.022 
.022 

.022 

.022 
.021 
.021 

.021 

.021 
.020 
.020 

.020 

.020 
.019 
.019 

.019 

.010 
.018 
.018 

.018 

.018 
.017 
.017 

.017 

.017 
.016 
.016 

.015 

.015 
.015 
.014 

.014 

.014 
.013 
.013 

.013 



45' longitude. 



Indus. 

8.899 
8.7Q2 
8.685 
8.578 

8.471 

8.361 
8.256 
8.148 

8.040 

7.932 
7.824 
7.716 

7.608 

7.499 
7.390 
7.281 

7.172 

7.063 
6.054 
6.844 

6^735 

6.625 
6.515 
6.405 

6.296 

6.185 
6.075 
5.964 

5-854 

5-743 
5632 
5.522 

5.41 1 

5-322 

5.188 
5.077 

4.966 

4.854 
4.742 
4.631 

4.519 



Jncktt. 

.055 
.055 
.054 
-053 

.052 

.052 
.051 
.051 

.050 

.050 
.049 
.049 

.048 

.048 
.047 
.046 

.045 

.044 
•044 
.043 

.043 

.042 
.042 
.041 

.040 

.040 
.039 
.0^8 



.037 

.036 
.036 

•035 

.034 
.034 
•033 

.032 

.031 
.030 
.030 

.029 



i<> longitude. 



Jnekts, 

11.865 
11.722 
11.580 
"•437 

11.294 

II. 151 
11.008 
10.864 

10.720 

10.576 

10.144 

9.098 
9.854 
9.708 

9563 

9-417 
9.272 
9.126 

8.980 

8.834 
8.687 
8.540 

8.394 

8.247 
8.100 
7.952 

7.805 

7.658 
7.510 
7.362 

7.214 

7.066 
6.918 
6.769 

6.621 

6.472 
6.323 

6.174 
6.026 



Inches, 

.096 

•095 
.094 

•093 

.092 
.091 
.090 

.089 

.088 
.087 
.086 

.085 

.084 
.083 
.081 

.080 

.070 
.078 
-077 

.076 

.074 

.073 
.072 

.071 



.067 
.066 

.064 
.063 

.062 

.060 



-057 

-055 
.054 
•053 

.052 



SMiTHaoNiAN Tables. 



109 



Tablk 22. 

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE iiItt- 

[DerivatioD of tablo explained on pp. liii-lvL] 



"3 



lo 
20 

30 
40 

50 
I 00 

10 
20 

30 
40 

50 



10 
20 
30 
40 

SO 
300 

10 
20 

30 
40 
SO 

400 

10 
20 

30 
40 
SO 

500 

10 

20 

30 
40 
SO 

600 

10 
20 

30 

40 

SO 
7 00 




Imcku. 



1 1.45 1 
22.901 
34.3S2 
45-803 
S7.2S4 

68.704 



11.451 
22.901 

34.352 
45-803 

57-254 
68.704 



11.451 
22.902 

34.353 
45.804 

57-2S4 
68.705 



11.451 
22.902 

34.353 
45.804 

57.255 
68.706 



11.451 
22.903 
34.354 
45-805 
57.256 

68.708 



11.452 
22.903 

57.258 
68.710 



U.452 
22.904 

45^08 
57.260 

68.712 



ABSCISSAS OF DEVELOPED PARALLEL. 



S' 
looj^tude. 



Inchts. 

5764 

5-764 
5764 
5764 
5.764 
5-764 

5.764 

5-763 
5-763 
5.762 
5.762 
5.761 

5.761 

5.760 
5-759 
5.759 
5.758 
5.757 

5-756 

5756 
5754 
5753 
5752 
575" 

5-750 

5-749 
5748 
5.746 
5745 
5-744 

5-743 

5-741 
5-739 
5-738 
5-736 
5-735 

5-733 

573" 
5729 
5-727 
5-726 
5-724 

5.722 



10' 
longitude. 



Inches. 
11.529 



5^ 
528 

528 
527 

527 

526 
525 
524 
524 
523 

522 

520 
5i9 

516 
5'4 

5"3 

5" 
509 
507 

505 
503 

SOI 

498 
496 

493 
490 
488 

485 



482 

479 
1.476 
1.472 
1.469 

1.466 

1.462 

1.458 

"•455 
1. 451 

1.447 



".443 



"5' 
longitude. 



Inches. 

17.293 

7.293 
7.292 
7.292 
7.291 
7.291 

7.291 

7^287 
7.285 
7.284 

7.283 

7.281 

7.278 
7.276 

7.274 
7.272 

7.270 

7.267 
7.264 
7.260 
7-257 
7.254 

7.251 

7.247 
7.243 
7.240 
7.236 
7.232 

7.228 

7.22J 
7.218 

7-213 
7.209 
7.204 

7.199 
7.182 

7.171 
17.165 



20' 

longitude. 



Inches. 
23.058 

23057 
23.056 
23.056 
23-055 
23-054 

23.054 

23.052 
23.050 

23.049 
23.047 

23045 

23-044 

23.041 
23.038 

23.035 
23.032 
23.029 

23.026 

23.022 
23.018 
23.014 
23.010 
23.006 

23.002 

22.996 
22.991 
22.9S6 
22.981 
22.976 

22.970 

22.964 
22.958 
22.951 

22.945 
22.938 

22.932 

22.924 
22.917 
22.910 
22.902 
22.894 

22.887 



25' 

longitude. 



Inches. 
28.822 

28.821 
28.821 
28.820 
28.819 
28.818 

28.818 

28.816 
28.813 
28.811 
28.809 
28.807 

28.805 

28.801 
28.797 
28.794 

28.783 

28.778 

28.773 
28.767 
28.762 
28.757 

28.752 

28.746 
28.739 
28.733 
28.726 
28.720 

28.713 

28.705 
28.697 
28.689 
28.681 
28.673 

28.665 

28.656 
28.646 
28.637 
28.628 
28.618 

28.609 



30' 
longitude. 



Inches. 
34.586 

34.585 
34.585 
34.583 
34.583 
34.582 

34.581 

34.579 
34.576 
34.573 
34-571 
34.568 

34.565 

34-561 
34.556 
34.552 
34.548 
34.543 

34.539 

34.533 
34.527 
34.520 
34 5"4 
34.508 

34-502 

34.495 
34.487 
34.479 
34.471 
34.463 

34.456 

34.446 
34.436 
34.427 
34.417 
34.408 

34.398 

34.387 
34.375 
34-364 
34.353 
34-342 

34.330 



ORDINATES OF 
DEVELOPED 
PARALLEL. 






5' 
10 

"5 
20 

25 
30 



Inches. 

0.000 
.000 
.000 
.000 
.000 
.000 



aooo 
.001 
.001 
.002 
.004 

•005 



0.000 
.001 

.003 
.005 
.007 
.oil 



e" 



0.000 

.002 

.004 
.007 
.oil 
.016 



Inches. 

aooo 

.000 

.001 

X>01 

.002 

•003 



0.000 
.001 
.002 

•003 

.005 



0.000 

.001 

.009 
•013 



aooo 
.002 

.013 
.018 



Smithsonian Tables. 



no 



Digitized by V^OOQ IC 



Table 22. 
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE vTifir- 

[Derivation of table explained on pp. liii-lvi.] 



n 



.S.-SjS 



ABSCISSAS OF DEVELOPED PARALLEL. 



5' 
longitode. 



longitude. 



longitude. 



longitude. 



longitude. 



30' 

longitude. 



ORDINATES OF 
DEVELOPED 
PARALLEL. 



7«bo' 

10 

20 

30 
40 

50 
800 

10 
20 

30 
40 

9> 
900 

10 

90 

30 
40 

SO 
xooo 

10 
20 
30 

40 
50 



10 
20 

30 
40 

so 



10 

20 

30 
40 

SO 
1300 

10 
20 

30 
40 

SO 
1400 



Jtukts. 

68.712 



11.452 

22.901c 

34.358 

45.810 
57.262 

68.715 



"•453 
22.906 

34.359 
45.812 
57-265 

68.718 



11.454 
22.907 

33-361 

V^ 

68.722 



U.454 
22.909 
34.263 
45.817 
57.272 

68.726 



11.455 
22.910 

57-275 
68.730 



11.456 
22.912 
34.367 
45-823 
57-279 

68.735 



IM57 
22.913 
34-370 
45.827 
57.284 

68.740 



Incktt, 
5.722 

5.720 
5-717 
5-715 
5.713 

5.7 U 

5.709 

5.706 
5.704 
5.701 

5.696 
5-694 

5.686 

5.680 

s-677 

5-674 
5.671 
5.668 
5.665 
5.662 

5.659 

5.656 
5-652 

5.646 
5.642 

5-639 

5.636 

5*^32 
5.628 

5-625 
5.621 

5.618 

5.614 
5.610 
5.606 
5.602 
5-598 



5-594 



IncluM, 

"443 

IM39 
"-435 
U.430 
11.426 
11.422 

n.417 

11.412 
11.407 
1 1. 40 J 
11.3^ 
"•393 

11.388 

11.382 
".377 
".371 
".366 
11.360 

"-355 

"349 
"343 

"-33' 
11.324 

11.318 

11.312 
ii.3oq 
11.298 

IT.2Q2 
11.285 

11.278 

11.264 
11.257 
11.250 
11.242 

"-235 

11.227 
11.220 

II.2T2 
11.204 
II. 196 

II.188 



Imchts, 
17.165 

7.159 
7.152 
7.146 
7.139 
7.132 

7.126 

7-119 
7.1 1 1 

7.104 
7.006 
7.089 

7.082 

7.073 
7.065 
7.057 
7.049 
7.040 

7.032 



6.978 

6.968 
6.958 
6.948 
6.938 
6.928 

6.918 



6.853 

6.841 
6.829 
6.818 
6.806 
6.794 

16.783 



Smithsonian Tanlbs. 



IncJUt, 
22.887 

22.878 
22.869 
22.861 
22.852 
22.843 

22.834 

22.825 
22.815 
22.805 
22.795 
22.786 

22.776 

22.764 
22.754 
22.742 
22.732 
22.720 

22.710 

22.608 
22.685 

22.673 
22.661 
22.649 

22.637 

22.624 
22.610 
22.507 
22.584 
22.570 

22.557 

22.542 
22.528 
22.514 
22.499 
22.485 

22.470 

22.455 
22.439 
22.424 
22.408 
22.392 

22.377 



III 



28.609 

III! 

28.554 

28.543 

28.531 
28.519 
28.507 

28.4< 



28.470 

28.456 
28.442 
28.428 

28.415 
28.401 

28.387 

28.372 
28.357 
28.342 
28.327 
28.311 

28.296 

28.280 
28.263 
28.246 
28.230 
28.213 

28.196 

28.178 
28.160 
28.142 
28.124 
28.106 

28.088 

28.069 
28.049 
28.030 
28.010 
27.991 

27.971 



Incktt. 
34.330 

34.317 
34.304 
34.291 
34-278 
34.265 

34.252 

34.237 
34.222 
34.208 

34.193 
34.178 

34.163 

34.147 
34-130 
34.114 
34.097 
34-081 

34.064 

34.046 
34.028 
34.010 
33.992 
33-973 

33-955 

33.935 
33-915 
33-895 
33-875 
33-855 

33-835 

33-814 
33-792 
33-770 
33-749 
33-727 

33-706 

33.682 
33-659 
33-635 
33.612 

33-589 
33-565 



•S^ 



10 

15 
20 

25 
30 



5 


0.001 


10 
IS 


•^ 


20 


.010 


25 


x>i6 


30 


.023 



Inchts. 

aooo 

.002 

1^ 

.013 
.018 



0.001 
.003 
.007 

•01 3 
.020 
.028 



13" 



0.001 
.004 

XX& 

.015 
.023 
.033 



8» 



Inekgt, 
0.001 
.002 
.005 
.009 
X)i4 
.021 



0.001 

.018 
.026 



OJOOl 

:^ 

X)i4 
.021 
.031 



14** 



0.001 
.004 
.009 
.016 

•03s 



Tabuc 22. 

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE irW 

[DeriTatioa of table explained on pp. Uii-lvi.] 



"S^. 


Meridional die 
tances from 
even degree 
paiallels. 


ABSCISSAS OF DEVELOPED PARALLEL. 


ORDINATES OF 
DEVELOPED 
PARALLEL. 


5- 

longitode. 


10' 


IS- 

l.n.«mtmtm 

lon^iRMBe. 


20' 


25- 
lopgitnde. 


30- 

loQsitiide. 


Kinycoae. 


i4*'oo' 

10 
20 
30 
40 
50 

1500 

10 
20 
30 
40 
50 

1600 

10 
20 
30 
40 

SO 

1700 

10 
20 
30 
40 

SO 
1800 

10 
20 
30 
40 
SO 

1900 

10 
20 
30 

40 
50 

2000 

10 
20 
30 
40 
SO 

21 00 


JnektM. 
68.740 


IncMts. 
5-594 

w 

5.582 
5-578 

S-S73 

5-569 

5-565 
5-560 
5-556 
5-55» 
5-547 

S-542 

5-538 
5-533 
5.528 

5-524 
5-5"9 

5-514 

5-509 
5504 
5-499 
5-494 
5-489 

5484 

5-479 

r^ 

5463 
5-458 

s-452 

5447 
5.441 
5-436 
5-430 
5-424 

5.419 

5413 
5-407 
5.401 
5396 
5-390 

5-384 


JnchtM. 

II.I88 

II.I80 
II. 172 
II.I63 
II.I55 
II.I47 

II.I38 
II.I30 

II. 121 
II. 112 

1 1. 103 
11.094 

11.085 

11.076 
iix)66 

11.057 
11.047 
11.038 

11.028 

II.0I8 
iixx>8 

ia978 

ia968 

10.957 
10.947 
10.936 
ia926 
10.915 

10.905 

10.871 
10.860 
10.849 

10.838 

10.826 
ia8i4 
ia8o3 
10.791 
10.779 

10.768 


Imeket. 
16.783 

16.770 
16.758 
16.745 
16.733 
16.720 

16.708 

16.667 
16.654 
16.641 

16.628 

16.613 
16.599 

16.585 
16.571 
16.556 

16.542 

16.527 
16.512 

16.467 

16.452 

16.436 
16420 
16.404 
16.389 
16.373 

16.357 

16.340 
16.324 
16.307 
16.290 
16.274 

16.257 

16.239 
16.222 
16.204 
16.187 
16.169 

16.151 


Jncku, 
22.377 

22.360 

22.344 
22.327 
22.310 
22.294 

22.277 

22.259 
22.241 
22.223 
22.206 
22.188 

22.170 

22.151 
22.132 
22.113 
22.094 
22.075 

22^)56 

22.036 
22.016 
21.996 
21.976 
21.956 

21.936 

21.015 
2i|94 
21.872 
21.852 
21.830 

21.809 

21.787 
21.765 
21.742 
21.720 
21.698 

21.676 

21.652 
21.629 
21.605 
21.582 
21.558 

21.53s 


Indus. 
27.971 

27.950 
27.930 

27.867 
27.846 
27.824 

27.802 
27.779 
27.757 
27.735 

27.713 

27.689 
27.665 
27.642 

27.618 

27.594 
27.571 

27.546 
27.521 

27.495 
27470 

27.445 
27420 

27-394 
27.367 
27.341 

%-'^ 

27.262 

^7.234 
27.206 
27.178 
27.150 
27.123 

27.095 

27^)65 
27.036 

26.948 
26.919 


Inckts. 

33-565 

33-540 
33.515 
33-490 
33.465 
33-440 

3341S 

33-389 
33-362 
33-335 
33-308 
33.282 

33-255 

33-227 
33.198 
33-'70 
33-'42 
33-"3 

33-085 

33.05s 
33-025 
32.994 
32.964 
32.934 

32.904 

32.872 
32.840 
32,809 
32.777 
32.746 

32.7H 

32.680 
32.647 
32.614 
32.580 
32.547 

32.513 

32.478 
32.443 
32.408 

32.373 
32.338 

32.303 




14** 


^f 


11.458 
22.915 

34-373 

68.746 


5- 
10 

15 

20 

25 
30 


Indkts. 

0.001 

.004 

JO16 
•025 
•03s 


Jnckis. 

aooi 
x)04 
.009 

.026 

.038 


11.459 
22.917 

34.376 

45-834 

57-293 
68.752 




16° 


It 


11.460 
22.919 

57.298 
68.758 


5 
10 

IS 
20 

25 

30 


aooi 
.004 
^10 
.018 
.028 
.040 


aooi 
.005 
.011 
.019 
.029 
.042 


1 1. 461 
22.921 
34.382 
45-843 
57.304 

68.764 




i8« 


19" 


11.462 

m 

57.310 
68.771 


5 
10 

IS 

20 

25 
30 


aooi 
.005 
.011 
.020 
.031 
.044 


aooi 
.005 
.012 
.021 
.032 
.046 


1 1463 
22.926 

57.316 
68.779 




20° 


210 


5 
10 

15 

20 

25 
30 


aooi 
.005 
.012 
.022 
.034 
.049 


aooi 
.006 

•013 
.022 

.03s 
.051 


11.464 
22.929 

4t*^58 
57-322 

68.787 



SniTHaoNiAN Tables. 



112 



Digitized by V^OOQ IC 



Tamje 22. 
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE vrhv- 

[Derivation of table eacplaiaed on pp. liii-lvi] 






ABSCISSAS OF DEVELOPED PARALLEL. 



5' 
longitude. 



longitude. 



IS' 

longitude. 



2& 
longitude. 



longitude. 



30' 

longitude. 



ORDI NATES OF 
DEVELOPED 
PARALLEL. 



10 
20 

30 
40 

SO 
22 00 

10 
20 

30 
40 

50 

10 
20 

30 
40 

50 
2400 

10 
20 

30 

40 

SO 

2500 

10 
20 
30 
40 
SO 

2600 

10 
20 
30 
40 
SO 

2700 

10 
20 

30 
40 

SO 
2800 



68.787 



11.466 
22.932 

34.397 
45.863 

57.329 
68.795 



II467 
«2.934 
34401 
45.868 
57.336 

68:803 



11.469 
22.937 
34.406 
45.874 
57.343 

68.812 



11.470 
22.940 
34.410 
45.880 
57.350 

68.821 



11.472 
22.943 

34.415 
45^86 

57.358 
68.830 



"•473 
22.946 

34-419 
45.892 

57.365 
68.838 



11.475 
22.950 
34.424 
45.899 
57.374 

68.849 



Inckts. 
5384 
5-378 

5.366 
5.359 

5-353 

5-347 

5-341 
5-334 
5.328 
5-322 
5-315 

5-309 

S-302 
5.206 
5.289 
5.282 
5.276 

5.269 

5.265 
5-256 
5.249 
5.242 
5.235 

5.227 

5.220 

5-213 
5.206 

5-199 
5.191 

5.184 

5-177 
5.169 
5,162 
5-154 
5-M7 

5.140 

5.132 
5.124 
5.116 
5.109 
5. 101 

5093 



Inckts, 
10.768 

0.755 
0.743 
0.731 
0.719 
0.707 

0.694 

0.682 
0.669 
0.656 
0.643 

a63i 

0.618 

0.604 
a59i 
0.578 
0.565 

0.551 

0.538 

0.526 
0.512 
a4Q8 
a483 
0.469 

0.455 

0.441 
0.426 
0.412 
0.397 
0.383 

0.369 

0.354 
0.339 
0.324 
0.309 
0.294 

0.279 

0.264 

0.248 

0.23; 

0.2 

0.202 



?i 



10.187 



6.I5I 

6.133 

6.II5 

6.078 
6.060 

6.042 
6.022 

6.003 
5-984 
5965 
5.946 

5-927 

5.867 
5.847 
5.827 

5.807 

5.789 
5.767 
5.746 

5-725 
5.704 

5.682 

5.661 

\^ 

5-596 

5-575 
5-553 

5.531 

5-5^ 
5.486 

5463 

5.441 

5.419 

5-396 
5-373 
5-349 
5-326 
5-303 

15.280 



Inckts. 
21.535 

2I.5II 
21.486 
21.462 

21.438 
21.413 

21.389 

21.363 

21.338 
21.312 
21.287 
21.261 

21.236 

21.209 
21.182 
21.156 
21.129 
21.102 

21.076 

21.052 
21.023 
20.995 
20.967 
20.938 

2a9io 

20.881 
20.852 
20.824 
20.795 
20.766 

20.737 

20.708 
20.678 
2a648 
20.6r8 
20.588 

20.558 

20.528 
20.497 
20.466 

20.435 
20.404 

20.374 



IncJUt, 
26.919 

26.889 
26.858 
26.828 

26.797 
26.767 

26.736 

26.704 
26.672 
26.641 
26.609 
26.577 

26.545 

26.511 
26.478 

26445 
26412 
26.378 

26.345 

26.315 
26.279 
26.244 
26.209 
26.173 

26.137 

26.101 
26.065 
26.029 



25.922 

25.884 
25.847 
25.810 
25.772 
25-735 

25.698 

25.659 
25.621 
25-582 
25.544 
25.505 

25.467 



Inches. 

32.303 

32.266 
32.230 

32.193 
32.156 
32.120 

32.083 

32.045 
32.006 

3'.969 
31.930 
31.892 

31.853 

3^.813 
31.774 
3^.733 
31.694 
31.654 

31.614 

31-577 
31-535 
31.493 
3'.450 
31408 

31-365 

31-322 
31.279 
3<-235 
31.192 
3'.M9 

31.106 

31.061 
31.017 
30.972 
30.927 
30.882 

30.838 

30791 
30.745 
30.699 

30.653 
30.607 

30.560 



2I 



21" 



Inches. 

aooi 

.006 
.013 

.022 

.035 
.051 



23" 



0.001 

.006 
.014 

.024 

.038 
.054 



25« 



0.002 

.006 

.014 
.026 
.040 
.058 



27« 



0.002 

.007 
.015 

.027 
.042 
.061 



22*> 



Inches. 

aooi 

.006 
.013 
.023 
.036 
.052 



24' 



aoo2 
.006 
/>I4 
.025 

•039 
.056 



26*^ 



aoo2 
.007 

.020 
.041 
.059 



28« 



.007 
.016 



.043 
.063 



Smithsonian Tables. 



"3 



T^itizeTbTtjCTO^ 



.Tablk 22. 

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE jwhw- 

[Derivaticm of table wplaincid on pp. liii-lvL] 




ABSCISSAS OF DEVELOPED PARALLEL. 



5- 

longitude. 



10' 
longitude. 



IS' 

longitude. 



2or 
longitude. 



25' 

longitude. 



30' 

longitude. 



ORDINATES OF 
DEVELOPED 
PARALLEL. 



28^' 

xo 

20 

30 
40 

9> 

2900 

10 

90 

30 
40 

SO 
3000 

10 

20 

30 
40 

50 

3100 

10 
20 

30 
40 

50 

3200 

10 
20 

30 
40 
50 

3300 

10 
20 

30 
40 

so 

3400 

10 

20 

30 
40 

so 
3S0O 



68.849 



n.476 

22.953 

34.430 
45.906 
57.383 

68.859 



11.478 

22.957 
34.435 

45-9»3 
57.391 

68.870 



11.480 
22.960 
34.440 
45.920 
57400 

68.880 



11.482 
22.964 
34446 
45.927 
57409 

68.891 



11484 
22.967 
3445* 
45.934 
57418 

68.902 



11485 
22.971 
34456 
45-942 
57427 

68.913 



1 1487 

22.975 
34462 

45-949 
57437 

68.924 



Inckts, 
5.093 

5.085 

S-077 
5.069 
5.061 
5.054 

5.046 

5.037 
5.029 
5.021 

S-0I3 
5.004 

4.996 

4.988 
4.979 
4.971 
4.962 
4.954 

4-945 

4.937 
4.928 
4.919 
4.910 
4.902 

4.893 
4.884 

IS 
4.848 

4.839 

4.830 
4.821 
4.812 
4.802 
4.793 

4.784 

4.774 
4.765 
4.755 
4.746 
4.737 

4.727 



iai87 

10.171 
10.155 
10.139 
10.123 
iai07 

10.091 

iao7ij 
10.058 
10.042 
10.025 
iaoo9 

9^993 

9.976 
9-959 
9-942 
9.925 
9.908 

9.891 

^n 

9-556 
9-538 
9.821 
9.804 

9.786 

9.768 
9.750 
9732 

9.696 

9.679 

9.660 
9.642 
9-623 
9.605 
9.586 

9.568 

9-549 
9530 
9.511 
9492 
9473 

9454 



Inckit, 
15.280 

5.256 
5.232 
5.208 
5.185 
5. 1 61 

5.137 

5.112 
5.087 
5.063 
5.038 
5.013 

4.989 

4.963 
4.938 

4.862 

4.836 

4.810 
4.784 
4.758 
4.731 
4.705 

4.679 

4.652 
4.625 
4.598 
4.572 

4.545 
4.518 

4490 
4.462 

4.435 
4.407 

4.379 

4.352 

4.323 
4.295 
4.267 
4.238 
4.210 

14.181 



/ncJUt. 

20.374 

20.342 
20.310 
20.278 

2a246 
20.214 

2ai82 

2ai5o 
20.117 
20.084 
2ao5i 
2aoi8 

19.985 

9-95» 

9.849 
9.815 

9.782 

9.747 
9.712 

9.677 
9.642 
9.607 

9-572 

9.536 
9.500 

9.465 
9429 

9-393 
9-357 

9.320 
9.283 
9.246 
9.210 
9-173 

9.136 

9.098 

9.060 
9.022 
8.984 
8.946 

18.908 



25.467 

25427 
25.387 
25.347 
25.308 
25.268 

25.228 

25.187 
25.146 
25.105 
25.064 
25X>22 

24.981 

24.854 
24.812 
24.769 

24.727 

24.683 
24.640 

24.596 
24.552 

24-509 

24465 

24.420 
24.376 

241286 
24.241 

24.196 

24.150 
24.104 
24.058 
24.012 
23-966 

23.920 

23.872 
23.825 
23-778 

\Wz 

23.636 



IncMgt. 
30.560 

30.513 
30.465 
30.417 
30.369 
30.32' 

30.274 

30.224 
30.175 

3ai26 
30.076 
30.027 

39.978 

29.027 
29^76 
29.825 
29.774 
29.723 

29.672 

29.620 
29.568 
29.515 
29.463 
2941 1 

29.358 

29.305 
29.251 
29.197 

29.143 
29.089 

29.036 

28.980 

28.870 
28.814 
28.759 

28.704 

28.647 
28.590 
28.533 
28476 
28420 

28.363 



•1 

I. 



a002 

.016 
.028 



yp 



jo\6 



3«» 



OJOQ2 

.017 
.030 



34° 



«f 



Inchn, 
OJ0O2 

.016 
.028 



31" 



O1OO2 

.017 
•030 



zf 



0.002 
.008 
.017 
.031 

^8 
.069 



3!>" 



0.002 


aoo2 


.008 


.008 


.017 


.018 


.031 


.031 


.049 


.049 


.070 


.071 



Smitnbonian Taslcs. 



114 



Digitized by V^OOQlC 



Tablb 22. 
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE jtim> 

[Derivation of tablo explained on p|». liii-IvL] 



•8 

II 




ABSCISSAS OF DEVELOPED PARALLEL. 



S' 
longitude. 



longitude. 



'5' 

longitude. 



20' 
longitude. 



longitude. 



30' 

longitude. 



ORDINATES OF 
DEVELOPED 
PARALLEL. 



3focr 



lO 
20 

y> 

40 
50 

3600 

10 

20 

30 
40 

so 
3700 



30 
40 
50 

3800 

ID 

20 
30 
40 
50 

3900 

10 

20 

30 
40 

50 

4000 

10 

20 

30 
40 
50 

41 00 

10 
20 

30 
40 

50 

4200 



Inchg*. 
68.924 



11.489 
22.978 
34.468 

45-957 
57446 

68.935 



11.4Q1 
22.983 
34474 
45-965 
57457 

68.948 



34.480 

45.973 
57466 

68.959 



"495 
22.900 

34.455 
45,980 

57475 
68.970 



"497 
22.994 

4s'9p 
57485 

68.982 



11490 
22.998 
34497 
45996 
57495 

68.994 



11-501 
23.002 

34-503 
46.004 

57.506 
69.007 



IneMfs, 

4.727 

4.717 
4.708 

4.( 
4.679 

4.669 

4.659 
4.649 
4-639 
4.629 

4.619 
4.609 

4.599 

^579 
4.5^ 
4.558 

4.548 

4.538 
4.527 
4.517 
4.506 
4496 

4486 

4.475 
4464 
4454 
4.443 
4433 

4422 

4.41 1 
4.400 
4.389 
4.378 
4.368 

4.357 

4.346 
4.335 
4324 
4.312 
4.301 

4.290 



Jnckts. 

9454 

9435 
9415 
9.396 
9.377 
9.357 

9.338 

9.318 
9.298 
9.278 
9.258 
9-238 

9.219 

9.198 
9.178 
9.157 
9.137 
9.117 

9.096 

9.076 
9.055 

9^34 
9.013 
8.992 

8.971 



8.844 

8.822 
8.800 
8.779 
8.757 
8.735 

8.713 

8.691 
8.669 

8.647 
8.625 
8.603 

8.581 



JfcJUs. 
X4.181 

4.152 
4.123 
4.094 
4.061 
4.0: 



s 



4.007 
3.977 

3-947 

3.828 

3-797 
3-767 
3.736 
3-706 

3.675 

3.645 

3.613 
3.582 

3-551 
3-520 
3.488 

3-457 

3425 
3.393 
3-361 
3-330 
3.298 

3.266 

3.233 
3.201 
3.168 
3-135 
3.'03 

3070 

3037 
3.004 
2.971 

2.937 
2.904 

12.871 



'itches. 
8.908 

8.870 

8.83' 
8.792 
8.753 
8.714 

8.676 

8.636 
8.596 
8.556 
8.517 
8.477 

8.437 

8.396 
8.356 

8.315 
8.274 

8.234 

8.193 

8.1 51 
8.fo9 
8.068 
8.026 
7.984 

7.943 

7.Q00 
7.858 
7.815 

7.773 
7.730 

7.688 

7.644 
7.601 

7.557 
7.5M 
7470 

7.427 

7.383 
7.338 
7.294 
7.250 
7.205 

7.161 



Imckts. 
23.636 

23-587 
23.539 
23.490 
23.442 
23.393 

23.345 

23.295 
23.245 
23.195 
23.146 
23.096 

23.046 

22.995 

22.944 
22.894 

22.843 
22.792 

22.741 

22.689 
22.637 
22.585 
22.533 
22. 



2.533 
2481 



22429 

22.375 
22.322 
22.269 
22.210 
22.163 

22.110 

22.055 
22.001 

21.047 
21.892 
21.838 

21.784 

21.728 
21.673 
21.618 
21.562 
21.507 

21.451 



Jnche*. 
28.363 

28.305 
28.246 
28.188 
28.130 
28.072 

28.014 

27.954 
27.894 
27.835 

27.775 
27.715 

27.656 

27.594 
27.533 
27.472 
27.411 
27.350 

27.289 

27.227 
27.164 
27.102 
27.039 
26.977 

26.914 

26.851 
26.787 
26.723 
26.659 
26.595 

26.532 

26466 
26401 
26.336 
26.271 
26.206 

26.140 

26.074 
26.007 
25.941 

25-742 



•|5 



5- 
10 

15 
20 

25 
30 



Zf 



Inches. 

aoo2 

.008 

m% 
.031 
.049 
.071 



37" 



aoo2 
.008 
.018 
.032 
.050 
.073 



39° 



0.002 
.ooS 
.018 

•033 
.051 

.074 



41" 



aoo2 
.008 
.019 

.033 
.052 
.075 



Inckts, 
0.002 
.C08 
.018 
.032 
.050 
.072 



aoo2 
.008 
.018 

•033 
.051 

.073 



40P 



aoo2 
.008 
.019 
•033 
•052 
.074 



0.002 
.008 
.019 

.033 
.052 

.075 



SniTHaoNiAN Tables. 



"S 



Tablk 22. 

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE vtW 

[Derivation of table enrfainfd on pp. liii-lTi.] 





uncct from 
even degree 
ponllelB. 


ABSCISSAS OF DEVELOPED PARALLEL. 






"S . 










ORDINATES OP 
DEVELOPED 
PARALLEL. 


5- 


xo' 


'5- 


20' 


25- 


30' 


JB- 


longitude. 


longitude. 


loogitade. 


longitttde. 


longitude. 


longitude. 








Inctu*. 


Incktu 


Jnck4t. 


Inches. 


lneJk*9. 


Inches. 


Inches. 


I-, 






42<>oo' 

lO 
20 
30 
40 
50 


69.007 


4.290 

4.256 
4.245 
4.234 


8.s8x 

8.558 
8-535 
8.513 
8.490 
8.467 


12^71 

12.837 
X2.803 
12.769 

".735 
X2.7OX 


X7.X61 

X7.I16 
17.071 
17.025 
16.980 
16.935 


2x451 

21.39s 
2X.338 
21.282 
21.225 
21.169 


25.742 

25-538 
25470 
25.402 


!-H 


420 


4^ 


11.501 
23.006 
34.510 
46.0x3 


5- 
xo 

15 


Inches. 

OXX>2 
.008 
.019 


Inches. 

aoo2 
.ooR 
JOX9 


43 «> 

lO 
20 

30 
40 

SO 
4400 


69.019 


4.222 
4.21 1 

4.176 
4.165 

4.153 


8445 

8.422 

8.399 
8.376 
8.353 
8.330 

8.307 

8.283 
8.260 
8.236 
8.213 
8.189 


12.667 

X2.633 
12.598 
12.564 
12.529 
12494 

12.460 


16.890 

16.844 
16.798 
16.751 
16.705 
16.659 

16.6x3 

16.566 
16.519 

16426 
16.379 


2I.XI2 

2X.054 
20.997 

2a882 
2a824 

20.767 

2a7o8 
2a649 
20.591 
2a532 
20.473 


25-334 

25.265 
25.196 
25.127 
25.058 
24.989 

24.920 

24.849 
24-779 
24.709 


20 
25 
30 


.033 
.052 

.075 


.033 
.052 

.075 


11.505 
23.010 

34.5>5 
46.020 

57-525 
69.030 




44** 


4S^ 


10 

20 

30 
40 

SO 


11.507 
23.014 
34-522 
46.029 
57536 


4.142 
4.130 
4.1 18 
4.106 
4.095 


X 2.425 

X2.390 
".354 

X 2.319 

12.284 


5 
xo 

«5 
20 


0.002 
.008 
.019 
.034 


aoo2 
.008 
.019 
•034 


4500 

10 
20 
30 
40 
SO 


69-043 


4.083 

4.071 
4.059 
4.047 
4.035 
4.023 


8.166 

8.X42 
8.118 

8.094 
8.070 
8x>46 


X2.249 
X2.2X3 

12.177' 
I2.I4X 

X2.I05 

X 2.070 


16.332 

16.284 
16.236 
X6.188 
16.141 
16.093 


20415 

20.355 
2a295 
20.236 
2a 176 
20.116 


24498 

24.426 

24-354 
24.283 
24.211 
24.139 


25 
30 


.052 
.075 


.076 


11.509 
23.018 
34.528 
46.037 
57.546 


46P 


47** 


4600 

10 

20 
30 
40 
SO 

4700 

10 
20 
30 
40 
SO 

4800 


69-055 


4.0x1 

3-999 
3-987 
3-975 
3963 
3-951 

3.938 

3.926 
3-914 

3.877 
3.864 


8.023 

7-998 
7.974 
7.950 

7.925 
7-901 

7.877 

7.852 
7.827 

7-803 
7-778 
7.753 

7.729 


X2X)34 
IX .852 

IX.8I5 

11.778 
11.741 

\\]^ 

XX.630 
"•593 


16.045 

15:851 
15.802 

15.754 
15.704 

\\^ 

15.556 
15.507 

15457 


20.056 

19.996 
19-935 
19-974 
19-813 
19-753 

19.692 

19.610 
19.569 
19.507 
19-445 
19-383 

19.322 


24.068 

23.995 
23.922 

23-776 
23.703 

23.630 

23.556 
23.482 
23408 

23.334 
23.260 

23.186 




11.511 
23023 
34.534 
46.045 

57.557 
69.068 


5 
xo 

'5 
20 

25 
30 


aoo2 
.008 
.019 
.034 

.076 


aoo2 
.008 
.019 
.034 
.052 
.075 


"•513 
23.027 
34.540 
46.053 
57.587 

69.080 


5 
10 

15 
20 

25 
30 


480 


49^ 


0.002 


0.002 


10 
20 
30 
40 

SO 


11.516 
23.035 

57.577 


3.852 
3-839 
3.827 
3.814 
3.802 


7.704 
7.679 

7.603 


"•555 
11.518 
11.480 
X 1.442 
".405 


15.407 
15.357 
15.307 
15-257 
15.206 


19.259 
19.196 

19.134 
19.071 
19.008 


23.111 
23.035 
22.960 
22^85 

22.8X0 


.008 
.0x9 

.033 
.052 

.075 


.008 
.019 

.033 
.052 

.075 


4900 


69.093 


3.789 


7.578 


11.367 


15.156 


18.945 


22.734 












^^^ 



Smith«onian Tabi.cs. 



116 



Digitized by V^OOQ IC 



Table 22. 
CO-ORDINATES FOR PROJECTION OF MAP8. SCALE wiiir- 
[Derivation of table explained on pp. liii-lvi.] 



49^00' 

10 
20 

30 
40 
50 

5000 

10 
20 

30 
40 

SO 
51 00 

10 
20 

30 
40 

50 
5200 

10 
20 
30 
40 
SO 

5300 

10 
20 

30 
40 

50 
5400 

10 
20 

30 
40 

50 

5500 

10 
20 

30 
40 

50 
5600 






ABSCISSAS OF D£V£LOP£D PARALLEL. 



5' 
longitude. 



Inckts. 
69-093 



11.517 

23-035 
34.552 
46.070 

S7.5«7 
69-'oS 

11.520 
23039 
34.55« 
40.070 

57.598 
69.117 



11.521 

23043 
34.564 
46.086 
57-607 

69.12S 



11.523 
23047 
34.570 
46.094 
57.617 

69.140 



11.525 
23.051 
34.576 
46102 
57.627 

69.152 



11.527 

23-0'5S 
34.582 

57.636 

69.164 



11.529 

^5^ 
57.646 
69.176 



ImJUt. 

3-789 

3-776 
3-764 
3-75i 
3.738 
3-725 

3-713 

3-700 
3.687 

^•^^ 
3-661 

3648 

3635 

3.622 
3.609 
3-596 
3-583 
3-570 

3-556 

3-543 
3-530 
3-516 
3-503 
3-490 

3-477 

3463 
3-450 
3-436 
3-423 
3-409 

3-396 

3-382 
3.368 
3-355 
3-341 
3-327 

3-3>4 

3300 
3-286 
3.272 
3258 
3-245 

3-231 



10' 
longitude. 



IhcU*. 
7.578 

7.553 
7-527 
7-502 
7.476 
7.451 

7-425 

7-399 
7-374 
7.348 
7-322 
7-296 

7-270 

7-244 
7.218 
7.191 
7.165 
7-139 

7-"3 

7.086 
7.060 

7-033 
7.006 
6.980 

6.953 
6.926 

6.872 
6w845 
6.818 

6.791 

6.764 
6.737 
6.709 
6.682 
^655 

6.628 

6.600 
6.572 
6.545 

6.489 
6462 



IS' 

loQgitude. 



20' 
longitude. 



Incht*. 
11.367 

1-329 
1. 291 

1-253 
I.214 
1. 176 

I.138 

1.099 
1.060 
1. 021 
0.983 
0.944 

0.905 

0.866 
0.827 
0.787 
0.748 

0.709 
0.669 

0629 
0.589 
0.550 
0.510 
0.470 

0.430 

0.389 
0.349 

a228 

ai87 

0.146 
0.105 
0.064 
0.023 
9.982 

9.941 

9.000 
9.859 
9.817 
9-776 
9-734 

9-693 



'nekes. 
5.156 

5- 105 
5054 
5-003 
4.952 
4.901 

4-850 

4.799 
4.747 
4.695 
4.644 
4.592 

4.540 

4.488 
4.436 
4.383 
4.330 
4.278 

4.226 

4.172 
4. 1 19 
4.066 
4.013 
3960 

3906 

3.852 
3.798 
3-745 
3-691 
3-637 

3.583 

3-528 
3-474 
3-419 
3-364 
3-310 

3-255 

3-200 

3-145 
3-089 
3-034 
2.979 

12.924 



longitude. 



Jnck4S, 

18.945 

18.882 
18.818 

18.754 
18.690 
18.627 

18.563 

18.499 
18.434 
18.369 
18.305 
18.240 

18.176 

18.IIO 
18.045 
17-979 

I7!848 

17.782 

17.716 
17.649 
17.583 
17.516 
17.450 

17.383 

17.316 
17.248 
17.181 
17.114 
17.046 

16.979 

16.QIO 
16.842 

16.774 
16.706 
16.637 

16.569 

16.500 
16^131 
16.362 
16.293 
16.224 

16.155 



30' 
longitude. 



22.734 

22.6158 
22.581 
22.505 
22.429 
22.352 

22.276 

22.198 

22.121 
22.043 

V.^ 

2I.8II 

21.732 
21.653 

21-574 
21.496 
21.417 

21.338 

21.259 
21.179 
21.099 
21.019 
20.939 

20.860 

20.779 
23.698 
20.617 
20.536 
20.455 

20.374 

20.292 
20.210 
20.128 
20.047 
19.964 

19.883 

19.800 
19.717 
19.634 

19.468 
19-385 



ORDINATES OF 
DEVELOPED 
PARALLEL. 








Imcke*. 


< 


0.002 


10 


.008 


15 


.019 


20 


.033 


25 


.052 


30 


.075 



49" 



51° 



0.002 


0.002 


.008 


.008 


.019 


x>i8 


-033 


•033 


.051 


.051 


.074 


.073 



53^^ 



0.002 
.008 
.018 
.032 
.050 
-073 



55" 



aoo2 
.008 
x>i8 
.032 
.049 
.071 



SO" 



Inckts. 

0.002 
.008 
.019 

•033 
.052 

•075 



54" 



0.002 
.008 
.018 
.032 
.050 
.072 



0.002 
.008 
.018 
.031 
-049 
.070 



kJOO^lt 



SiiiTHaoiiiAii Tablcs. 



iigiTizea oy 



117 



Table 22« 

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE irW 

[Derivation of table explained on pp. Uii-lTi.] 



I! 




ABSCISSAS OF DEVELOPED FARALLEU 



5' 

loQgitude. 



lo' 
longitude. 



IS- 



lonfitnde. 



longitude. 



30' 

longitude. 



ORDINATES OF 
DEVELOPED 
PARALLEL. 



56*»oc/ 

10 
20 
30 

40 
50 

57 00 

10 
20 

30 
40 

SO 

5800 

10 
20 

30 
40 

so 
S90O 

10 
20 

30 
40 

SO 
6000 



10 
20 

30 
40 
50 

61 00 

10 
20 

30 
40 

50 

6200 

10 
20 

30 
40 

50 
6300 



Indut. 
69.176 



"SJI 
23^3 
34-594 

57.656 
69.188 



34.599 
69.199 



"•S3S 
23.070 
34.605 
46.140 
57675 

69.210 



"•537 
23-074 
34-610 

46.147 
57.684 



"•539 
23-077 
34.616 
46.154 
57.693 

69.232 



11.540 
23.081 
34.621 
46.162 
57.702 

69.242 



11.542 
23.084 
34.626 
46.168 
57.710 

69-253 



Inches. 

3.23' 

3-217 
3.203 
3.189 

3->75 
3.161 

3-147 

3-»33 
3-"9 
3-»04 

3-090 
3-076 

3.062 

3-048 

3-034 
3.019 

3-005 
2.991 

2.976 

2.962 
2.947 
2-933 
2.918 
2.904 

2.890 

2.860 
2.846 
2.831 
2.816 

2.802 

2.787 
2.772 
2.758 
2-74^ 
2.; 



2.743 
2.728 



2.713 

l^ 

2.669 
2.654 
2.639 

2.624 



Indus. 
6.462 

6-378 
6.350 
6.322 

6.294 

6.266 

6.237 
6.209 
6.181 
6.152 

6.124 

6.096 
6.067 
6.038 
6.010 
5.981 

5-9S3 
5-924 

ilii 

5-779 

S-750 
5.721 

5-633 
5-604 

5-574 
5-545 

5.48I 
5-456 

5-427 

5-397 
5-367 
5-337 
5-308 
5.278 

5.248 



Inckts. 
9-693 

9.651 
9.609 
9-567 
9-525 
9-483 

9»44i 

9-398 
9-356 
9-314 
9.271 
9.229 

9.186 

9-M3 
9.101 
9.058 
0.015 
8.972 

8^29 

8.885 
8.842 
8.799 
8.755 
8.712 

8.669 

8.625 
8.581 
8.537 
8.493 
8450 

8.406 

8.361 

8.317 
8.273 
8.229 
8.184 

8.140 

8.096 
8.051 
8.006 
7.961 
7-917 

7-872 



Inches. 
12.924 

12.868 
12.812 
12.756 
12.700 
12.644 

12.588 

12.531 
12.475 
12.418 
12.362 
12.305 

12.248 

I2.19I 
12.134 
12.077 
12.020 
11.962 

n.905 

11.847 
11.790 
11.732 
11.674 
II.616 

11.558 

11.500 
II.44I 

"-383 
11.324 
11.266 

11.208 

II.I48 
11.090 
11.030 
10.972 

ia9i2 

10.854 

10.794 
10.734 
10.675 
1061S 
10.556 

ia496 



Inches, 
16.155 

6.085 
6.015 
5-945 
5-875 
5-805 

5-735 

5.664 

5-594 
5-523 
5-452 
5-381 

5-3" 

"CM 

5-096 
5.025 

4.953 
4.882 

4.809 
4-737 
4.665 

4.592 
4.520 

4.448 

4-375 
4-302 
4.229 
4.156 
4.083 

4.010 

3-788 
3-715 
3-641 

3-567 

3.493 
3.418 

3-344 
3-269 
3-195 

13.120 



Inches. 
19-385 

19.301 
19.217 
19-134 

r 

18.882 

18.797 
18.712 
18.627 
18.542 
18.457 

18.373 

18.287 
18.201 
18.115 
18.029 
17-944 

17-858 

':^ 

17.597 
17.510 
17.424 

17-337 



i6l8ii 

16.723 
16.634 
16.546 
i6ut57 
16.369 

16.280 

16.191 
16.102 
16.012 
15-923 
15-833 

15-744 






se' 



Inches. 

aoo2 

.008 
.018 
.031 

.049 
.070 



580 



aoo2 
.008 
.017 
.030 

•^ 
.000 



6o<» 



.007 
.016 
.029 

-045 
.065 



62<» 



0.002 

.007 

.016 
.028 

.044 
.063 



57" 



Inches. 

aoo2 

.008 
.017 
.031 
.048 
.069 



59" 



aoo2 
.007 
.017 
x)3o 
.0^6 
.067 



61" 



aoo2 
.007 
.016 
.029 



6f 



0.002 
.007 
.015 

J02y 

-043 
.061 



Digitized by LjL^V^V 



Smithsonian Tables. 



118 



CO-ORDINATES FOR PROJECTION OF MAPS. 

[Derivatioa of Uble eaipUdned on pp. liii-lvi.] 



Table 22. 
SCALE irhir- 




ABSCISSAS OF DEVELOPED PARALLEL. 



longitude. 



10' 
longitude. 



longitude. 



20' 
longitude. 



longitude. 



30^ 

longitude. 



ORDINATES OF 
DEVELOPED 
PARALLEL. 



63O0(/ 

10 
20 

30 
40 

SO 
6400 

10 
20 

30 
40 

50 

6500 

10 
20 

30 
40 
50 

6600 

10 
20 
30 
40 

50 

6700 

10 
20 

30 

40 

50 
6800 

10 
20 
30 
40 
SO 

6900 

10 
20 
30 
40 
SO 

7000 



Inches. 
69-253 



"•S44 
23.087 
34.631 
46.175 
57.718 

69.262 



11.54s 

34.636 
46.182 
S7.727 

69.272 



11.547 
23094 
34-641 
46.188 

57.735 
69.282 



11.548 

34.646 
46.194 

57-742 
69.291 



11.550 
23.100 
34.650 
46.200 
57.750 

69.300 



11.552 
23.103 

46.206 

57.758 

69.309 



"•553 
23.106 

34.659 
46.212 

57.764 
69-317 



InchtM. 
2.624 

2.609 
2.594 
2579 
2.564 
2.549 

2.534 

2.519 

2.488 
2473 
2458 

2.443 

2428 
2412 

2.397 
2.382 
2.366 

2.351 

2.336 
2.320 

2.305 
2.290 

2.274 



2.259 

^^ 

212 
2.107 
2.181 

2.166 



2.24;] 
2.22 
2.212 
2.1( 

2.: 



2.150 

2.134 
2.1 19 
2.101 

2.072 

2.056 
2.040 
2.025 
2.009 
1.993 

1.977 



Inch€S. 
5.248 

5.218 
5.188 
5.158 
5.128 
5.098 

5.068 

5-037 
5.007 

4.977 
4.947 
4.916 

4.886 

4.855 
4.825 

4.794 
4.764 
4.733 

4.702 

4.672 
4.641 
4.610 

4.579 
4.548 

4.518 

4487 
4455 



4.393 
4.362 

4.331 

4.300 
4.269 

4.237 
4.206 

4.175 
4.144 

4.112 
4.081 

4.049 
4.018 
3.986 

3.95s 



Inch**. 
7.872 

7.827 
7.782 

7.737 
7.692 

7.647 
7.602 

7.556 
7.511 

7.465 
7.420 

7.374 

7.329 

7.283 
7.237 
7.191 

7.145 
-7.100 

7.054 

7.007 
6.961 

6.823 
6.776 

6.637 
6.590 
6-543 

6.497 

6450 
6.403 
6.356 

6.263 

6.216 

6.169 
6.121 
6.074 
6.027 
5.980 

5.932 



SnrrHsoNiAN Taslcs. 



IncktM, 
10496 

10436 
10.376 
10.316 
10.256 
XO.I96 

iai36 

10.075 
10.014 
9-954 

9-893 
9.832 

9.772 
9.711 

1% 

9-405 

9-343 
9.282 
9.220 
9.158 
9.097 

9.035 

8.973 
8.011 

8.849 
8.787 
8.724 

8.662 

8.600 
8.538 

8475 
8.412 
8.350 

8.288 

8.225 
8.162 
8.099 
8.036 

7.973 
7.910 



"9 



Inckts. 
13.120 

3045 
2.070 
2|95 
2.820 
2.745 

2.670 

2.594 
2.518 
2.442 

2.367 
2.291 

2.215 

2.139 
2.062 
1.986 
1.909 
1.833 

1.756 

1.679 
1.602 

1.448 
I-37I 

1.294 

1.217 

1. 061 

0.984 
0.906 

0.828 

0.750 
a672 

0.594 
0.516 
0.438 

a36o 

0.281 
a 202 
0.124 
ox)45 
9.966 

9.888 



Imcket. 
15744 



5473 
5383 
5.293 

5.203 

5.1 12 
5.022 

4.930 
4.840 

4.749 
4.658 

4.566 

4.474 

4.383 
4.291 

4.199 
4.107 

4.015 
3.022 
3.830 
3-738 
3.645 

3-553 

3.366 

3-273 
3.180 

3.087 
2-994 

2.900 
2.806 
2.712 
2.6x9 
2.525 

2431 

2.337 
2.242 
2.148 
2.054 
1.959 

11.865 



^•a 



5- 
10 

15 

20 

25 
30 



63" 



Inches. 

0.002 
.007 
.015 
.027 

-043 
.061 



65° 



aoo2 
.006 
.01^ 

X)2D 
.040 
.058 



67** 



0.00 X 

.006 
.014 
.024 
.038 
.054 



69° 



aoox 
.006 
.013 
.022 

.035 
.05 X 



64^ 



Inches. 

0.002 

.007 

X>26 



66*» 



0.002 
.006 

.025 

.039 

x>56 



68<» 



0.00X 
x)o6 
.0x3 
.023 
.036 
.053 



70° 



0.001 

.005 

.0X2 
.022 
.034 
.049 



t 



TABLK22. 

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE vrkr 

(Derivatkn ol tible inrpbinad on p. Ifii4vi.] 



70®00' 

lO 

20 

30 
40 

50 
71 00 

10 
20 

30 
40 

50 

78 00 

10 
90 
30 
40 

SO 

73 «> 

10 

90 

30 
40 

50 
7400 

10 
20 
30 
40 
SO 

7500 

10 
20 
30 
40 

SO 
7600 

10 
20 
30 
40 
SO 

7700 



m 

M fl « Bi 



69-317 



n.554 
23.109 
34-663 
46.217 
S7772 

69.326 



11.556 
23.UI 
34.667 
46.222 

S7778 
69.334 



"•5S7 
23.114 
34670 
46.227 
S7784 

69.341 



U.558 
23.116 

34.674 
46.232 

S7.790 
69.348 



11.550 
23.118 

34.677 
46.236 
S7.796 

69.3SS 



11.560 
23.120 
34.681 
46.241 
57A)i 

69.361 



1 1. 561 
23.122 
34-683 
46.244 
57.806 

69.367 



ABSCISSAS OF DEVELOPED PARALLEL. 



s- 

loDgitade. 



Imck€$. 
'•977 

.946 
.930 

.866 
.850 

.835 
.819 

A>3 

787 

77« 
75S 
739 
723 
707 

.691 

.674 
.658 
.642 
.626 
.610 

•S94 

.562 
•MS 

.529 
•SI3 

497 
.480 

.448 

432 
415 

•399 

:S 

•350 

•334 
•317 

1.301 



10' 



3.9SS 
3.923 

3.860 
3.828 
3796 

3765 

3.733 

3-637 
3.605 

3S74 

3^M2 
3.S09 
3477 
344S 
3413 

3-381 

3.349 
3.3*7 
3.284 
3.25a 
3.220 

3.188 

3.ISS 
3"3 
3.091 
3-058 
3.026 

2-993 

2.961 
2.928 
2i96 
2.863 
2.831 

2.798 

2.765 

2733 
2.700 
2.667 
2.634 

2.602 



loogitiide. 



IncMtt. 
S-932 

5.885 
S.837 

S-790 
S.742 
S.695 

S-647 

5.600 
SSS2 

S.S04 
5.456 
5-408 

5.360 

S.3'2 
5.264 
5.216 
5.168 
5.120 

S-072 

5.024 
4.97s 

4.830 
4.782 

4.S87 

4-539 
4.490 



4.392 
4.344 
4.295 
4.246 

4.197 

4.148 

4.099 
4.050 
4.001 
3-9S2 

3903 



20^ 
loi«itiidA. 



SMmnoNiAir Tablcs. 



Jnckeu 
7.910 

7A|6 
7.783 

7.656 
7.S93 

7.530 

7466 
7.402 
7.338 

7-275 
7.211 

7.147 

7.083 
7.019 
6.555 
6^91 
6.826 

6762 

6.698 
6.614 

6.589 
6.504 
6440 

6.376 

6.31 1 
6.246 
6li8i 
6.116 
6.052 

5.987 

m 

5.792 
5.726 
5.661 

5.596 

5.530 
5465 
5.400 

5-334 
5.269 

5.204 



120 



25- 
kmgitade. 



/mAm. 



9.808 
9.729 
9.650 

9-571 
9.491 

9412 

9.333 
9.253 
9.173 
9-094 
9-014 

8.934 
8.854 

\^ 

8.614 
8-533 

8453 

8-373 
8.292 
8.21 1 
8.131 
8.050 

7-970 

\^ 

7727 
7-645 
7.565 

7484 

7.402 

7.321 
7.240 
7.158 
7.077 

6.995 

6.586 
6.505 



Imckes, 
11.865 

11.770 
11.675 
11.579 
11485 
11.389 

11.294 

11.199 
11.101 
11.008 

iaoi2 
ioii6 

ia72i 

1 0.621c 
ia528 
ia432 
10.336 
ia240 

10.144 

10XH7 
9.050 
9-853 

v& 

9.563 

9466 

9.369 
9.272 

9-«75 
9-077 

8.980 

8.882 

8.785 
8.687 
8.590 
8492 

8.394 

8.296 
8.198 
8.099 
8.002 
7.903 

7.805 



ORDINATES OP 
DEVELOPED 
PARALLEL. 



II 





ImOut, 


s' 


aooi 


10 


.005 


IS 


.012 


20 


jai2 


25 


.034 


30 


.049 



5 


0.001 


10 


•005 


M 


X>II 


20 


.020 


25 


•031 


30 


.044 



70P 



7«" 



74» 



aooi 
.004 

x>i6 

.02 

.0: 



036 



71' 



OOOl 

■005 
X>12 
.021 
^32 
•047 



73^ 



aooi 
■005 

X>1I 

.019 
.029 
.043 



7S^ 



aooi 


0.001 


.004 

X>10 

.018 
.028 


.004 
.009 

>020 


x>40 


-038 



77^ 



aooi 
.004 
.008 

-015 
.023 

.033 



bigitized byVjl50g 



Taux 22. 
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE irW 

[DerivetioD of table explained on p. liii-lTl] 



"8 


III 


ABSCISSAS OP DEVELOPED PAKALEL. 








S' 

f.ii-i-8|.uf- 

MWHHiwe. 


10' 
longitude. 


IS' 

longitude. 


20' 

lonsinKie. 


25' 

longicuae. 


30- 
longitode. 


DEVELOPED 
PARALLEL. 


7/W 

lO 

20 

30 
40 

50 

7800 

10 
20 
30 
40 
SO 

7900 

10 
20 
30 
40 
SO 

8000 


Inches. 
69.367 


Inches. 
I.3OI 

1.268 
1.252 

1.235 
1.219 

1.202 

1.186 
I.169 
I.I53 
I.I36 
I.I20 

1.104 

1.087 
1.070 
1.054 

1.037 
X.02I 

i/»4 


Inches. 
2.602 

2.503 
2470 
2438 

2405 
2.373 

2.'273 
2.240 

2.207 

2.174 
2.I4I 
2.108 
2.075 
2.042 

2j0O9 


Inches. 

3.903 

3.854 
3.804 

3-755 
3.706 
3.656 

3-607 

3.558 
3.508 

3459 
3.410 

3360 

3-3" 
3.261 

3*211 

3.162 
3.1 12 
3.062 

3-013 


Inches. 
5.204 

5.138 
5.072 
5.006 
4^1 

4.^5 
4.810 

V^ 

4.612 
4.546 
4480 

4.414 

4.348 
4.282 
4.216 
4.150 
4.083 

4.017 


Inches. 
6505 

6.423 

6.258 
6.176 
do94 

6.012 

i 

5.600 
5.518 

5.435 
5.352 
5.270 
5.187 
5.104 

5.022* 


Inches. 
7S0S 

7.707 
7.609 
7.510 
74" 
7.313 

7.214 

7.IIS 
7.016 
6.918 
6iE9 
6.720 

6.621 

6.522 
6422 

6.323 
6.224 
6.125 

6.026 


!l 


77^ 


78° 


11.562 
23.124 

46:248 
57.810 

69.373 


5- 
10 

15 
20 

25 
30 


Inches. 
OjOOI 

:^ 

•015 
.023 

.033 


Inches. 
OjOOI 

.014 
.021 

•031 


11.563 
23.126 

34.689 
46.252 

57.814 
69.377 




79** 


8o« 


11.564 
23.127 
34-691 


5 
10 

15 
20 

25 
30 


aooi 
.003 
.007 
.013 

X>20 
X>28 


0.001 
.018 

.026 





lax 



Digitized by 



GooqIc 



Tablk 23. 

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE oAyt 

[Deriiradon of table exptained on pp. liti-lYi] 



•8 . 




CO-ORDINATES OF DEVELOPED PARALLEL FOR-- 


lo' longitude. 


ao' longitude. 


30^ longitude. 


40^ longitude. 


so' longitude. 


lOkmgitode. 


X 


y 


X 


y 


X 


y 


X 


y 


X 


y 


X 


y 




mm. 


mm. 


mm. 


mm. 


tnm. 


mm. 


mm. 


mm. 


mm. 


tmm. 


$mm. 


fWM. 


mum. 


6^00' 




92.8 


X> 


185.5 


.0 


278.3 


.0 


371.I 


.0 


463.8 


.0 


556.6 


.0 


10 


§ 


92.8 


X> 


185.5 


.0 


278.3 


.0 


37I-I 


.0 


463.8 


.0 


556.6 


.0 


20 


92.8 


.0 


185.5 


JO 


278.3 


.0 


37 1. 1 


.0 


463.8 


.0 


556-6 


.0 


30 


92.8 


.0 


185.5 


.0 


278.3 


.0 


371.0 


.0 


463.8 


X> 


556.6 


.0 


40 


92.8 


.0 


185.5 


JO 


278.3 


.0 


371.0 


.0 


463.8 


JO 


556.6 


.0 


SO 


460!? 


92.8 


.0 


185.5 


.0 


278.3 


.0 


371-0 


.0 


463.7 


JO 


556.5 


.1 


I 00 




92.8 


.0 


185.5 


.0 


278.3 


.0 


37 1 -o 


.0 


463.7 


.1 


556.5 


,1 


10 


i^t3 


92.7 


.0 


185.5 


.0 


278.2 


.0 


371-0 


.0 


463.7 


.1 


5564 


.1 


20 


92.7 


.0 


185.5 


.0 


278.2 


.0 


371.0 


.0 


463.7 


.1 


5564 


.1 


30 


368^6 


92.7 


X) 


185.5 


.0 


278.2 


.0 


370.9 


JO 


463.7 


.1 


5564 


.1 


40 


92.7 


.0 


1854 


.0 


278.2 


JO 


370.9 


JO 


463-6 


.1 


556.3 


.1 


so 


460.7 


92.7 


.0 


185.4 


.0 


278.2 


X) 


370.9 


.1 


463.6 


.1 


556.3 


.2 


200 




92.7 


»o 


185.4 


.0 


278.1 


jO 


370.8 




463.6 


.1 


556.3 


.2 


10 


92.1 


92.7 


JO 


1854 


x> 


278.1 


.0 


370.8 




463.5 


.1 


556.2 


.2 


20 


184-3 


92.7 


.0 


185.4 


.0 


278.1 


.0 


370.8 




4634 


.1 


556.1 


.2 


30 


270.4 


92.7 


jO 


>85-3 


x> 


278.0 


.0 


370.7 




4634 


.1 


556.0 


.2 


40 


368.2 


92.7 


.0 


185.3 


x> 


278.0 







370.6 




463.3 


.2 


556.0 


.2 


so 


460.7 


92.7 


.0 


185.3 


.0 


278.0 




I 


370.6 




463.2 


.2 


555-9 


.2 


300 




92.6 


.0 


185.3 


.0 


277.9 






370.6 




463.2 


.2 


555-8 


.2 


10 


i 


92.6 


.0 


185.2 


.0 


277-9 
277.8 






370.5 




463.1 


.2 


555-7 


•3 


20 


92.6 


JO 


185.2 


.0 






3704 




463.0 


.2 


555.7 


.3 


30 


92.6 


.0 


185.2 


.0 


277.8 






370.4 




463.0 


.2 


555-5 


.3 


40 


92.6 


.0 


185.1 


.0 


277.7 






370.3 




462.8 


.2 


5554 


.3 


so 


460^7 


92.6 


.0 


185.1 


.0 


277-7 






370.2 




462.8 


.2 


555-4 


•3 


400 




92.5 


.0 


185.1 


.0 


277.6 






370.2 


.2 


462.7 


.2 


555-2 


-3 


10 


92.1 


92.5 


.0 


185.0 


.0 


277.6 






370.1 


.2 


462.6 


.2 


555-' 


.3 


20 


104.3 


92.5 


.0 


185.0 


.0 


277-S 






370.0 


.2 


462.5 


.2 


555.0 


•3 


30 


270.4 


92.5 


.0 


185.0 


.0 


277.4 






H 


.2 


4624 


.2 


l^ 


.3 


40 


368.0 


92.5 


JO 


184.9 


.0 


277-4 






.2 


462.3 


•3 


-4 


so 


460.7 


92.4 


.0 


184.9 


x> 


2773 






369^ 


.2 


462.2 


•3 


554.6 


4 


500 




92.4 


.0 


'H 


.0 


277.3 






369-7 


.2 


462.1 


.3 


554.5 


4 


10 


104-3 


92.4 


.0 


184.8 


.1 


277.2 






369-6 


.2 


462.0 


.3 


554.3 


4 


20 


924 


.0 


184.7 


.1 


277.1 






369-3 


.2 


461.8 


.3 


554.2 


4 


30 


276.4 


92.3 


.0 


184.7 




277.0 






369-4 


.2 


461.7 


.3 


554.0 


4 


40 


368.6 


92.3 


.0 


184.6 


.1 


276.9 






369-* 


.2 


461.6 


.3 


553-9 


.5 


so 


460.7 


92.3 


.0 


184.6 


.1 


276.9 






369-2 


.2 


4614 


•3 


553-7 


•S 


600 




92.3 


.0 


184.5 




276.8 






369.0 


.2 


461.3 


.4 


553-6 


-5 


10 


itj.3 


92.2 


.0 


184.5 




276.7 






^■t 


.2 


461.2 


4 


5534 


•5 


20 


92.2 


.0 


184.4 


.1 


276.6 






.2 


461.0 


4 


553-2 


.5 


30 


276.4 


92.2 


.0 


184.3 




276.5 






3«-7 


.2 


460.8 


4 


553-0 


i 


40 


368.6 


92.1 


.0 


184.3 


.1 


276.4 






368.6 


.2 


460.7 


4 


552.8 


50 


460.7 


92.1 


.0 


184.2 


.1 


276.3 






368.4 


.2 


460.6 


4 


552.7 


.6 


700 




92.1 


.0 


184.2 


,1 


276.2 






3^-3 


•3 


4604 


4 


552-5 


.6 


10 


184.3 


92.0 


.0 


184.1 


.1 


276.1 






3ff-* 


.3 


46a2 


4 


552.2 


.6 


20 


92.0 


.0 


184.0 


.1 


276.0 






368.0 


•3 


46ao 


4 


552.1 


.6 


30 


276.4 


92.0 


.0 


184.0 


.1 


275-9 
275-8 






II 


•3 


459.9 


4 


551.9 


.6 


40 


368.6 


91.9 


.0 


11^ 


.1 






-3 


459.7 


4 


551.6 


.6 


so 


460.7 


91.9 


.0 


•* 


275-7 


.1 


367.6 


•3 


459-5 


•5 


55M 


.7 


800 




91.9 


.0 


183-7 


.1 


275.6 


.2 


367.5 


•3 


459.4 


•5 


551.2 


.7 


ft M 1 VUMAH 1 A M 


— 








^"^^ 




"" 






^^^ 


3iTizea D 


7^- 







122 



Table 23. 
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TV^hv- 
[DerivatioD of table explained on pp. liii-lirL] 



•8 . 


Meridional dit- 
unces from 
even degree 
parallels. 




CO-ORDINATES OF 


DEVELOPED PARALLEL FOR— 




i</ longitude. 


»of longitude. 


3</ longitude. 


40^ longitude. 


50^ longitude. 


xo longitude. 


X 


y 


X 


y 


X 


y 


X 


y 


X 


y 


» 


y 




mm. 


mm. 


mm. 


mm. 


mm. 


mm. 


mm. 


mm. 


mm. 


mm. 


mm. 


MM. 


mm. 


8^' 

10 
20 

40 

so 


184.3 
460^ 


91.Q 
91.8 
91.8 
91.8 
91.7 
91.7 


.0 
.0 
.0 
.0 
.0 
.0 


183.7 

183.6 
183.5 
183.4 
183.3 


•' 


275.6 
275.5 
275.4 
275.2 
275.1 
275.0 


.2 
.2 
.2 
.2 
.2 
.2 


3^-5 
367.3 
367.2 
367.0 
366.8 
366.7 


•3 
•3 
•3 

:^ 

•3 


•459.4 

459-2 

m 

458.6 

4S84 




551.2 
551.0 
550.7 
550.5 
550.3 
550.0 


•7 


900 
10 
20 

30 
40 

50 


184.3 

368.i 
460.8 


91.6 
91.6 
91.5 
91.5 
91.5 
91.4 


.0 
•P 
.0 
.0 
.0 

.0 


183.3 
183.2 
183.1 
183/3 
182.9 
182.8 


.1 


274.Q 
274.8 
274.6 

274.5 
2744 
274.2 


.2 
.2 
.2 
.2 
.2 
.2 


366.4 
366.2 
366.0 

365.6 


•3 
.3 
.3 
•3 
4 
4 


458.2 
458.0 
457-7 
457.5 
457.3 
457.0 


.6 


549.8 

549.5 
5492 

548.5 


.8 
.8 
.8 
.8 
.8 
.8 


1000 
10 
20 
30 
40 

50 


184-3 
276.5 


914 
913 
913 
91.2 
91.2 
9I.I 


.0 

.0 
.0 
.0 
.0 
.0 


182.7 
182.6 
182.5 
182.4 
182.3 
182.2 


•« 


274.1 
274.0 
273.8 
273.7 

273-5 
2734 


.2 
.2 
.2 
.2 
.2 
.2 


365.5 
365.3 
365.1 
364.9 
364.7 
364.5 


4 
.4 
4 
4 
4 
4 


456.8 
456.6 
456.4 
456.1 
455.9 
455-6 


.6 
.6 
.6 
.6 
.6 
.6 


548.2 
547.9 

547-6 
547.3 
547.0 
546.7 


.8 
.8 
.9 
-9 
.9 
.9 


II 00 
10 
20 

30 
40 

50 


184^3 
276.5 


9I.I 
91.0 
91.0 
90.9 
90.0 
90.8 


.0 
.0 
.0 

.0 

.0 

.0 


182.1 
182.0 
1 81. 9 
181.8 
181.7 
181.6 


.1 


273.2 

273.1 
272.9 

272.7 
272.6 
272.4 


.2 
.2 
.2 
.2 
.2 
.2 


364.3 
364.1 

363.6 
3634 
363.2 


•4 
4 
4 
4 
4 
.4 


455-4 
455-» 
454.8 
454-6 

454.3 
454.0 


.6 
.6 
.6 

.7 


546.4 
546.1 

545-8 
545-5 
545-2 
544.8 


•9 
.9 
.9 

1.0 
1.0 


1200 

10 
20 

30 
40 

5P 


3p*.7 
460.9 


90.8 
90.7 
90.6 
90.6 

90.5 
90.5 


.0 
.0 

.0 
.0 
.0 
.0 


181.5 
181.4 
181.3 
181. 1 
181.0 
180.9 


•I 


272.2 
272.1 
271.9 
271.7 
271.6 
2714 


.2 
.2 
.2 

•3 
•3 
•3 


363.0 
362.8 
362.5 
362.3 
362.1 
361.8 


4 
4 
4 


453.8 
4534 
453-2 
452.8 
452.6 
452.3 


,7 


544.5 
544-1 
543.8 

543-4 
543-1 
542.8 


1.0 
1.0 

I.O 

1.0 
1.0 
I.I 


1300 
10 
20 

30 
40 

50 


368.8 
461.0 


904 
903 
90.3 
90.2 
90.2 
90. 1 


.0 
.0 
.0 
.0 
.0 

.0 


180.8 
180.7 
180.6 
180.4 
180.3 
180.2 


.1 


271.2 
271.0 
270.8 
270.6 
270.4 
270.3 


•3 
•3 
•3 

.3 

•3 
•3 


361.6 
3614 
361.1 
360.8 
360.6 
3604 




452.0 

451.7 
4514 
451.0 
450.8 
450.4 


.7 

% 

.8 
.8 


5424 
542.0 

541.7 
541.3 
540.9 
540.5 


I.I 
I.I 
I.I 
I.I 
I.I 
I.I 


1400 
10 
20 

30 
40 

SO 


276.6 
368.8 
461.0 


90.0 

89.8 
89.7 


.0 
.0 

.0 

.0 
.0 

JO 


180.1 

179? 
179.8 
179.7 
179.5 
1794 


• I 


270.1 
269.9 
269.7 
269.5 
269.3 
269.1 


•3 
•3 
•3 
•3 
•3 
•3 


360.1 
359.8 

359-6 
359-3 

'3i 




450.2 
449.8 

449.5 
448.5 


.8 
.8 
.8 
.8 
.8 
.8 


54a2 
539.8 
5394 

538.2 


I.I 
1.2 
1.2 
1.2 
1.2 
1.2 


1500 
10 

20 
30 
40 
SO 


1844 
276.6 
368.8 
461.0 


89.6 
89.6 
89.5 
89.4 
89.3 
89.3 


.0 
.0 
.0 

.0 

.0 

.0 


179.3 
179.1 

178.7 
178.5 


•I 


268.9 
268.7 
268.5 
268.3 
268.0 
267.8 


•3 
•3 
•3 
•3 
•3 
•3 


358.5 
358.2 
358.0 
357.7 
3574 
357.1 


•5 

:l 

.6 
.6 
.6 


448.2 
447.8 
4474 
447.1 
446.7 
4464 


.8 
.8 
.8 
.9 
•9 
.9 


537.8 
5374 
536.9 
536.5 
536.0 

535.6 


1.2 
1.2 
1.2 
1.2 
1.3 
1-3 


1600 




89.2 


.0 


1784 


.1 


267.6 


•3 


356.8 


.6 


446.0 


.9 


535-2 


1.3 



Smithsonian Tables. 



123 



TAnK23. 

CO-ORDINATBS FOR PROJECTION OF MAPS. SCALE jv^BWW' 

[DtriTitko of tabk czphiaedon pp^ ffiMvL] 




CO-ORDINATES OF DEVELOPED PARALLEL FOR— 



■</ loQghnd*. 



ao' loi^itods. 






4V WHUIiiwc* 



Sf/loaptadt. 



i6«bor 

10 
20 

30 
40 
50 

1700 
10 
20 

30 
40 
SO 

1800 
10 
ao 
30 
40 
50 

1900 
10 
20 
30 
40 
50 

2000 
10 
20 
30 
40 
50 

21 00 

10 
20 
30 
40 
50 

22 00 
10 
20 
30 
40 
50 

2300 
10 
20 
30 
40 
50 

2400 



02.2 

368.9 
461. 1 



368.9 
461.2 



02.2 

276.7 
369.0 
461.2 



in 

369-0 
461.3 



92.3 

276S 

369-1 
461.4 



184.6 
276.8 
369-1 
461.4 



89.0 
89.0 
88.9 

88i 

88.7 
88.7 
88.6 
88.5 
884 
88.3 

88.3 
88.2 
88.1 
88x> 
87.Q 
87i 

87.6 
87.6 
87.5 
874 
87.3 

87.2 
87.1 
87.0 
86.9 
86i 
86.7 

86.6 
86.5 
86.4 
86.3 
86.2 
86.1 

86.0 

in 

III 
85.5 

85.4 

85.3 
85.2 
85.1 
85.0 
84.9 

84.8 



784 
78.2 
78.1 
77.9 

77.6 

77.5 
77.3 
77-* 

7618 
76.7 

^P 
76.0 
75.8 
75-6 

75-5 
75-3 
75-1 

in 

74.6 

74.4 
74.2 

74X) 
7>8 
73-7 
73-5 

73.3 
73-1 
72.9 

7^7 
7^S 
72-3 

72.1 
71.9 
71.7 
71.5 
71.3 
71.1 

70.9 
70.7 
70.4 
7a 2 
70.0 
69.8 

169.6 



267.6 
2674 
267.2 
266.9 
266.7 
266.5 

266.2 
26610 



265.7 
265.5 
265.2 
265.0 

264.8 

264.5 
264.2 
264.0 

263.7 
263.5 

263.2 
263.0 
262.7 
262.4 
262.1 
261.9 

261.6 
261.3 
261/) 
260.8 
26a5 
260.2 

259-9 
259.6 

259.3 

2584 

258.2 
257.8 
257.6 
257.2 

256.6 

256.3 
256.0 

255-7 

255-3 
255.0 

254.7 
254.4 



35^ 
356.5 
356.2 

355'? 
355.6 

355.3 

355-0 
354-6 

354.3 
354.0 

353.6 
353.3 

353^ 
352.6 

352.3 
352-0 
35«.6 
35«.3 

35«-o 
350.6 
350.2 
349.9 
349-5 
349-2 

348.8 

3484 
348.0 

347.7 
347.3 
346.9 

346.6 
346.2 
345.8 
3454 
345-0 
344-6 

344.2 
343.8 
3434 
343.0 
342.6 
342.2 

341.8 
341.3 
340.9 
340.4 
340.0 

339-6 
339.2 



446.0 
445-6 
445.2 
444.8 



444.1 

443-7 
443.3 
442.9 
442.5 
442/> 
441.6 

441.2 
440-8 



439.6 
439.1 

438-7 
438.2 
437.8 
4374 
436.9 
4364 

436.0 
435-6 
435.0 
434.6 
434.2 
433.6 

433.2 
432.7 
432.2 

431.7 
431.2 
430.8 

430-2 
429.8 

:^ 

428.2 
427.7 

426.6 
426.1 
425.6 

425.0 

424.5 
424.0 



535.2 
534-7 
534.3 
533-8 

533.3 
532.9 

5324 
532.0 

531.5 
531.0 

530.5 
530.0 

529.5 
520.0 

545 
528.0 

527.5 
526.9 

5264 
525.9 
525-4 
524.8 

524.3 
523.7 

523.2 
522.7 
522.1 
521.5 

S21J0 
5204 

519-8 

518.6 
518.0 

517.5 
516.9 

516.3 

5' 5.7 
515.1 

514.5 
513.8 
513.2 

512.6 
512X) 

5".3 
510.7 
510 1 
5094 

508.7 



«.3 
«.3 
1.3 
1.3 
"3 
14 

M 
M 
14 
14 
1.4 
14 

M 
14 
i-S 
«.5 
IS 
IS 

"S 
"S 
i-S 
IS 

\i 

1.6 
1.6 
1.6 
1.6 
1.6 
1.6 

1.6 
1.6 
1.6 
1.7 
1.7 
1.7 

1.7 
1-7 
1-7 
1.7 
1.7 
1.7 

\i 

1.8 
1.8 
1.8 
1.8 

1.8 



Ljouyit 



Smithsoniaii Tables. 



Digitized by 



124 



Tamx 28. 
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ttAtt- 

[Derivation of taUe explaiiwd on pp. liii-lvL] 



24^00' 
10 
20 

30 
40 

SO 

2500 
10 
20 

30 
40 
SO 

2600 
10 
20 

30 
40 

50 

2700 
10 
20 
30 
40 
50 

2800 
10 
20 
30 
40 
50 

2900 
10 
20 
30 
40 
50 

3000 
10 
20 
30 
40 
SO 

3100 
10 
20 

30 

40 

50 
3200 




184.6 
276.9 
369-2 
461.5 



277-0 

Si 



92.3 
184.7 
277-0 
369*3 
461.0 

02.4 
184.7 
277.0 

02.4 

184.7 
277.1 

461^ 



184.8 
277.1 

369-5 
461.9 



024 
184.8 

369.6 
462.0 



COORDINATES OF DEVELOPED PARALLEL FOR— 



lo' lonfitnde. 



84.8 
84.6 

84.4 
84.2 

84.1 
84.0 

111 
Ilk 

83.4 
83.3 
83.2 
83.1 
82.9 

82i 

82.7 
82.6 
82.5 

82.3 

82.2 
82.1 

82.0 

8Z.8 
81.7 
81.6 
81.5 
81.3 

8z.2 

8I.I 

8a9 
8oi 

80.5 

8a4 
80.3 
8ai 
8ao 
79-9 
79-7 

79.6 
79-4 
79-3 
79.2 
79.0 
78.9 

78.8 



9of lonSitniM. 



169.6 
1694 
169.1 
168.9 
168.7 
168.5 

168.3 
168.0 
167.8 
167.6 

'67.3 
167.I 

i66l9 
166.6 
166.4 
166.1 
165.9 
165.7 

165.4 
165.2 

164.9 
X64.7 

1644 
164.2 

163.9 
163.7 
163.4 
163.2 
162.9 
162.7 

162.4 
162.1 
1 61.9 
161.6 
161.3 
161.Z 

i6a8 
i6a5 
i6a3 
i6ao 
159-7 
159.5 

159.2 

158.6 

158.3 

1 58. 1 

157.8 
157.5 



30^ longitode. 



Smithsonian Tables. 



2544 
254.0 

253-7 
253-4 
253-0 
252.7 

252.4 
252.0 
251.7 
251-3 

25IX> 

25a6 

250-3 
249.9 
249.6 

248^8 
248.5 

248.1 
247.8 
247.4 
247-0 
246.7 
246.3 

245,9 

245-5 
245.1 
244.7 
244.4 
244X) 

243.6 
243-2 
242.8 
242.4 
242.0 
241.6 

241.2 
240.8 
240.4 
240.0 
239.6 
239.2 

238.8 
238.4 
2379 
237.5 
237.1 
2367 

236.2 



"5 



40/ longitude. 



332;* 



337 

337-4 

337.0 

336.5 
336.0 

335-6 
335-J 
334.6 
334.2 

333.7 
333-2 
332-8 
332.3 
331.8 
331-3 

330.8 
330.4 
329.8 
320.4 
349 
328.4 

327.9 

r^ 

326.3 
325.8 

325-3 

324.8 

324.3 
323.8 
323.2 
322.7 
322.2 

321.6 
321.1 
320.6 
320.0 

3^9-4 
318.9 

318.4 
317.8 
3*7.2 
316.7 
316.1 
3156 

3150 



so' longitude. 



424.0 

4234 
422.8 
422.3 
421.8 
421.2 

42a6 
420.0 

419.5 
418.9 
418.3 
417.8 

416.6 
416.0 

415-4 
414.8 
414.2 

413.6 
41.^.0 
412.3 
411.7 
411. 1 

410.4 
409.8 

4^6 
407.9 

406.0 
405.4 
404.7 
404.0 

403.4 
402.7 

402.0 
401.4 
400.7 

4oao 



398.0 

396.6 
395-8 
395-2 
3944 

393.8 



«-3 
»-3 
i-3 
1.3 
1-3 
1.3 

1-3 
1.3 
1.3 
1.3 
1.3 
1-3 

1-3 
1-3 
1-3 
1-3 
14 
1-4 

14 
14 
1.4 
1.4 
M 
1.4 

14 
14 
1.4 
M 
14 
14 

14 
14 
14 
1.4 
14 
X.5 

1-5 
1-5 
1-5 
'.5 
1.5 
1.5 

>.5 
1-5 
1-5 
1-5 
1-5 
'5 

i-S 



508.7 
508.1 

^A 
506.8 

506.1 
5054 

504.8 
504.1 

5034 
502.7 
502.0 
S01.3 

500.6 



488x> 



487.2 
486.4 

4f5.0 
484.8 
484.0 
483.2 

482.5 
481.6 
480.8 
48ao 
479.2 
478.4 

477.5 
476.7 
475.9 
475.0 
474.2 
473.3 

472.5 



.8 
.8 
.8 
.8 
.8 
•9 

•9 
.9 
-9 
-9 
-9 
•9 

•9 
.9 
•9 
-9 
2.0 

2J0 

2X> 
2J0 
2J0 
2X} 
2jO 
2J0 

2.0 
2.0 
2.0 
2.0 
2.0 
2.1 

2.1 
2.1 
2.1 
2.1 
2.1 
2.1 

2.1 
2.1 
2.1 
2.1 
2.1 
2.1 

2.1 
2.1 
2.2 
2.2 
2.2 
2.2 

2.2 



^igilizedby^OQ gfe 



Table 23. 

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE TinAnnr- 

[DeriYttion of taUe eiq>]aixied on pp. liii-lvL] 







COORDINATES OF 


DEVELOPED PARALLEL FOR— | 


•8* 


^11 












II 


IV IOQ2|it1Kl6. 


ac/ loDgitiide. 


y/ lon^tude. 


4X/ lonxitade. 


5c/ longitude. 


1° longitude. 


It 


jjSIs, 
















































'x 


y 


X 


y 


X 


y 


z 


y 


X 


y 


X 


y 




mm. 


mm. 


mm. 




mm. 


mm. 


mm. 


mm. 


mm. 




mm. 




mm. 


32*»oo' 




7f-! 




157.5 


.2 


236.2 




315.0 


1.0 


393.8 


1.5 


472.5 
471.6 


2.2 


10 


^m 


78.6 


.1 


157.2 


.2 


235.8 




3144 


1.0 


393.0 


1.5 


2.2 


20 


78.S 


.1 




.2 


235-4 




313.8 


1.0 


392.3 

391.6 


1-5 


470.8 


2.2 


30 


277.2 


7|-3 


.1 


156.0 


.2 


235.0 




313-3 


1.0 


1-5 


469.9 


2.2 


40 


369.6 


78.2 


.1 


156.3 


.2 


234.5 




312.7 


1.0 


390.8 


1.5 


X 


2.2 


SO 


462.0 


78.0 




156.0 


.2 


234.1 




312.1 


1.0 


390.1 


1-5 


2.2 


33 00 




77-9 


,1 


155.8 


.2 


233.6 


j6 


311.5 


I.O 


Si 


1-5 


467.3 


2.2 


10 


'\& 


77-7 


.1 


155.5 


.2 


233.2 


.6 


310-9 


1.0 


1.5 


4664 


2.2 


20 


77.6 




155.2 


.2 


232.7 


.6 


310-3 


1.0 


3«7-9 


\i 


465.5 


2.2 


30 


277.3 


77-4 


.1 


154.9 


.2 


232.3 


.6 


309-7 


1.0 


^l-^ 


464.6 


2.2 


40 


3697 


77-3 




154.6 


.2 


231.9 


.6 


^:l 


1.0 


3864 


1.6 


s 


2.2 


50 


462.1 


771 


•I 


154.3 


.2 


231.4 


.6 


1.0 


385-7 


1.6 


2.2 


3400 




7?i 


,1 


154.0 


.3 


231.0 


.6 


308.0 


1.0 


^4.9 


1.6 


461.9 


2.3 


10 


184-9 


7&8 


.1 


153-7 


.3 


230.5 


.6 


3074 


1.0 


At.2 


1.6 


461.0 


2.3 


20 


76.7 


.1 


153-4 


•3 


230.0 


.6 


306.7 


1.0 


383-4 


1.6 


460.1 


2.3 


30 


277-3 


76.S 


.1 


i53-i 


•3 


229.6 


.6 


306.1 


1.0 


382^ 


1.6 


450.2 
458.3 


2.3 


40 


369-7 


76.4 


.1 


152.8 


•3 


22Q.1 
228.7 


.6 


3055 


1.0 


381.9 


1.6 


2.3 


SO 


462.1 


76.2 


•' 


152-4 


•3 


.6 


304-9 


1.0 


381.1 


1.6 


457.3 


2.3 


3S00 




76.1 




1 52.1 


•3 


228.2 


.6 


304.3 


1.0 


3804 


1.6 


456.4 


2.3 


10 


184.9 


"1 




151-8 


.3 


227.8 


.6 


3037 


1.0 


fy^l 


1.6 


455-5 
454.6 


2.3 


20 


.1 


151.5 


.3 


I7d 


.6 


303-0 


1.0 


1.6 


2.3 


30 


^7Jii 


75.6 


.1 


151.2 


-3 


.6 


302.4 


1.0 


378.0 


1.6 


453-6 


2.3 


40 


369-8 


75-4 


.1 


150.9 


.3 


226.4 


.6 


301.8 


1.0 


377-2 


1.6 


452.7 


2-3 


SO 


462.2 


75-3 


•' 


I5a6 


.3 


225.9 


.6 


301.2 


1.0 


376.5 


1.6 


451.8 


2.3 


3600 




75.1 


,1 


150.3 


•3 


225.4 


.6 


300.6 


1.0 


375.7 


1.6 


450.8 


2.3 


10 


i84;9 


75.0 




150.0 


•3 


224.9 


.6 


299.9 


1.0 


374.9 


1.6 


449-9 
448.9 


23 


20 


74.8 




149-6 


•3 


224.5 


.6 


1^:1 


1.0 


374.1 


1.6 


2.3 


30 


277.4 


74.7 


.1 


149-3 


•3 


224.0 


.6 


1.0 


373.3 


1.6 


448.0 


2.3 


40 


369-8 


74.5 


.1 


I4Q.0 
148.7 


.3 


223.5 


.6 


298.0 


1.0 


372.5 


1.6 


447.0 


2.3 


50 


462.3 


74.3 


•* 


.3 


223.0 


.6 


297.4 


1.0 


371.7 


1.6 


446.0 


2.3 


3700 




74.2 


.1 


148.4 


•3 


222.5 


.6 


296.7 


1.0 


370.9 


1.6 


445.1 


2.3 


10 


185.0 


74.0 


.1 


148.0 


.3 


222.1 


.6 


296.1 


1.0 


370.1 


1.6 


444-1 


2.3 


20 


73.8 


.1 


147-7 


.3 


221.6 


.6 


295.4 
294.8 


1.0 


a 


1.6 


443.1 


2.3 


30 


277.4 


73.7 


.1 


147.4 


.3 


221. r 


.6 


1.0 


1.6 


442.1 


2.3 


40 


3699 


73-5 


.1 


X47.1 


.3 


22a6 


.6 


294.1 


1.0 


3f7-6 


1.6 


441-2 


2.4 


y> 


462.4 


734 


•» 


146.7 


.3 


22a I 


.6 


293.4 


1.0 


366.8 


1.6 


440.2 


2.4 


3800 




732 


,j 


146.4 


•3 


219.6 


.6 


292.8 


1.0 


366.0 


1.6 


439-2 
438.2 


24 


10 


185.0 


73-0 


.Z 


146.1 


•3 


210.1 
218.6 


.6 


292.1 


1.0 


365.1 


1.6 


2.4 


20 


72-9 




145.7 


•3 


.6 


291.4 


I.I 


364-3 


1.6 


437-2 


24 


30 


277-S 


72-7 


.1 


145-4 


•3 


218.Z 


.6 


290.8 


I.I 


P. 


1.6 


436.2 


24 


40 


370.0 


72.5 


.1 


145.1 


•3 


217.6 


.6 


200.1 
289.4 


I.I 


1.6 


435.2 


24 


so 


462.5 


72.4 


•> 


144.7 


•3 


217.1 


.6 


I.I 


361.8 


1.6 


434.2 


2.4 


3900 




72.2 


,1 


1444 


.3 


216.6 


.6 


288.8 


I.I 


361.0 


1-7 


433.1 


24 


10 


185.0 


72.0 


.1 


144.0 


.3 


216.1 


.6 


288.1 


I.I 


360.1 


1.7 


432.1 


24 


20 


71.8 


.1 


143.7 


•3 


215.6 


.6 


287.4 


I.I 


359-2 
3584 


1.7 


431.1 


24 


30 


277.5 


71-7 


.1 


143-4 


.3 


215.0 


.6 


^•7 


I.I 


1-7 


430.1 


24 


40 


370.0 


71-5 


.1 


143.0 


.3 


214.5 


.6 


286.0 


I.I 


I'^i 


1.7 


429.0 


2.4 


50 


462.6 


71-3 




142.7 


•3 


214.0 


.6 


285.3 


I.I 


1.7 


428.0 


24 


4000 




71.2 


.1 


142.3 


•3 


213.5 


.6 


284.6 


I.I 


355-8 


1.7 


427.0 


24 



Smithsonian Taslcs. 



126 



Digitized by V^OO^ ItT 



Table 23. 
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE imAnnF- 
[DerimdoD of table explained on ppb liii-lvi.] 







CX>-ORDINATES OF DEVELOPED PARALLEL FOR— | 


•s . 


Meridional die- 
ttncea from 
even degree 
parallels. 






11 


lo' longitode. 


ao' longitude. 


so' longitude. 


40^ longitude. 


so' longitude. 


|0 longitude. 




























z 


1 


z 


1 


X 


1 


X 


y 


X 


y 


X 


J 




mm. 


mm 


mm. 


mm. 


mm. 


M0f. 


mm. 


MM. 


mm. 


mm* 


mm. 


mm. 


mm. 


4cA)0' 




71.2 


.1 


142.3 


•3 


2135 


.6 


284.6 


I.l 


355-8 


>.7 


427.0 


24 


lO 


"'rf^' 


71.0 


.1 


142.0 


•3 


212.9 


.6 


283.9 


l.I 


354.9 


1-7 


425-9 


24 


20 


70.8 


.1 


I4I.6 


.3 


212.4 


.6 


283.2 


I.I 


354.0 


1.7 


424.0 
423.1 


24 


30 


277.6 


70.6 


.1 


I4I.3 


•3 


21 1.9 


.6 


282.6 


I.I 


353-2 


1-7 


24 


40 


370.1 


70.5 


.1 


140.9 


•3 


21 1.4 


.6 


281.8 


I.l 


352.3 


1.7 


422.8 


24 


SO 


462.6 


70.3 


•I 


140.6 


•3 


210.8 


.6 


28I.I 


I.I 


3514 


1-7 


421.7 


2.4 


41 00 




70.1 


.1 


140.2 


•3 


210.3 
209.8 


.6 


2804 


l.I 


350.6 


1.7 


420.7 


24 


10 


ifil 


i 




139.9 


•3 


.6 


279.7 


I.l 


^l 


1.7 


410.6 
418.5 


24 


20 


.1 


139.5 


•3 


208.7 


.6 


279.0 
278.3 
277.6 


l.I 


1.7 


24 


30 


277.6 


69.6 


.1 


'32-2 


•3 


.6 


l.I 


347.9 


1.7 


417.5 


24 


40 


370.2 


69.4 


.1 


138.8 


.3 


208.2 


.6 


l.I 


347.0 


1.7 


4164 


24 


50 


462.7 


69.2 


•' 


138.4 


•3 


207.7 


.6 


276.9 


l.I 


346.1 


1.7 


415.3 


24 


4200 




69.0 

i-9 


,1 


138.1 


•3 


207.1 


.6 


276.2 


l.I 


345-2 


1-7 


414.2 


24 


10 


02.6 
I85.I 


.1 


137.7 


•3 


206.6 


.6 


275-4 


l.I 


344-3 


1-7 


413.2 


24 


20 


^•7 


.1 


137.4 


•3 


206.0 


.6 


274.7 


l.I 


3434 


1-7 


41 2.1 


2.4 


30 


277-7 


^•5 


.1 


137.0 


•3 


205.5 


.6 


274.0 


I.l 


3424 


1-7 


410.9 


24 


40 


370.2 


^•3 


.1 


136.6 


•3 


204.9 


.6 


273-2 


I.l 


340.6 


1-7 


'^% 


2.4 


SO 


462.8 


68.1 


•> 


136.3 


•3 


204.4 


.6 


272-5 


I.l 


1.7 


24 


4300 




68.0 




135.9 


•3 


203.8 


.6 


271.8 


l.I 


f^l 


x-7 


407.7 


24 


10 


02.6 
185.2 


67.8 


.1 


135-5 


.3 


203.3 


.6 


271.0 


I.l 


1-7 


406.6 


2.4 


20 


67.6 


.1 


1352 


.3 


202.7 


.6 


268.8 


l.I 


337-9 


«-7 


405.5 


24 


30 


277.7 


67.4 


.1 


134.8 


•3 


202.2 


.6 


l.I 


337.0 


1-7 


404.4 


24 


40 


370.3 


67.2 


.1 


134.4 


•3 


201.6 


.6 


l.I 


336-0 


1-7 


403.3 


24 


SO 


462.9 


67.0 


•' 


134.0 


•3 


201. X 


.6 


26S.1 


I.l 


335-1 


1-7 


402.1 


24 


4400 




66.8 


,1 


133.7 


•3 


200.5 


.6 


2674 


l.I 


334.2 


1.7 


401.0 


24 


10 


Q2.6 
185.2 


66.6 


.1 


133.3 


.3 


200.0 


.6 


266.6 


I.l 


333-2 


1-7 


m 


24 


20 


66.5 


.1 


132.9 


.3 


;p.i 


.6 


265.8 


1.1 


332.3 


1-7 


24 


30 


277.8 


66.3 


.1 


132.6 


.3 


.6 


265.1 


I.l 


33 '4 


1-7 


397-7 


24 


40 


3704 


66.1 


.1 


132.2 


.3 


198-3 


.6 


264.4 


l.I 


330-4 


1-7 


396-5 


24 


50 


463.0 


65.9 


•I 


131.8 


•3 


197-7 


.6 


263.6 


l.I 


329.5 


1-7 


3954 


24 


45 00 




65.7 


,1 


131.4 


•3 


197.1 


.6 


262.8 


l.I 


328.6 


1.7 


394-3 


24 


10 


92.6 
185.2 


65.5 


.1 


131.0 


•3 


196.6 


.6 


262.1 


l.I 


327.6 


1.7 


393-1 


2.4 


20 


65.3 


.1 


130.6 


.3 


196.0 


.6 


261.3 


l.I 


326.6 


1-7 


39»-9 


24 


30 


277.8 


65.1 


.1 


130.3 


.3 


195-4 


.6 


260.5 
2598 


l.I 


325.6 


1.7 




2.4 


40 


370.4 


64.9 


.1 


129.9 


•3 


194.8 


.6 


l.I 


324-7 


1-7 


309.6 


24 


50 


463^ 


64.7 


•* 


129.5 


.3 


194.2 


.6 


259.0 


l.I 


323.7 


1.7 


3884 


24 


4600 




64.6 


,1 


I2Q.I 
128.7 


.3 


193.6 


.6 


258.2 


I.l 


322.8 


1.7 


357-3 


24 


10 


02.6 

185.3 


64.4 


.1 


.3 


193.^ 


.6 


2574 


I.l 


321.8 


1.7 


386.2 


24 


20 


64.2 




128.3 


.3 


192.5 


.6 


256.6 


l.I 


320.8 


1.7 


3?S-o 


24 


30 


277.9 


^•2 


.1 


127.0 


•3 


191.9 


.6 


255-9 


I.l 


319.8 
318.9 


1-7 


383-8 


24 


40 


370.S 


63.8 


.1 


127.6 


•3 


i9'.3 


.6 


255-1 


I.l 


17 


382.7 


24 


SO 


463.1 


63-6 


•' 


127.2 


•3 


190.7 


.6 


254-3 


l.I 


317.9 


1-7 


381-5 


24 


4700 




63.4 




126.8 


•3 


100. 1 


.6 


253-5 


l.I 


316.9 


1-7 


380.3 


24 


10 


92.6 

185-3 


63.2 




126.4 


.3 


^§2-5 


.6 


252-7 


l.I 


315-9 


1-7 


379-1 


24 


20 


$3-2 




126.0 


•3 


'55-9 


.6 


251.9 


l.I 


3»4.9 


1-7 


377-9 


24 


30 


277.9 


62.8 




125.6 


.3 


188.3 
187.8 


.6 


251.1 


l.I 


313-9 


1-7 


376.7 


2.4 


40 


370.6 


62.6 




125.2 


.3 


.6 


250.4 


I.l 


313.0 


1-7 


375-5 


24 


SO 


463.2 


62.4 


•* 


124.8 


•3 


187.2 


.6 


249.6 


l.I 


312.0 


1.7 


374.3 


24 


4800 




62.2 


.1 


124.4 


.3 


186.6 


.6 


248.8 


l.I 


311.0 


1.7 


3731 


24 



8«rrH«0MiAN Tablcs. 



127 



TAMX23. 

CO*ORDINATBS FOR PROJBCTION OF MAPS. SCALB nAvr 

[D«ivatlM of labk czphiaed on pp. Hii-M.] 




CO-ORDINATSS OF DKVSXX)PSD PARALLEL FOR— 



tylo^todo. 



oe'loivltade. 



So'lotvitade. 



4o'kM«itade. 



syioogitade. 



lO 

20 

30 
40 

so 

4900 
10 
20 

30 
40 
50 

5000 
10 
20 

3Q 
40 
SO 

5100 
10 
20 
30 
40 
SO 

poo 
10 

30 
30 
40 

SO 

53 00 
10 

30 
30 
40 

SO 

54 00 
10 

30 
30 
40 
50 

55 00 
10 
20 
30 
40 
50 

5600 



18C3 
278.0 
370.6 
463.3 



02.7 

18-54 
278.0 

370.7 
4634 



02.7 
I8C4 
278.1 
370.8 
4634 



02.7 

1854 
278.1 

463.6 



02.7 
1854 
278.2 



i8cs 
278.2 
371.0 
463.7 



02.8 
i8cs 
278.3 

463.8 



02.8 

I85.S 

278.3 

463.8 



62.2 
62.0 
61.8 
61.6 
614 
61.2 

61JO 
60.8 
6a6 
604 
6a2 
6ao 

59.8 

59.S 
S9-3 

- -9 
58-7 

S^S 
55-3 
58.1 

57.9 
57.6 
574 

57-2 

52-2 

5618 
5616 
564 
56.2 

56.0 
55.7 
555 
553 
5S-» 
549 

54.6 

54.4 
54.2 
54.0 

53.8 
53-6 

53-3 
53.1 
52.9 
52.7 
52.4 
52.2 

52.0 



1244 
124.0 
123.6 
123.2 
122.8 
1224 

122.0 
121.6 
121.1 
I2a7 
I2a3 
1 19.9 

1 19.5 
iiai 
1 18.7 
1 18.2 
117.8 
1 174 

1 17.0 

1 16.6 
11612 

115.7 

"5-3 
1 14.9 

114.5 
1 14.0 
113.6 

1 13.2 
112.8 

1 1 2.3 

1 1 1.9 
111.5 
111.0 
iia6 
iia2 
109.7 

100.3 
108.9 
1084 
108.0 
107.5 
107.1 

106.7 
106.2 
105.8 
105-3 
104.9 
104.4 

104.0 



86.6 
86.0 
854 
84.7 
84.1 

83.5 

[82.9 
82.3 
81.7 
81.1 
8a5 
79-9 

in 

78.0 

7^ 

76.1 

755 
74.9 
74.2 

73-6 
73.0 
72.3 

71.7 
71.1 



67.9 
67.2 
66.6 
65.9 
65.2 
64.6 

64.0 

62.0 
61.3 
60.6 

6ao 

58.0 

56.7 
156.0 



248.8 
248.0 
247.2 
246.3 
245-5 
244.7 

243-9 
243.' 
242.3 
2414 
240.6 
239.8 



238.2 
237.3 
236.5 
235.7 
23i8 

234.0 

233-2 

232.3 
231-5 

230.6 
229.8 

228.9 
228.1 
227.2 
826^4 

225.5 

224.6 

223.8 

222.9 

222.1 
221.2 
22a3 

219-5 

218.6 
217.7 

2i6w8 
216.0 

21 5. 1 

214.2 



213-3 

21 2. A 
2II.0 

2ia: 



•9 
208.0 



311JO 
3x0.0 
30^ 
307.9 
306.9 
305.9 

304-9 
30; 



301.8 
300.8 
299-8 



2^.8 

3966 

295.6 
294.6 
293.6 



.0 
.0 
X} 
.0 
.0 
.0 

.0 
.0 
.0 

.0 
.0 
.0 

.0 

.0 
.0 
.0 
.0 

o 
,0 

.0 

.0 
.0 
.0 
.0 

1.0 



273-2 

272.1 
271.0 



2< 

267.7 
266.6 

265.6 

264.4 
263.4 

262.2 
261. 1 

26ao 



373-1 
371.9 
370.7 

367.1 

365-9 
364.7 
363-4 
362.2 
361.0 
359-8 

358.5 

356^0 
354.7 

353-5 
352.3 

3SI-0 
349.7 
348.5 
347-2 
345-9 
344-6 

343-4 
342.1 
340.8 

339-5 
338.3 
337.0 

335-7 
3344 
333-i 
331-8 
330.5 
329-2 

326.6 
325-3 
323.? 
322.6 

321.3 

320X) 
3«8.7 
3>7-3 
316.0 
3x4.6 
3«3-3 

312.0 



24 
24 
24 
24 
24 
24 

24 
24 
24 
24 
24 
24 

24 
24 
24 
2.4 
2.4 
24 

24 
24 
24 
24 
24 
24 

24 
24 
24 
2.3 
2.3 
2.3 

2.3 
2.3 
2.3 
2.3 
2.3 
2.3 

2.3 

2-3 

2.3 
2.3 
2.3 

2-3 

2.3 
2.3 
2.3 
2.3 
2.3 
2.3 

2.3 



8MITH80NIAII Tables. - 



128 



Digitized by V^OOQIC 



Table 28. 
OO-ORDINATBS FOR PROJECTION OF MAPS. 8CALB itAtv 
p)efhPBtbB of tabla aplained on pp. Hii-lTi] 



56^00' 
10 
20 

30 

40 

SO 

5700 
10 
20 

30 
40 
50 

5800 
10 
20 
30 
40 
50 

59 00 
10 
ao 
30 
40 
50 

6000 
10 

30 
30 
40 
50 

6100 

10 
20 
30 
40 
50 

6200 
10 
20 
30 
40 
50 

6300 
10 
20 
30 
40 

50 
€400 




92.8 
185.6 
278.4 

371.2 
464^ 



92.8 
i8c6 
27I4 
371.2 
464.0 



185.6 
278.5 
371.3 
464.1 



Q2J3 
18C.7 
278.5 

464.2 



02^ 

278.6 

37M 
464.2 



02.9 

37M 
464-3 



02.9 

278.6 
371.5 
4644 



278.7 
371.6 
4644 



CO-OROINATBS OF DSVSLOPED PARALLEL FOR— 



M/lM«hiid«. 



52.0 
51.8 
51.6 

51.3 
51.I 

50.9 
50.6 

5a2 
50.0 
49-7 
49.S 

49.3 

48.6 
48.4 
48.1 

47.9 
47.7 
474 
47.2 
47.0 
46.7 

gs 

46.0 
45.8 
45-6 
45-3 

44.8 
44.6 
444 
44-1 
43.9 

43-7 
434 
43.2 
43-0 
42.7 
42.5 

42.2 

42X> 

41.7 
41.5 

41.3 
41^ 

4a8 



M^koiitada. 



104.0 
103.6 
103.1 
102.6 
102.2 
I0I.8 

IOI.3 

loaS 

ioa4 

99.9 

99-5 

99.0 

98.6 

97.6 
97.2 

96.3 

95.8 
95.3 
94.9 
94.4 
93.9 
93.5 

93-0 

92.5 
92.1 
91.6 

9a6 

1.2 

„>7 
89.2 
88.8 
88.3 
87^ 

86.9 
864 
85.9 
85.4 
84.9 

84.S 
84.0 

83.S 
83.0 
82.5 
82.0 

81.6 



so' longitucle. 



156.0 

I5S3 
154.6 
154.0 

153.; 



153.3 
152.6 



152.0 

151.3 
I5a6 
149.9 
140.2 
148.5 

147.8 
147.2 
146.J 
145-8 
145. 1 
1444 

143.7 
143.0 

142.3 
141.6 

140.9 
I4a2 

138.1 
137.4 
136.7 
136.0 

135.3 
134.6 
133-9 
133.1 
132.4 
131.7 

131.0 
130.3 
129.6 
128.8 
128.1 
1274 

126.7 
126.0 
125.2 
124.5 
123.8 
123.1 

122.3 



40^10110111116. 



1.0 

1.0 
I.O 

1.0 

1.0 
1.0 

■1.0 
1.0 

1.0 
1.0 

1.0 
IJO 

1.0 

1.0 

1.0 
1.0 

1.0 

1.0 

1.0 

1.0 
1.0 

1.0 

.9 
.9 

.9 

•9 
9 
•9 
•9 
.9 

.9 
.9 
.9 
.9 
.9 
.9 

•9 
•9 
•9 
.9 
.9 
.9 

.9 
.9 
.9 
.9 
.9 
.9 



so' loDgitodc 



26ao 
258.0 

256.6 
255.5 
2544 

253.2 
252.1 
251.0 
245.8 
248.7 
247.6 

2464 
245.2 
244.1 
243.0 
241.8 
24a6 

2: 

237.2 
236.0 
234.8 
233.6 

232.5 
231.3 
230.2 
229.0 
227.8 
226.6 

225.4 
224.2 
223.1 
221.9 
22a7 
219.6 

218.4 
217.2 
216.0 
214^ 
213.6 
2124 

211.2 
210.0 
208.8 
207.5 
206.3 
205.1 

203.9 



.6 
.6 
.6 
.6 
5 
5 

5 
5 
5 
5 
-5 
•5 

5 

'5 
5 
5 
5 
5 

-5 
5 
5 

'5 
•5 
5 

5 
'5 
4 
4 
.4 
.4 

4 
•4 
4 
4 
•4 
4 

•4 
4 
4 
.4 
4 
.4 

4 
4 
4 
3 
3 
3 

1-3 



lOloocitDde. 



312.0 
310.7 
309.3 

^1 

3053 

303.9 
302.5 
301.1 
2908 

2984 
297.1 

295.7 
294.3 
292.9 

291.5 
290.2 

2^.8 

2874 
28do 
284.6 
283.2 
281.8 
2804 



279.0 
277-6 
276.2 
274-8 

2734 
271.9 

270.5 
269.1 

266.3 
264.8 
263.5 

262.0 
260.6 
259.1 

257.7 
256.3 
254-8 

2534 
251.9 

250.5 
249.0 
247.6 
246.1 

244.7 



2-3 

2.3 

2.2 
2.2 
2.2 
2.2 

2.2 

2.2 
2.2 
2.2 
2.2 
2.2 

2.2 
2.2 
2.2 
2.2 
2.2 
2.1 

2.1 
2.1 
2.1 
2.1 
2.1 
2.1 

2.1 
2.1 
2.1 
2.1 
2.1 
2.1 

2.1 
2.1 
2.1 
2.0 
2jQ 
2.0 

2.0 
2jO 
2.0 
2.0 
2JO 
2.0 

2U> 
2.0 
2.0 
1.9 
1.9 
1.9 

1.9 



l (j l i l 2t^d bV < 



•MmMONiAN Tables. 



129 



Table 23. 

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE jvMv 
[Derivation of table explained on pp. liii.-lviiL] 





1*1 




CO-ORDINATES OF DEVELOPED PARALLEL FOR- | 


7! 




















1& longitude. 


apf longitude. 


30^ longitude. 


40^ longitude. 


5^ longitude. 


1° longitude. 
































X 


y 


X 


7 

mm. 


X 


7 


X 


y 


X 


y 


X 


y 




mm. 


mm. 


mm* 


mtm. 


MM. 


mm. 


MM. 


MM. 


mm. 


mm. 


mm. 




64*»oo' 




40.8 




81.6 


.2 


122.3 
I2I.6 
120.9 




163.1 


1 
.8 


203.9 


1-3 


244.7 


1-9 


lO 

20 


278.7 


40.5 
40.3 




81.I 
80.6 


.2 
.2 




162.2 
161.2 


202.7 
2014 


1.3 
1.3 


243.2 
241.7 


1-9 
1.9 


30 


40.0 




80.1 


.2 


1 20. 1 




160.2 


.8 


2oa2 


1-3 


24a 2 


1.9 


40 


371-6 


39.8 




79.6 


.2 


ii8!7 




159.2 
158.2 


.8 


199.0 


1-3 


238.8 


1.9 


50 


464.S 


39-6 




79.1 


.2 




.8 


197.8 


1-3 


2374 


1-9 


6500 




39-3 




78.6 


.2 


1 17.9 




157.2 


.8 


196.6 


1.3 


2359 


1.9 


10 


278.7 


^§1 




78.1 


.2 


1 17.2 




156.2 


.8 


'95-3 


1-3 


234-4 


11 


20 


4i 




77.6 


.2 


116.5 




'S5-3 


.8 


194.1 


1-3 


232.9 


30 


38-6 




77.2 


.2 


115.7 




'54-3 


.8 


192.9 


1.3 


231.5 


1.8 


40 


371.6 


38.3 




76.7 


.2 


115.0 




1 53-3 


.8 


191.6 


«-3 


230.0 


1.8 


SO 


464.6 


38.1 




76.2 


.2 


1 14.2 




1S2.3 


.8 


190.4 


1-3 


228.5 


1.8 


6600 




37.8 


.1 


75-7 


.2 


1 13.5 
1 1 2.8 


•s 


151.4 


.8 


189.2 
188.0 


1.3 


227.0 


1.8 


10 


'"02.9* 


37-6 


.0 


75-2 


.2 


•4 


150.4 


.8 


13 


225.5 


1.8 


20 


37.3 


.0 


74.7 


.2 


tl2.0 


•4 


143.4 
148.4 


.8 


186.7 


1.2 


224.0 


1.8 


30 


37-i 


.0 


74.2 


.2 


III.J 
1 10.0 


.4 


.8 


185.4 


1.2 


222.5 


1.8 


40 


3717 


36.8 


.0 


73-7 


.2 


•4 


147.4 


.8 


1842 


1.2 


221.1 


1.8 


SO 


464.6 


36.6 


.0 


73.2 


.2 


109.8 


.4 


146.4 


.8 


183.0 


1.2 


219.6 


1.8 


6700 




36.4 


.0 


72.7 


.2 


lOQ.O 
108.3 
107.6 


.4 


145.4 


.8 


181.8 


1.2 


218.I 


1.8 


10 


02.9 


36.1 


.0 


72.2 


.2 


.4 


144.4 


.8 


180.5 


1.2 


216.6 


1.7 


20 


35-8 


.0 


71.7 


.2 


.4 


M3-4 


.8 


179.2 
178.0 


1.2 


215.1 


1.7 


30 


35.6 


.0 


71.2 


.2 


106.8 


.4 


142.4 


J& 


1.2 


213.6 


1.7 


40 


371-8 


3S-4 


.0 


70.7 


.2 


106.0 


.4 


141-4 


.8 


176.8 


1.2 


212.1 


1.7 


SO 


464.7 


3SI 


.0 


70.2 


.2 


105.3 


.4 


140.4 


.8 


I7S-5 


1.2 


210.6 


1.7 


6800 




34-8 


.0 


69.7 


.2 


104.6 


.4 


13^4 


.8 


174.2 


1 2 


209.1 


17 


la 


93-0 

in 


34.6 


.0 


1' 


.2 


103.8 


.4 


•7 


1730 


1.2 


207.6 


1.7 


20 


34.4 


.0 


.2 


103.0 


•4 


137.4 




171.8 


1.2 


206.1 


1-7 


30 


34-1 


.0 


68.2 


.2 


102.3 


.4 


1364 




170.4 


l.I 


204.5 


1.7 


40 


37'f 


33.8 


.0 


67.7 


.2 


101.5 

100.8 


.4 


1354 




169.2 
168.0 


1.1 


203.0 


1.7 


SO 


464.8 


33.6 


.0 


67.2 


.2 


•4 


1344 




I.I 


201.5 


1.6 


6900 




33-3 


.0 


f^7 


.2 


100.0 


.4 


133-4 




166.7 


I.I 


200.0 


1.6 


10 


93.0 
185.9 
278.0 


^H 


.0 


66.2 


.2 


^^5 


.4 


1324 




165.4 


T.l 


198.5 


1.6 


20 


32.8 


.0 


65-7 


.2 


.4 


131-3 




164.2 


l.I 


197.0 


1.6 


30 


32.6 


.0 


65.2 


.2 


97.7 


•4 


130.3 




162.9 


I.l 


195-5 


1.6 


40 


32.3 


.0 


64.7 


.2 


97.0 


.4 


120.3 
128.3 




161.6 


1.1 


194.0 


1.6 


SO 


464.8 


32.1 


.0 


64.1 


.2 


96.2 


.4 




160.4 


l.I 


192.4 


1.6 


7000 




H 


.0 


63.6 


.2 


9S.S 


.4 


127.3 




159.1 


l.I 


iQa9 
189.4 


1.6 


10 


93.0 
185.9 
278.9 


31.6 


.0 


63.1 


.2 


94.7 


.4 


126.2 




157.8 


l.I 


1.6 


20 


31-3 


.0 


62.6 


.2 


93-9 


.4 


125.2 




156.6 


1.1 


187.9 


1.6 


30 


3*i 


.0 


62.1 


.2 


93.2 


.4 


124.2 




155.3 


1.1 


186.4 


1.5 


40 


371-9 


30.8 


.0 


61.6 


.2 


92.4 


.4 


123.2 




154.0 


I.l 


184.8 


1-5 


SO 


464.9 


30.S 


.0 


61.1 


.2 


91.6 


4 


122.2 




152.7 


1.0 


183.2 


1-5 


7100 




30.3 


.0 


60.6 


.2 


90.9 


.4 


121.2 




1 51.4 


1.0 


181.7 


1-5 


10 


"m 


30.0 


.0 


60.1 


.2 




•4 


120.2 




150.2 


1.0 


180.2 


1.5 


20 


29.8 


.0 


59.6 


.2 


ii 


.4 


119.1 
118.1 




148.9 


I.O 


178.7 


15 


30 


278.9 


29.5 


.0 


Ts 


.2 


.4 




147.6 


1.0 


177.1 


1.5 


40 


371.9 


29-3 


.0 


.2 


87.8 


.4 


117.1 


1 


1464 


1.0 


175-6 


^'S 


SO 


464.9 


29.0 


.0 


58.0 


.2 


87.1 


.4 


116.1 


.6 


145.1 


1.0 


174.1 


14 


7200 




28.8 


.0 


S7'S 


.2 


86.3 


.4 


115.0 


.6 


143-8 


1.0 


172.6 


14 



Smithsonian Tablcb. 



130 



TAMK28. 



CO-ORDINATES FOR PROJECTION OF MAPS. SCALE itAtt- 
[Darivmtion of table esplained on pp. IHi-lvL] 









CO-ORDINATES OF DEVELOPED PARALLEL FOR— | 


TJ . 


Meridional di» 
tanoea from 
even degree 
parallels. 


















i</ loogitode. 


M/ Umgituda. 


so' loogitnde. 


^ longitude. 


y/ longitude. 


lOkmghada. 






























X 


y 


X 


y 


X 


y 


X 


y 


X 


y 


X 


J 




mm. 


mm. 


mm. 


mm. 


mm. 


mm. 


MM. 


mm. 


mm. 


mm. 


mm. 


mm. 


mm. 


7^00' 




28.8 


.0 


57.5 


.2 


!^3 


•4 


II5.0 


.6 


143.8 


1.0 


172.6 


1.4 


lO 


"rUi' 


^•5 


.0 


57.0 


.2 


85.5 


.4 


1 1 4.0 


.6 


142.5 


1.0 


17 1.0 


14 


20 


28.2 


.0 


56.5 


.2 


84.7 


•3 


113^ 


.6 


I4I.2 


1.0 


1694 


14 


30 


279.0 


28.0 


.0 


56.0 


.2 


839 


.3 


1 1 1.9 


.6 


1^1 


1.0 


167.9 


1.4 


40 


372-0 


277 


.0 


SS-5 


.2 


83.2 


•3 


1 10.9 


.6 


1.0 


166.4 


14 


SO 


465^ 


27.5 


.0 


54-9 


.2 


82.4 


•3 


109.9 


.6 


1374 


1.0 


164.8 


14 


7300 




27.2 


.0 


S4.4 


.2 


81.6 


•3 


108.8 


.6 


136.0 


•9 


163.3 


14 


10 


"m 


27.0 


.0 


53-9 


.1 


8a8 


.3 


107.8 


.6 


134.8 


•9 


161.7 


1.4 


20 


26.7 


X) 


53-4 


.1 


80.1 


•3 


106.8 


.6 


1334 


.9 


160.1 


1-3 


30 


279.0 


26.4 


.0 


52.9 


.1 


78*5 


•3 


105.7 


.6 


132.2 


•9 


158.6 


»-3 


40 


372.0 


26.2 


.0 


sii 


.1 


•3 


104.7 


.6 


130.8 


•9 


157.0 


1-3 


SO 


465.0 


25.9 


.0 


.1 


77-7 


•3 


103.6 


.6 


129.6 


•9 


155-5 


1-3 


7400 




25.6 


.0 


5a8 


.1 


77.0 


•3 


Z02.6 


.6 


128.2 


•9 


153-9 


1-3 


10 


"m 


25.4 


.0 


.1 


76.2 


•3 


10 1. 6 


.6 


127.0 


•9 


150.8 


1-3 


20 


25.1 


.0 


503 


.1 


lit 


•3 


100.5 


.6 


125.6 


.9 


1-3 


30 


279-0 


24-9 


.0 


49-7 


.1 


•3 


^ 


.6 


124.4 


•9 


149-2 


1-3 


40 


372.0 


24-6 


.0 


tS7 


.1 


73.8 


•3 


.6 


123.0 


•9 


1477 


1.2 


SO 


465.0 


244 


.0 


.1 


73-0 


•3 


97.4 


•5 


121.8 


•9 


1 46. 1 


1.2 


7500 




^^l 


.0 


48.2 


.1 


72.3 


•3 


96^4 




i2a4 


.8 


144.5 


1.2 


10 


"m 


23.8 


.0 


47.7 


.1 


71-5 


.3 


95-3 




1 19.2 


.8 


143.0 


1.2 


20 


23.6 


.0 


47.1 


.1 


70.7 


•3 


94.2 


.5 


117.8 


.8 


1414 


1.2 


30 


279.1 


23-3 


.0 


46.6 


.1 


69.9 


•3 


93-2 




1 16.5 


.8 


138.2 


1.2 


40 


372.1 


23,0 


.0 


46.1 


.1 


t; 


•3 


92.2 




115.2 


.8 


1.2 


50 


465.1 


22.8 


.0 


45-S 


.1 


•3 


91.1 




113.8 


.8 


136.6 


I.I 


7600 




22.5 


.0 


45.0 


.1 


^ 


•3 


oao 
89.0 




112.6 


.8 


I35-I 


I.I 


10 


"^r^' 


22.2 


.0 


44.5 


.1 


•3 




ni.2 


S 


>33-5 


I.I 


20 


22.0 


.0 


44.0 


.1 


65.9 


.3 


87.9 




im 


.8 


131-9 


I.I 


30 


279.1 


21.7 


.0 


43-4 


.1 


65.2 


•3 


86.9 
85.8 




.8 


m 


I.I 


40 


37*1 


21.5 


.0 


42.9 


.1 


64.4 


•3 




107.3 


.8 


I.I 


SO 


465.1 


21.2 


.0 


42.4 


.1 


63.6 


•3 


84.8 




106.0 


7 


127.1 


I.I 


7700 




2a9 


.0 


41.9 


.1 


62.8 


•3 


83.7 




104.6 




125.6 


I.I 


10 


"\r.' 


20.7 


.0 


4o!8 


.1 


62.0 


•3 


i^i 




103.4 




124.0 


I.I 


20 


20.4 


.0 


.1 


61.2 


.3 


81.6 




102.0 




122.4 


1.0 


30 


279-1 


20.1 


.0 


^ 


.1 


6a4 


•3 


80.6 


• J 


100.7 




120.8 


1.0 


40 


372.2 


19.9 


.0 


.1 


^.1 


•3 


m 


A 


98.0 




"9-3 


1.0 


SO 


465.2 


19^6 


.0 


39-2 


.1 


•3 


.4 




117.7 


1.0 


7800 




19.4 


.0 


3|-7 


.1 


58/) 


.2 


77.4 


.4 


96.8 




116.1 


1.0 


10 


"\ii' 


\ti 


.0 


38.2 


.1 


57.2 


.2 


76.3 


•4 


954 




114.5 


1.0 


20 


.0 


37.6 


.1 


56.5 


.2 


75-3 


4 


94., 




112.9 


I.O 


30 


279.1 


18.6 


.0 


37'J 


.1 


55-7 


.2 


74.2 


.4 


92.8 




HI.4 


1.0 


40 


372.2 


18.3 


.0 


36.6 


.1 


54.9 


.2 


73-2 


•4 


91.4 


.6 


10Q.7 
108.1 


.9 


SO 


465.2 


18.0 


JO 


36.0 


.1 


54.1 


.2 


72.1 


•4 


90.1 


.6 


•9 


7900 




17.8 


.0 


35-5 


.1 


53-3 


.2 


71.0 


•4 


88.8 


.6 


106.6 


•9 


10 


"'^^^' 


t7-S 


.0 


350 


.1 


52.5 


.2 


70.0 


•4 


ll'^ 


.6 


104.9 


•9 


20 


17.2 


.0 


34.5 


.1 


5*7 


.2 


68.9 


A 


86.2 


.6 


103.4 


•9 


30 


279.2 


17.0 


.0 


33-9 


.1 


50.9 


.2 


4 


84.8 


.6 


101.8 


1 


40 


372.2 


i6.7 


.0 


33-4 


.1 


50.1 


.2 


66.8 


4 


834 


.6 


loai 


50 


465.2 


16.4 


.0 


32.9 


.1 


49.3 


.2 


65.7 


4 


82.2 


jS 


98.6 


S 


8000 




16.2 


.0 


32.3 


.1 


48.5 


.2 


64.6 


4 


80.8 


.6 


97-0 


£ 



Smitnsoiiian Tables. 



131 



Tablk 24. 

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ivW 

[Derivation of table «xpfauoed en pp. Uli-lvi.] 




ABSCISSAS OF DEVELOPED PARALLEL. 



Iff 



i-r 



2Xf 
lonsitode. 



»s' 



30' 

longitiide. 



ORDINATES OF 
DEVELOPED 
PARALLEL. 



OnOO 
10 
20 

30 

40 
SO 

I 00 
10 
20 

30 
40 
SO 

200 
10 
20 

30 
40 

50 

300 

10 
20 
30 
40 
50 

400 
10 
20 
30 
40 
SO 

500 
10 
20 

30 

40 

50 

600 
10 
20 
30 
40 
50 

700 
10 
20 

30 
40 

SO 
800 



2304 
4«>-7 
691.0 
9214 
1151^ 



230.4 
460.7 
691.0 
9214 



230.4 
400.7 
691.1 
921.^ 
11S1.0 



A60.8 
691. 1 
921.5 
1151.9 



691. 1 
921.5 
1151.9 



ido 
16.0 
16.0 
16.0 
16.0 
iS-9 

15.9 
15.9 
15.9 
15.9 
15.9 
«5-9 

15.9 
15.9 

15.8 
15.8 
15.8 

15.8 
15.8 
15.8 
157 
'57 
157 

»S-7 
157 
15.6 
15.6 
15.6 
15.6 

»5-5 
»5-5 
»5-5 
>5-4 
154 
15.4 

15-3 
»5-3 
15.2 
15.2 
15.2 
»S-i 

15.1 
15.1 
15.0 
15.0 
14.9 
14.9 

114^ 



2319 
23«-9 
2319 
2319 
2319 
231.9 

231-9 
231.9 
231.8 
231.8 
231.8 
231.8 

231.8 
231.8 
23«7 
2317 
23«7 
231.6 

231.6 
231.6 
231.5 
231-5 
23M 
2314 

2314 
231.3 
231.3 
231.2 
231.1 
231.1 

231.0 
231.0 
23ao 
230.8 
230.8 
230.7 

230.7 
23a6 

230.5 
2304 
2304 
230.3 

230.2 
230.1 
23ao 
229.9 
229.0 
229.8 

229.7 



347.9 
347.9 
347-8 
347-1 
347.8 
347-8 

347-8 
347-8 
347.8 
347-7 
347-7 
3477 

347-7 
347-6 
347.6 
347-5 
347.5 
347.5 

3474 
347.3 
347-3 
347.2 
347.2 
347.1 

347.0 
347.0 

346.6 
346.5 
346.4 
346.3 
346.2 
346.1 

346.0 
345.9 
345.8 
345-7 
345-5 
3454 

345.3 
345-2 
345-0 
344.9 
344.5 
344.6 

344.5 



SlllTN«OMIAII TaSLCS. 



463.8 
463.8 
463.8 
463.8 

463.8 

463.8 
463.7 

463.6 

463.6 
463.5 
4634 
4634 
463.3 
463.3 

463.2 
463.1 
463.0 
463,0 

& 

462.6 
462.5 
4624 
462.3 
462.2 

462.1 
462.0 
461.8 
461.7 
461.6 
4614 

461.3 
461.2 
461.0 

46a9 

460.6 

4604 
46a2 
460.0 
459-9 
459-7 
459-5 

4594 



'32 



579-8 
579-8 
579| 
579-8 
579-8 
579-7 

579-7 
579-6 
579-6 
579-6 
579-6 
579-5 

5794 
5794 
579.3 
579-2 
579-2 
579-1 

IL 

578.5 

5784 
578.2 
578.2 
578.0 

577-8 
577-8 

577.6 

5774 

577.3 

577.1 

577-S 
576.8 

576.6 

5764 
576.2 
576.1 
575.9 
5757 

575-5 
575-3 
575.0 
574.8 
574.6 
5744 

574.2 



695-8 
6957 
695.7 

695.6 

695.6 
695.5 
695.5 
695-5 
6954 

695-3 
695-3 
695.2 
695.0 
695.0 

694.9 
694.8 

^l 
694.6 

6944 

694.3 

694.2 

694.1 



693.6 
6934 
693.3 

693." 
692.1 



692.5 

692.3 
692.2 

692.0 
691.7 
691.5 

691-3 
691.1 
690.8 

69a6 

6904 
69ai 
689.8 
689.6 
689.3 

689.0 



5- 


ox> 


10 


OjO 


15 


ao 


20 


ox> 


25 


ao 


30 


0.0 



5 


ox> 


10 


ox> 


»5 


0.0 


20 


ao 


25 


ai 


30 


ai 



4^ 



ao 
ao 
ai 
ai 
0.1 
a2 



0.0 
ao 
0.1 
0.1 
a2 
0.3 



8<» 



ao 
ao 

ai 
0.2 

0.3 
a4 



ao 
ao 
ao 
ao 
ao 
ai 



ao 
0.0 
ao 
ai 
ai 
a2 



ao 
ao 
ai 
0.1 
a2 
0.3 



ao 
ao 
ai 
a2 
0.3 
04 



ngilizedby^O ^= 



Table 24. 
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE Tvkvw- 
[DoiTation of table ocplained on pp. liii-lTL] 




ABSCISSAS OF DEVSLOPSD PARALLEL. 



kwcitada. 



1& 



IS' 
loQgUade. 



2& 



25- 



^ 



ORDINATES OF 
DEVELOPED 
PARALLEL. 



8<^' 

lO 
20 

30 
40 
50 

900 
10 
20 

30 
40 
50 

1000 
10 

20 
30 
40 
SO 

II 00 
10 
20 
30 
40 
SO 

1200 
10 
20 
30 
40 
SO 

1300 
10 
20 
30 
40 
SO 

1400 
10 
20 
30 
40 
SO 

1500 
10 
20 
30 
40 
SO 

1600 



a304 
4608 

6913 

921.7 

1152.1 



2304 



)i. 
921 
1 1 52.2 



i 



230.5 
461.0 
691.5 
922.0 
1152.4 



14^ 
14.8 
14.7 

14.6 
14.6 

14.S 
14.5 

144 
144 
14.3 
14.3 

14.2 
14.2 
14.1 
14.0 
I4X> 
13.9 

13^ 

13.6 
13.6 
13s 

134 

134 
13-3 
13.2 
13.2 
13.X 

13-0 
12.9 
12.8 
12.8 

12.6 

12.5 
12.5 
124 

"•3 
12.2 
12.1 

12.0 

;;i 

11.8 

11.6 

111.5 



229.7 
229.6 
229.5 
2294 
229.3 
229.2 

229.1 

2200 
228.9 
228.7 
228.6 
228.5 

228.4 
228.3 
228.2 
228X> 
227.0 
227.8 

227.7 
227.5 
2274 

227.3 
227.1 
227.0 

226.9 
226.7 
226.0 
226.4 
226^3 
22d2 

226.0 
225.9 
225.7 
225.6 
2254 
225.2 

225.1 
224.9 
224.7 
224.6 

224.4 
224.2 

224.1 
223.9 
223.7 
223.5 
223.3 
223.2 

223.0 



344.5 

344-4 
344-2 
344-1 
343-9 
343-S 

343-6 
343-4 
343.3 
343-1 
343-0 
342.8 

342.6 
342.4 
342.3 
342.1 
341.9 
341-7 

341.S 
341.3 
341.1 
340.9 
340.7 
340.5 

340.3 
340.1 
339.9 
339-7 
3394 
339-2 

338-6 
333.3 
333.1 
337-9 

337-6 
337.4 

336.6 
3364 

336-1 
335-f 
335-6 
335-3 
335-0 
334-7 

334-5 



4S94 
459-2 

4^S 
458.6 
4584 

458.2 
457.9 
457-7 
457.S 
457.3 
4S7.0 

456.6 
4564 
456.1 
455-8 
455-6 

4554 
455-J 
454-8 
4S4.6 

454.3 
4S4-0 

453-8 
453-5 
453-2 
452.9 
452.6 
452.3 

452.0 
4S»-7 
4514 
451.1 
450.8 
450.5 

450.2 
449-8 
449-S 

448.8 
448.5 

448.1 
447-8 
4474 
447-0 
446.7 
446.3 

446.0 



574-2 
574-0 
573-7 
5734 
573-2 
S73-0 

572.7 
572.4 
572.2 
571.8 
571.6 
571-3 

571.0 

570.8 

5704 

57^i 
569.8 

569-5 

'^ 

568.6 
568.2 

567.6 

567.2 
566.8 

566.5 
566.1 
565.8 
5654 

564.6 
564.2 
563.9 
563-5 
563.* 

562.7 

561.8 

5614 
561.0 
560.6 

560.2 

559-7 

W^ 

5584 

S57-9 
5574 



68ao 
6887 
688.4 
688.1 
687.8 
687.S 

687.2 
686.9 
686.6 
686.2 
685.9 
685.6 

S5-3 
g4.9 

684.1 
683.8 
6834 

683.0 
682.6 
682.3 
681.8 
681.4 
681.1 



68a6 
680.2 
6798 

67I9 
678.5 

678.1 
677.6 

676.2 
675.7 

57H 
674.8 
674.2 
673.7 
673-2 
672.7 

672.2 
671.6 
67 I.I 
670.6 
670.0 

669.5 
668.9 



i 



5 
10 


0.0 
ai 


IS 
20 


0.1 

a2 


25 
30 


0.4 
0.5 



*» 



oo 
ao 
ai 
a2 
03 
04 



id» 



12* 



0.0 
ai 
a2 
0.3 



I4» 



s 


0.0 


10 


ai 


IS 


0.2 


20 


0.3 


25 


0.5 


30 


0.7 



i6« 



OuO 

ai 
a2 

0.8 



SP 



ao 
ai 

ai 
a2 

0.3 
0.5 



II' 



oo 
ai 
ai 
a2 



13" 



ao 
0.1 
a2 
0.3 
0.5 
0.7 



IS" 



OX} 

ai 
a2 
0.3 



SurmaoMiAii Tasuw. 



133 



Table 24. 

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE virW 
[Derivatkm of table expUined od pp. liii-lvi.] 



III 



Sl^ 



ABSCISSAS OF DEVELOPED PARALLEL. 



longitude. 



longitude. 



IS' 



2</ 



^fT 



ORDINATES OF 
DEVELOPED 
PARALLEL. 



10 
20 

30 
40 

SO 

1700 
10 
20 

30 
40 

SO 

1800 
10 
20 
30 
40 

SO 

1900 
10 
20 
30 
40 
50 

2000 
10 

20 
30 
40 
SO 

21 00 
10 
20 
30 
40 
SO 

2200 
10 

20 
30 
40 

SO 
2300 

10 
20 
30 
40 

SO 
2400 



230.5 

461. 1 

691.6 

922.1 
1 1 52.6 



230.6 
461.1 

691.6 

922.2 
1 1 52.8 



230-6 
461. 1 

691.7 
922.3 

1 152.8 



230.6 
401.2 

691.8 
922.4 
U53.0 



23a6 
461.2 
691.9 
922.5 
"S3-I 



230.6 
461.3 
692.0 
922.6 
"S3-2 



230.7 
461.4 
692.0 
922.7 
"S34 



230.7 
461.4 
692.1 
922.8 
"53-6 



iii.S 

1 1 1.4 

1 1 1.3 
111.2 
III. I 

1 1 1.0 

iiao 
iiaS 
110.7 
X10.6 

1 10.5 

1 10.4 

1 10.3 
iia2 

1 10. 1 

1 10.0 
109.9 
109.8 

109.7 
109.6 
109.5 
109.4 
X09.2 
109.1 

X00.0 
108.Q 
108.8 
108.7 
108.5 
1084 

108.3 
108.2 

108. 1 
107.9 
107.8 
107.7 

107.6 
107.4 

107.3 
107.2 
107. 1 
106.9 

106.8 
106.7 
106.5 
1064 
106.3 
106.1 

106.0 



223.0 
222.8 
222.6 
222.4 
222.2 
222.0 

221.8 
221.6 
221.4 
221.2 
221.0 
220.8 

22a6 
220.4 
220.2 

220X> 

219.8 
219.6 

2194 

2iax 

218.9 
218.7 
218.5 
218.2 

2l8.0 

217.8 
217.5 
217.3 

2I7.I 

216.8 

216.6 
216.4 
2I6.I 

215.0 

215.6 

215.4 

2I5.I 

214.9 

214.6 

214.4 

2I4.I 

213.9 

213.6 

213.3 
2I3.I 

212.8 

212.5 
212.3 



334.S 

334-2 
333-? 
333.6 
333.3 
333-« 

332.8 

332.S 
332.2 

33>.9 
33>.6 
33«-3 

331-0 
330.6 
330.3 
330.0 
329.7 
3294 

320.0 

347 
328.4 
328.0 
327.7 
327.4 

327.0 
326.7 
326.3 
326.0 
325.6 
32S.3 

324.9 
324.S 
324.2 
323.8 
323.4 
323.1 

322.7 
322.3 
321.9 
321.6 
321.2 
320.8 

320.4 
32ao 
319.6 

318.8 
3184 

318.0 



446.0 
445.6 
445.2 
444.8 



444.1 

443.7 
443-3 
442.9 
442.5 
442.1 
441.7 

441.3 
440.8 
440.4 
440.0 
439.6 
439.2 

438.7 
438.3 
437.8 
437.4 
436.9 
436.5 

436.0 
435-6 
435.J 
434.6 
434-2 
433.7 

433-2 
4327 
432-2 
43'.7 
431-2 
430.8 

430.3 
429.8 
420.2 
428.8 
428.2 
427.7 

426.6 
426.1 
425.6 
425-0 

424.5 

424.0 



5574 
557-0 

556.5 
556.0 
555.6 
SSS-i 

SS4.6 
SM-I 
553-6 
553.3 
552.6 
552.1 

551-6 
SS'-o 
550.6 
550.0 
549-4 
549.0 

5484 
547.8 

546^^ 
546.1 
545.6 

545-0 
544.4 
543-8 
543-3 
542.7 
542.1 

541.5 
540.9 
540.5 
539.6 

ir. 

537.8 

536.6 
536.0 
535.3 

534.6 

534.0 
533.3 
532.0 
532.0 

S3'.3 
530.0 

530.0 



668.9 
668.3 
667.8 
667.2 
666.7 
666.1 

664.9 
664.3 
663.7 
663.1 
662.5 

661.9 
661.3 
66a7 
66ao 

tm 

658.1 

656!8 
656.1 
6554 
654.7 

654.1 

652.6 
652.0 
651.2 
650.5 

649.8 

t$4 
647.6 
646.9 
646.1 

644.6 

6439 
643.1 
6424 
641.6 

640.8 
640.0 

636^ 
636.0 






5- 

10 

15 
20 

25 
30 



i6*» 



ao 
ai 
0.2 
04 
a6 
o^ 



idP 



0.0 
0.1 
0.2 

0.6 
a9 



2XP 



OJO 

0.1 
a2 
04 
0.7 
1.0 



22<» 



5 


ao 


10 


0.1 


IS 


0.3 


20 


0-5 


25 


0.7 


30 


I.I 



ao 
ai 
0.3 

x.i 



17'' 



ao 
ai 
a2 

SI 

a8 



19** 



ao 
0.1 
0.2 
04 
0.6 
0.9 



OjO 
0.1 

0.3 

o-S 

0.7 

1.0 



23' 



0.0 
0.1 

0.3 

I.I 



Digitized by LjUU^ 



SmTHsoNiAii Tablks. 



134 



TauM« 
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE i^lvr 

[Dtriratioo of tabte wplaiMd on pp. UU-ItL] 



10 
20 
30 
40 
SO 

2500 
ID 
20 

30 

40 

SO 

2600 
10 
20 
30 
40 
50 

27 00 
10 
20 
30 
40 
SO 

2800 
10 
20 
30 
40 
SO 

2900 
10 
20 
30 
40 
SO 

3000 
10 
20 
30 
40 

SO 

31 00 
10 
20 

30 
40 
SO 

3200 




230.7 
461.5 
692.2 
923.0 
"537 



692.3 

923-1 

"S3-8 



230.8 
461.6 
692.4 
923-2 
1154.0 



230.8 
401.7 
692.5 

9233 
1154.2 



46li 

692.7 

923.6 

"S4-S 



231.0 
461.9 
692.9 

923-9 
1 154.8 



ABSCISSAS OF DEVELOPED PARALLEL. 



06.0 
05.9 
05.7 
05.6 
05^ 
05-3 

05.2 
05.0 
04.9 

04.7 
04.6 

04.4 

04-3 
04.1 
04.0 
03.8 
03.7 
03-5 

03.4 
03.2 
03.1 

02.0 
02.S 
02.6 

02.5 
02.3 
02.1 
02.0 
01.8 
01.7 

01.5 
01.3 
01.2 
01 .0 

00.8 
oa7 

00.5 
00.3 
00.2 
00.0 

99-8 
99.6 

995 
99-3 
99.1 

98.6 
98.4 



lO' 
loDfitnde. 



212.0 
21 1.7 
21 14 
211.2 

2ia9 
210.6 

2ia3 
210.0 
209.7 
209.4 
20Q.2 
208.9 

208.6 
208.3 
208.0 
207.7 
207.4 

207.1 

206.8 

206.5 
206.2 
205.8 

205.5 

205.2 

204.9 

204.0 

204.3 

204.0 

203.6 
203.3 

203.0 
202.7 
202.3 
202.0 
201.7 
201.4 

201.0 
200.7 
200.3 
200.0 
199.6 

»99.3 

T^ 

198.3 
»97.9 
197.6 
197.2 

196.9 



IS- 
longitude. 



318.0 
317.6 
3*7.2 
316.7 
3«6.3 
3«5-9 

315-5 
315-0 
3«4.6 
3<4.2 
313-7 
3>3-3 

312.9 
3«2.4 
312.0 

3"-5 
3U.I 
310.6 

310.2 
309-7 

308.3 
307.9 

3074 
306.9 
306.4 
3059 
305.5 
305.0 

304.5 
304.0 

303-5 
303-0 
302.5 
302.0 

301.5 
301.0 
300.5 
300.0 

2995 
299.0 

298.4 
297.9 

297.4 
296.9 
296.3 
295.8 

2953 



20^ 
longitude. 



424.0 

423.4 
422,9 
422.3 
421.8 
421.2 

42a6 
420.0 

419.5 
418.9 
418.3 
417-7 

417.2 
416.6 
416.0 

415-4 
414.8 
414.2 

413.6 
413.0 
4' 2.3 
41 1.7 
411.1 
410.5 

409.8 

4^6 
407.9 
407. 



406.0 
4054 
404.7 
404.0 

403.4 
402.7 

402.0 
4014 
400.7 
400.0 



397.9 
397.2 
396.5 
395-8 
395-1 
394.4 

393-7 



25' 
kmgitade. 



130.0 

27-9 
127.2 
;26i5 

25.8 
125.0 
24.4 
23.6 
22.9 

;22.2 

214 

120.7 

i20.0 

I&4 
17-7 

17.0 
16.2 

15-4 
14.6 
13.8 

»3-» 

12.3 

11.5 

ia7 

509.9 



507.5 
506.7 
505-8 
505.0 
504.2 
5034 

502.6 
501.7 
500.8 
500/} 
490.1 
498.2 

4974 
496.5 
495.6 
494.8 
493-9 
493-0 

492.2 



30- 
loQgitode. 



636^) 
6352 
634.3 

632.6 
631.8 

631.0 
63ai 
629.2 
628.3 

^d 

624.8 
623.9 
623.0 
622.1 
621.2 

62a3 

6i8!5 

61 7-5 
616.6 
615.7 

614.8 
613.8 
612.8 
611.9 
61 a9 
610.0 

609.0 
608.0 
607.0 
606.0 
605.0 
604.1 

603.1 
602.0 
601.0 

599-9 
598.9 

597.9 



59S-i 

594.8 

593-8 

592.7 

591-6 

590.6 



ORDINATSS OF 
DEVELOPED 
PARALLEL. 



u 



10 

IS 
20 

25 
30 



24' 



ao 
ai 
0.3 

tk 

I.I 



26» 



OX) 

ai 
0.3 

tk 

1.2 



28» 



0.0 
ai 

0.9 
1-3 



30*^ 



ao 
ai 

0.9 
1-3 



32' 



ao 
a2 

tl 

0.9 
1.4 



^t 



oo 

0.1 

0-3 

tk 

1.2 



oo 
ai 
0.3 



«f 



OuO 

SI 
«-3 



31" 



ao 
ai 

0.6 
0.9 
1-3 



Smitimgmiaii Tables. 



^2^^ 



Table 24. 

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE |i»^. 
CDtrlTBdon of uUe ftiplainwi oa pp. Uii-lvL] 





l| 


ABSCISSAS OF DEVELOPED PARALLEL. 






1 


*! 














ORDINATES OF 














Jl 


5- 


lO' 


'S' 


20' 


25- 


30^ 


DEVELOPED 
PARALLEL. 


^ 


loogitade. 


longitnde. 


UM^tade. 


j___ii_j_ 


longitade. 


loodtiidft. 










mum. 


MM. 


MM. 


MM. 


MM. 


MM. 


MM. 


fl 






lO 


211.0 


984 


196.9 
196.5 


295-3 
294.8 


393-7 
393-0 


492.2 
491.2 


S?5 


32« 


3f 


20 




98.1 
97.9 


I96.Z 
195.8 


294.2 
293-7 


392.3 
391.6 












30 


093.0 


4^4 


5f7-3 




MfW. 


MM. 


40 


924.0 


97.7 


«95-4 


293-» 


390.8 


488.0 


586.3 


s- 

10 


0.0 


oo 


y> 


1155.0 


97.5 


195.1 


292.6 


390.1 


487.6 


585.2 


a2 


a2 


33 «> 

10 


23IX> 
^02.1 

093-2 


974 
97.2 


194.7 
194.3 


292.1 
291.5 


^ 


486.8 
455-8 


584.1 
583.0 


15 
20 

25 
30 


0-9 
M 


1.0 


ao 
30 


H 


194.0 
193.6 


290.9 

^^ 
289.3 


#7-9 
387-2 


484.9 
484.0 


§il 


14 


40 
SO 


924.2 
1155.2 


96.6 
964 


193-2 
192.S 


386.4 
385.7 


483.0 

482.1 


579-7 
578.5 














3400 




^^ 


192.5 


^•7 


^5.0 


481.2 


5774 




34^ 


35" 


10 


2|I.I 


96.0 


192.1 


288.2 


384.« 


48a2 


576.3 


""^^ 






30 


462.2 


95-9 


191.7 


287.6 


P 


479.3 
478.3 


575-2 


5 


ao 


ao 


30 


^3-2 


95-7 


i9»-3 


287.0 


574-0 


10 


a2 


a2 


40 


924.3 


95-5 


190.9 


286.4 
285^ 


381.9 


4774 


572.8 


15 


ti 


tt 


so 


11554 


95-3 


190.6 


381.1 


4764 


571.7 


20 


















25 


1.0 


1.0 


3500 
10 


23I.I 


95.1 
94.9 


i9a2 
189.8 


285.3 
284.7 


37^8 
378.0 


4754 
474.5 


570.5 
567.0 


30 


1.4 


M 


20 
30 


693.4 


94.7 
94.5 


1894 


284.1 
283.5 


473-5 
472.S 
471.6 














40 


924.5 
1 1 55.6 


94.3 


188.6 


282.9 


377.2 


565.9 




36*^ 


37** 


SO 
3600 


94.1 
93-9 


188.2 
187.8 


2824 
281.8 


376.5 
375-7 


470.6 


564.7 
563.5 








5 


ao 


oo 


10 


231.2 
462.3 

693-5 
924.6 


93-7 


1874 


281.2 


374.9 


562.3 


10 


0.2 


a2 


20 


935 


187.0 


280.6 


374-1 


467.6 


561.1 


»5 


a4 


ti 


30 


93-3 


186.6 


280.0 


373-3 


466.6 


559.9 
558.7 


20 


a6 


40 


93-1 


186.2 


'm 


372.5 


465.6 


25 


1.0 


IjO 


SO 


II55.8 


92.9 


185.8 


371-7 


464.6 


557.5 


30 


1.4 


i-S 


3700 
10 




92.7 
92.5 


1854 
185.0 


278.2 
277.6 


370.9 
370.1 


462.6 


556.3 
555-1 








4624 

6936 




38^ 


39^ 


20 
30 


923 
92,1 


184.6 
184.2 


276.9 
276.3 


1 


461.6 
460.5 


552.6 










40 


924.8 


91.9 


183.8 


275-7 


459-5 
458.5 


55<4 


5 
10 


ao 


ao 


SO 


1156^ 


91.7 


1834 


275.1 


366^ 


550.2 


a2 


a2 


3800 




91.5 


183.0 


274.5 
273.8 


366.0 


4574 


548.9 


15 
20 


04 
0.7 
1.0 


04 
0.7 
1.0 


10 


231.2 


91-3 


182.6 


365-1 


4564 


547.7 


25 


20 


91.1 


1 82. 1 


273.2 


364.3 


4554 


5464 


30 


«-5 


1-5 


30 


6937 


90.9 


18 1. 7 


272.6 


362.6 
361.8 


4544 


545-2 




40 


925.0 

1 1 50.2 


90.7 


181. 3 
180.9 


272.0 


453-3 


544.0 








50 


904 


2714 


452.2 


542.7 




. _o 




3900 
10 
20 
30 


693.8 


90.2 
90.0 
89.8 
89.6 


180.5 
180.1 
179-6 


270.7 
270.1 


361.0 
360.1 


451-2 
450.2 
449.0 
448.0 


5414 
540.2 

538.9 
537.6 




4o'» 




5 
10 


0.0 
a2 


• 


40 


925.1 
11564 


894 


268.2 


357-6 


447.0 


536.3 


15 


0.4 




50 


89.2 


178.3 


267.5 


356.7 


445-8 


535.0 


20 

25 
30 


0.7 

I.O 

1.5 




4000 




89.0 


177-9 


266.9 


355.8 


444.8 


533.8 





Smithsonian Tables. 



136 



Table 24. 
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ivirv 
[DariTition of table ezplaanad on pp. Uii^Ti.] 





i 


ABSCISSAS OF DEVELOPED PARALLEL. 








"S . 


111' 














ORDINATES OF 
DEVELOPED 
PARALLEL. 


5- 


lO' 


IS- 


20' 


25- 


30- 


^ 


jgasl 


looghndo. 


loofltiido. 


longitiicM* 


loapiod. 


loiVitude. 


loDsitiide. 










mm. 


HMM. 


m$m. 


mm. 


mm. 


mm. 


«•««. 


!l 






4cA»' 

lO 

20 

30 

40 

SO 


IIS&8 


88.5 

88-3 
88.1 

87.9 


177.9 
177.5 

176^6 
176.2 
1757 


265.6 

264.9 
264.2 
263.6 


355-8 
355-0 
354.1 
353.2 
352.3 
351.4 


444.8 

443.7 
442.6 

441.5 
4404 
439.3 


533.8 
5324 
S3I.J 
520.8 

528.5 
527.2 


4rf> 


4i* 


10 


0.0 
a2 


mm. 

ao 
a2 


4100 
10 
ao 
30 
40 
50 




87.6 

874 
87.2 
87.0 
86.8 
86.5 


175-3 
174.8 

174.4 
173-9 
173-5 
173-0 


262.9 
262.3 
261.6 
260.9 
26a2 
259.6 


350.6 

347.9 
347.0 
346.1 


438.2 
437.1 
436.0 
434.8 
433.8 
432.6 


525.8 
524.5 
523.1 
521.8 
520.5 
519.1 


15 
20 

25 
30 


04 
0.7 

IJO 

1-5 


04 
0.7 
1.0 








4200 
10 
20 
30 
40 
50 


•••••••• 

694.2 

925.6 

1 1 57.0 


86.3 
86.T 
85.8 
85.6 
854 
85.2 


172.6 
172.1 

171.7 
171.2 
1708 
170.3 


258.9 
258.2 
257.6 
256.9 
256.2 
255.5 


345.2 
344.3 
343-4 
342.| 

340.7 


431-5 
4304 
420.2 
428.1 
427.0 
425.8 


517.8 
5164 
515.1 
513.7 
512.3 
511.0 




42" 


if 


5 
10 

15 
20 


ao 
a2 
04 
0.7 


ao 
0.2 
0.4 
0.7 


4300 
10 
20 
30 
40 
50 

4400 
10 
20 
30 
40 
50 


2314 

925-8 
1157.2 

463,0 

694.4 
925.9 
1 157.4 


84.9 
84.7 
84.5 
84.2 
84.0 
83^ 

83.6 
83.3 
83.1 
82.8 
82.6 
824 


169.9 
169.4 
169.0 
168.5 
168.0 
167.6 

167.1 
166.6 
166.2 
165.7 
165.2 
164.7 


254.8 
254.1 
253-4 
252.8 
252.0 
251-3 

25a6 

249.9 
249.2 
248.5 
247.8 
247.1 


337.9 
337.0 
336.0 
335.1 

334.2 
333.2 
332.3 
331-4 
330.4 
329-5 


424.7 
423.6 

422.4 
421.2 
42ao 
418.9 

Hi 
416.6 

415.4 
414.2 
413.0 
41 1.8 


506.9 
505.5 
504.1 
502.7 

S01.3 
499-9 
498.5 
497.0 

495-6 
494-2 


-^5 
30 


'5 


I.I 
1.5 




44** 


4!^ 


5 

10 

15 
20 

25 
30 


ox> 
0.2 
04 
0.7 
I.I 


ao 
a2 
04 
0.7 
I.I 

1-5 


45 00 
10 
20 
30 
40 
SO 


& 

1 1 57.6 


82.1 
81.9 
81.6 
814 
81.2 
80.9 


162.3 
161 .9 


246.4 
245-7 
245.0 
244.2 

243-5 
242.8 


328.5 

326.6 
3256 
324.7 
323-7 


410.6 
40Q.4 
408.2 
407.0 
405.8 
404.6 


492.8 
491.3 

k 

487.0 
485.6 








5 
10 


460 


47^ 


0.0 
a2 


ao 
a2 


4600 
10 
20 

30 
40 

50 


231.6 
4531 

926.3 


80.7 
804 
8a2 
8ao 
79-7 
79-5 


161.4 
160.9 
160.4 
159.9 


242.1 

240.6 

239-9 
230.2 

238.4 


322.8 
321.8 
320.8 
3ia.8 
318.9 
317.9 


4034 
402.2 
401.0 
39Q.8 
398.6 
397-4 


484.1 
482.7 
481.2 
479.8 


15 
20 

25 
30 


0.4 
0.7 
1.1 

1-5 


0.4 
0.7 
1.1 

1.5 




48° 




4700 
10. 
20 
30 
40 
50 


231.6 
g3-2 

1158.0 


79.2 
78.0 


1585 
158.0 

157.5 
157.0 
156.5 
156.0 


237.7 
236.9 
236.2 
235.5 
234.7 
234.0 


316.9 
315-9 
314.9 
314.0 
3130 
312.0 


396.2 
394-9 
3936 
392.4 
391.2 
390.0 


475-4 
473-9 
472.4 
470.9 
469.4 
467.9 


5 
10 

»5 
20 

25 
30 




ao 
0.2 
a4 
0.7 
1.0 




4800 




77-7 


155.5 


233.2 


311.0 


388.7 


4664 


1-5 





Smithsonian Tables. 



137 



Table 24. 

CO-ORDINATES FOR PROJECTION OP MAPS. SCALE viiinr- 

[Derlvrndon of table explamed on pp. lilMvi.] 



48*'oo' 
10 
20 

30 
40 

50 

4900 
10 
20 

30 
40 

SO 

5000 
10 
20 

30 
40 

50 

51 00 
10 
20 

30 
40 

SO 

5a 00 
10 
20 
30 
40 
50 

5300 
10 
20 

30 
40 

50 

5400 
10 
20 
30 
40 
SO 

5500 
10 
20 
30 
40 
SO 

5600 



If! 



231.6 
463-3 

92&6 
1 1 58.2 



2317 
463-^ 

926!8 
1158-4 



^5-1 



2317 
463.5 
695-2 
926.9 
1x53.6 



231.8 
463-5 
6953 

1158.8 



3.6 



231.8 

695-4 

927.2 

1159.0 



463.8 

695-7 

927.6 

1 1 59.4 



231.9 

927.7 
1 159.6 



ABSCISSAS OF DEVELOPED PARALLEL. 



5' 



77-7 
77-5 
77.2 
77.0 
76.7 
76.5 

76.2 
76.0 
75-7 
75-4 
75-2 
74.9 

74.7 
74-* 
74.2 

73-9 
73-6 
734 

73-1 
72.9 
72.6 
72.3 

71.8 

71-5 
71-3 
71.0 

70.7 
70.5 
70.2 

69.9 
69.7 
694 

^i 

68.6 

68.3 
68.0 
67.8 

67.2 
66.9 

66.7 
66.4 
6di 
65.8 
65.6 
65-3 

65.0 



10' 
kmgitade. 



155-5 
155.0 

154.5 
154.0 

153-5 
152.9 

152.4 
151.9 

151-4 
150.9 
150.4 
149.9 



148.8 
148.3 
147.8 

!t^ 

146.2 

145-7 
145.2 
144.7 

144.1 
143-6 

143-1 
142.5 
142.0 

141.5 
140.9 
1404 

139-9 

m 

138.3 
1377 
137.2 

136.6 
136.1 

135-5 
135-0 
134.4 
»33-9 

«33-3 
132.8 
132.2 
"317 
131.1 
130.5 

X30.0 



15' 



233-2 

232.5 
2317 
230.9 
230.2 
229.4 

228.7 
227.9 

227.1 
226.4 
225.6 
224^ 

224X> 

2233 

222.5 
221.7 
22a9 
22ai 

2IQ.4 
218.6 
217.8 
2x7.0 

2X6.2 

2154 

214.6 

213.8 
213.0 

2X2.2 
21X4 

3ia6 
209.8 

20Q.0 

208.2 
206.6 

205.7 
204.9 

204.1 

203.3 

202.4 
201.6 
200.8 

200.0 

:p:3 

195.8 
195.0 



20' 

longitude. 



3"-o 

310.0 
308.9 
307-9 
306.9 

305-9 



270.8 

278.7 
277.6 

276.5 

275-4 
274.3 

273-2 
272.2 
271.0 

2( 



267.8 

266.6 

265.5 

264.4 

263.3 

262.2 
261. X 

260.0 



25- 

longitude. 



388.7 

357-4 
386.2 

384.9 
383.6 
3824 

381.1 

378.6 
377-2 
376.0 
374.7 

373-4 
372.x 
370.8 

366.9 

365-6 
3643 

^P% 
361.6 

3604 
359-0 

3577 
356.4 
355-0 
3537 
3524 
35'i-o 

349.7 



347-0 
345-6 
344.2 
342.9 

341.6 

340-2 
338.8 

3374 
336.0 
334.7 

333-3 
33»-9 
330.5 
329.2 

327.8 
326.4 

3250 



30' 
loqgitode. 



466.4 
464.9 
4634 
461.9 

St 

457-3 
455-8 
454.3 
452.7 
451.1 
449-6 

448.1 
446.5 
445-0 
443-4 
441.8 

440.3 

4387 
437-2 

435-5 
434-0 

432.4 
430.8 

429.2 
427.6 
426.1 

424-4 
422.8 

421.3 

4x3.6 
418.0 
4x6.41 
414.8 

413-1 
4XX.5 

409.9 
408.2 
406.6 
404.9 
403.3 
401.6 

400.0 

i$i 

395-0 
393-3 
391.6 

389.9 



ORDINATES OF 
DEVELOPED 
PARALLEU 



< 


ao 


10 


0.2 


«5 


04 


20 


0.7 


25 


1.0 


30 


1-5 



48** 



ao 
0.2 
04 
0.7 
1.0 

i-S 



520 



ao 
a2 

04 
0.7 
1.0 
1-5 



ao 
a2 

ti 

1.0 
14 



ao 
a2 
04 
a6 
x.o 

14 



4<f 



ao 
a2 
04 
0.7 
1.0 

'•5 



5i» 



ao 
o^ 
04 
0.7 

i-S 



sf 



oo 
o^ 

IJO 

i-S 



Sf 



OlO 

a2 

IJO 

14 



811ITNS011IAN Tables. 



138 



Tabu 24. 
CO-ORDINATES FOR PROJECTION OF MAPS. SCALE j^hj- 

[Derivmtifm of taUe tzplained on pp. liii-lTi.] 



lO 

20 

30 
40 

50 

57 00 

10 
20 

30 
40 

SO 

5800 
10 
20 
30 
40 
50 

S9 0O 
10 

20 

30 
40 

SO 

6000 
10 
20 
30 
40 
SO 

61 00 
10 
20 

30 

40 

SO 

6200 
10 
20 

30 
40 

50 

6300 
10 
20 

30 
40 

50 
6400 




ABSCISSAS OF DEVELOPED PARALLEL. 



5' 
loogttade. 



232.0 
403-9 
695-9 
927.9 
"59-8 



232.0 
404.0 
696UO 
928.0 
ii6ao 



928.8 
1161.0 



928.9 
1161.1 



65.0 
64.7 
64^ 
64.2 

63.6 

$3.3 
63.0 
62.7 
62.5 
62.2 
61.9 

61.6 

6..3 

60.2 

SM 
S9.6 

59-3 

S8-4 
57.8 

S7-5 
57-2 
57.0 
56.7 

56.4 

55.8 

55-5 
55.2 
54.9 

54-6 

54.3 
54.0 

53-7 
53-4 
53-1 

52^ 

52.S 
52.2 

51.6 

5«-3 
Si-o 



loi^tnde. 



130.0 
1204 
128.9 
128.3 
127.7 
127.2 

126.6 
126.0 
125.5 
124.9 
124.3 
123.8 

123.2 
122.6 
122.0 
I2I.5 

I2a9 
I2a3 

X19.7 
119.2 
118.6 
1 18.0 

1;^ 

1 16.3 
1 1 5.7 
115.1 
1 14.5 
"3-9 
"3-3 

1 1 2.7 
IX 2.1 
IX1.5 
1x0.9 
1 10.3 
109.8 

109.2 
108.6 
108.0 

107.4 
X06.8 

I06l2 

105.6 
105.0 
X04.4 
103^ 
103.x 
102.5 

IOI.9 



longitude. 



20' 
longitude. 



95.0 
94.1 

93-3 
92.4 
9X.6 
90^ 

89.9 

111 

85.6 

84.8 

83.9 
83.1 
82.2 
81.4 
8a5 

70.6 
78.7 

77.9 
77.0 
76.x 
75.3 

74.4 

72.6 

7oi 
70.0 

^^ 

67.3 
66.4 



62.8 
61.9 
61.0 
:60.x 
59.2 

58.3 
57.4 

55,6 



X52.9 



26ao 
258.8 

256.6 
255.5 
25M 

253.2 
252.1 
251.0 
240^ 
248.7 

247-5 

246.4 
245.2 
244.1 
242.0 
241.8 
240.6 

239.5 
238.3 
237.2 
236.0 
234-8 
233.7 

232.5 
231.4 
23a2 
229.0 
227.8 

22d6 

225.4 

224.2 
223.x 
221.9 
22a7 
2x9.5 

218.3 
2x7.x 
2x5.9 
214.7 

213.5 
2x2.3 

21X.X 
200.9 
208.7 
207.5 
206.3 
205.x 

203.9 



25' 

longitude. 



325.0 
323.6 
322.2 
320.8 

319.4 
318.0 

316.6 
315.I 
3"3-7 

3ioi 
3094 

308.0 
306.6 
305.1 
303.6 
302.2 
300.8 

299.4 
297.9 
296.4 
295-0 
293.6 
292.1 

2Qa6 
209.2 

286.2 
284.8 
283.3 

281.8 
28a3 
278.8 
277.4 
275.8 
274.4 

272.9 
27X.4 
269.9 
268.4 
26619 
2654 

263.9 
262.4 
260.9 

259-4 
257.8 
256.4 

254.8 



30' 
longitude. 



'3 
386.6 

384.9 
383.2 

381.5 

379-9 
378.1 
3764 
374.8 
373.0 
371.3 

369-6 
367.9 
365.1 
3644 
362.7 
361X) 

359.2 
357.5 
355-7 
354.0 
352.3 
3505 

348.8 
347.0 
345-2 
3434 
341.7 
340.0 

338.2 
3364 
334.6 
332.8 
33'.o 
329-3 

327-5 
325-7 
3239 
322.1 

320.3 
318.5 

3'6.7 
3 '4.9 
313-1 
3"-3 
309.4 
307.6 

305.8 



ORDINATES OF 
DEVELOPED 
PARALLEL. 



5- 
xo 

15 

20 

25 
30 



S6o 



0.0 
0.2 

tt 

1.0 
14 



580 



ao 
0.2 

IjO 
14 



6o<> 



ao 

0.1 

0.0 
0.9 
1-3 



620 



ao 
0.x 

tl 

0.9 
».3 



64^ 



0.0 
0.1 
0.3 

ti 

X.2 



57*^ 



0.0 
a2 

t.l 

1.0 
14 



59^ 



oo 
ax 

tl 

0.9 
1-3 



6i« 



ao 
ai 

U 

0.9 
1-3 



63" 



0.0 
0.1 
0.3 
0.5 
0.9 

x.2 



•MmMOHiAII Tablss. 



139 



:izedbyG00g ¥^ 



Table 24. 

CO-ORDINATES FOR PROJECTION OF MAPS. SCALE ttW 

[Derivation of taUe explained on pp. liii-lTi.] 




ABSCISSAS OF DEVELOPED PARALLEL. 



longitude. 



longitude. 



i-r 



20' 

longitude. 



longitude. 



3^ 

longitude. 



ORDINATES OF 
DEVELOPED 
PARALLEL. 



64O00' 
10 
20 

30 
40 

50 

6500 
10 
20 

30 
40 

SO 

6600 
10 
20 

30 
40 

50 

6700 
10 
20 

30 
40 

50 

6800 
10 
20 
30 
40 
50 

6900 
10 
20 

30 
40 

50 

7000 
10 
20 
30 
40 

50 

71 00 
10 
20 
30 
40 
50 

7200 



232.2 

929.0 
1161.2 



696.9 

929.1 

II6I.4 



464^6 
697.0 

1161.6 



464.8 
697.1 
929.5 
1161.9 



232-4 
464.9 

697.3 
929.7 
1 162.2 



232.5 
464.9 

697.4 
929.8 
1162.3 



51.0 

50.7 
50.4 

49-8 
49-4 

4O 
48.5 
48.2 

47.9 
47.6 

47-3 
47.0 
46.7 
46.4 
46.1 
45-8 

45-4 
45.1 
44-8 
445 
44.2 

43-9 

43-6 
43-2 
42.9 
42.6 

42.3 
42.0 

417 
41.4 
41.0 
40.7 
40.4 
4ai 

39.8 
39-5 

% 

38.2 

37-9 
37.6 

37-2 

S? 

36.3 
35-9 



101.9 
101.3 
100.7 
100. 1 

9^-9 

98.3 
97.7 

96.4 
95.8 
95.2 

94.6 
940 

93-4 
92.7 
92.1 
91.5 

90-9 



89.0 
88.4 
87.7 

87.1 
86.5 
85.9 
85.2 
84.6 
84.0 

83.4 
82.7 
82.1 

8o!8 
80.2 

73.6 
78.9 
78.3 
77.6 
77.0 
76.4 

75-7 
751 

73-2 
72.S 

71.9 



152.9 
152.0 
151.1 
150.2 
149.2 
148.3 

1474 
146.5 
145.6 
1447 
1437 
142.8 

141.9 

141. 
i4ao 

I39-I 
138.2 
137.2 

136.3 
1354 
1344 
133.5 
132.6 
I3».6 

130.7 
129.8 
128.8 
127.9 
126.9 
126.0 

125.0 

1 24. 1 
123.2 
122.2 
121.2 
120.3 

1 19.3 

1 18.4 

1 17.4 

1 16.5 
ii5.| 

1 14.6 

113.6 
1 1 2.6 
111.7 
iia7 

107.8 



203.9 
202.6 
20X.4 
200.2 
199.0 
197.8 

196.6 

1953 
194.1 
192.9 
191.6 
190.4 



188.0 
186.7 
185.5 
184.2 
183.0 

18X.8 
180.5 
170.2 
178.0 
176.8 

174.2 
1730 
171.7 
170.5 
169.2 
168.0 

166.7 
165.4 
164.2 
162.9 
16X.6 
i6a4 

1 59. 1 

'57-S 
156.6 

155.3 
154.0 
152.8 

151.5 
150.2 
148.9 
147.6 
14613 
1450 

143.8 



254.8 

253.3 
251.8 

*5o-3 
248.8 

247.2 

245.7 
244.2 
242.6 
241. 1 
230.6 
238.0 

236.5 
235-0 
233-4 
231.8 

228.8 

227.2 
225.6 
224.0 
222.5 
221.0 
219.4 

217.8 
216.2 
214.6 
213.1 
21 1.6 



208.4 
206.8 
205.2 
203.6 
202.0 
20a 5 

198.9 
197-3 
1957 
194. 1 
192.6 
1 91.0 

186.2 
184.5 
182.9 
181.3 

179.7 



305.8 
304.0 
302.2 
3004 

296.D 

294.8 
293.0 
291.2 
289.3 
287.5 
285.7 

283.8 
281.9 

28ai 
278.2 
2764 
274.5 

272.6 
270.8 
268.9 
267.0 
265.1 
263.2 

261.4 

259-5 
257.6 

2557 
2539 
251.9 

25ai 
248.2 
246.3 
244.4 
242.5 
24a6 

238.7 
236.8 
234.8 
232.9 
231.1 
229.1 

227.2 
225.3 

2234 
221.4 
219.5 
2x7.6 

215.6 



5- 
10 

15 

20 

25 

30 



Smithsonian Tablin. 



0.0 
0.1 
0.3 

Si 

1.2 



66P 



0.0 
at 
0.3 

tl 

I.I 



68« 



ao 
at 
0.3 
0.5 
0.7 
I.I 



70° 



5 


ao 


xo 


o.x 


15 


0.2 


20 


04 


25 


0.7 


30 


1.0 



720 



0.0 
ai 
a2 

St 

0-9 



6f 



ao 
ai 
0.3 



6f 



OjO 

ai 
0.3 



6sP 



ao 
ai 
0.3 
o-S 
0.7 
1.0 



71° 



ao 
ai 
a2 
04 
0.7 
0.9 



140 



gitized by ^30t?^" 



CO-ORDINATES FOR PROJECTION OF MAPS. 

[Derivaticm of table explained on pp. Iiut-ItL] 



Tabu 24 
SCALE TvHf. 





i.. 


ABSCISSAS 


OF DEVELOPED 


PARALLEL. 






1 


•g 


llfi 














ORDINATES OP 


•s^ 














DEVELOPED 


3^ 

J3. 


Sfl^a 


5' 
longitude. 


10' 

longitude. 


longitude. 


20' 
longitude. 


25^ 
longitude. 


30' 

longitude. 


PARALLEL. 




MTM. 


mm. 


mm. 


mm. 


mm. 


mm. 


mum. 


^^ 






7jA)o' 




35-9 


719 


107.8 


143-8 


1797 
1 78.1 
176.5 


2x5.6 


II 


720 


7f 


10 


"'2V2.5' 


35-6 


71.2 
70.6 


106.9 


142.5 


2x3.7 
2II.8 


2^ 






20 


35-3 


105.9 


141.2 








30 


350 


70.0 


104.9 


\m 


1749 


209.9 




mtm. 


mum. 


40 


929.9 


34.6 


&^ 


104.0 


173-2 


207.9 


s' 


ao 


ao 


50 


1 1 62.4 


34.3 


103.0 


137.3 


X7I.6 


206.0 


xo 


ax 


ax 


7300 




34.0 


68.0 


102.0 


136.0 


170.0 


204.1 


IS 
20 


a2 


a2 


10 


"2V2.5' 
465.0 


337 


67.4 


IOI.0 


1347 


'Si 


202.x 


25 


20 
30 


33.4 
330 


^I 


100. 1 

97.1 


1334 
132.2 


166.8 
165.2 


2oa2 
X98.2 


30 


0.9 


0.9 


40 
5P 


1 162.6 


327 
32.4 


§i 


130.8 
129.5 


163.6 
1 61 .9 


196.3 
194.3 
































74^ 


7f 


7400 
10 


T"? 


32.1 
317 


64.. 


96.2 
95.2 


128.2 
127.0 


160.3 
X58.7 


192.4 














20 


31.4 


94.2 


125.6 


157.0 


5 


ao 


0.0 


30 


697.6 


3"i 


62.2 


93-2 


124.3 


155-4 
153-8 


X86.S 
X84.6 


10 


ax 


ax 


40 


1 162.6 


30.8 


61.5 


92.3 


123.0 


IS 


0.2 


a2 


50 
7500 


30.4 
301 


60.9 
60.2 


91-3 


1 21. 8 
120.4 


152.2 
150.6 


182.6 
X80.7 


20 

25 
30 


a8 


0.3 


10 


M 


29.8 


50.6 
56.9 


89.3 


1 19. 1 


148.9 


178.7 








20 


29.4 
11 


P 


H7.8 
1 16.5 


147.2 
145.6 


176.7 








30 


.74.S 




76° 


t^iO 


40 


ii&is 


86.4 


1 1 5.2 


X44.0 


172.8 




77 


50 


28.5 


56.9 


85.4 


"39 


142.4 


X7a8 














7600 




28.1 


Si 


84.4 


1 1 2.6 


140.7 


X68.8 


s 

xo 


ao 
ax 


ao 
0.1 


10 


465^1 


27.8 


83.4 


1 1 1.2 


1390 


X66.9 


IS 

20 

25 

30 


a2 


0.2 


20 
30 


27.5 


55.0 
54.3 


82.4 
81.4 


m 


137.4 
135-8 


164.9 
X62.9 


0.3 
0.5 
0.7 


0.3 
0.5 
0.7 


40 
SO 


ii62i 


26.8 
26.5 

26.2 


537 
530 


80.5 
79-5 

78.5 


107.3 
106.0 


134.2 
132.5 

130.8 


1 61.0 
159.0 


77 00 




523 


104.7 


157.0 








10 


232.6" 


25.8 


517 


77.5 


103.4 


X29.2 


155.0 




78** 


79** 


20 
30 


25-5 
25.2 


51.0 
50.4 


76^5 
755 
74.6 


102.0 
100.7 


127.6 
125.9 


153.1 
151.X 














40 


9304 
1 163.0 


24.8 


497 


r^ 


X24.2 


X49.1 


5 


ao 


0.0 


50 


24.5 


49.0 


73.6 


122.6 


147.1 


xo 


ai 


0.1 


















X5 


0.2 


ax 


7800 




24.2 


48.4 


72.6 


96.8 


121.0 


145.1 


20 


0.3 


0-3 


10 
20 


"232.6' 
465.2 


239 
23s 


477 
47.1 


71.6 
70.6 


95-4 
94.1 


"9-3 
117.6 


143.2 
141.2 


25 
30 


ti 


S2 


30 


697,8 


23.2 


46.4 


60.6 
68.6 
67.6 


92.8 


1 16.0 


139.2 








40 
50 


9304 
1 163.0 


22.9 
22.5 


457 
45.1 


91.4 
90.x 


"4-3 
1 1 2.6 


137.2 
X35-2 














7900 
10 


232.6 
465.2 


22.2 
21.9 


44.4 
437 


66.6 
65.6 


88.8 

52-5 


IXI.O 

109.4 
107.6 


«33-2 
i3'-2 




800 








20 


21.5 


431 


64.6 


86.x 


X29.2 


5 


ao 




30 


6979 


21.2 


42.4 


63.6 


84.8 


106.0 


127.2 


xo 


O.I 




40 


930.5 
1163.1 


20.9 


41.7 


62,6 


83.5 


104.4 
102.6 


125.2 


15 


O.X 




50 


20.5 


41.1 


6i.6 


82.x 


X23.2 


20 


0.2 




















25 


a4 




8000 




20.2 


40.4 


60.6 


80.8 


XOIX) 


121.2 


30 


0.5 





81IITHSOMIAN Tablbb. 



141 



Tablc 25. 

AREAS OP QUADRILATERALS OP EARTH'S SURFACE OF lO"" EXTENT 
IN LATITUDE AND LONGITUDE. 

[Derivrntion of taUe explained oa pp. 1-lfi.] 



Middle 

Latitude of 

Quadrilateral. 


Area in 
Square Miles. 


o*> 


474653 


5 


472895 


10 


467631 


«5 


458891 


20 


446728 


as 


431213 


30 


412442 


35 


390533 


40 


365627 


45 


337890 


SO 


3075U 


55 


274714 


6o 


239730 


65 


202823 


70 


164279 


75 


124400 


80 


83504 


85 


41924 



SiirrHaoNiAii Tables. 



142 



Digitized by 



GooqIc 



Digitized by VjOOQIC 



Tabuc 26. 

AREAS OF QUADRILATERALS OP EARTH'S SURFACE OF 1< 
LATITUDE AND LONGITUDE. 



EXTENT IN 









Middle latitude 
of quadrilateral. 


Area in 
square miles. 


Middle latitude 
o£ quadrilateraL 


Area in 
square miles. 


Middle latitude 
of quadrilateral. 


Area in 
square miles. 


oooo' 

3f> 

1 oo 

I 30 


4752.33 
4752.16 

4751-63 

4750-75 


26P0O' 

26 30 

27 00 
27 30 


4282.50 
4264.51 
4246.20 
4227.56 


52^ oo' 

52 30 

53 00 
53 30 


2950.58 
2851.68 


2 00 

2 30 

3 00 
3 30 


4749-52 
4747.93 
4746^ 
4743-7' 


28 00 

28 30 

29 00 
29 30 


4208.61 
4189.33 


54 00 

54 30 

55 00 
55 30 


2818.27 
2784.^ 

^^•^ 
2716.67 


4 00 

4 30 

5 00 
5 30 


4738^ 
4734.74 
473»-04 


30 00 

30 30 

31 00 
31 30 


4129.60 

4109.06 
4088.21 
4067.05 


56 00 

56 30 

57 00 
57 30 


2647*^5 
2613.13 
2578.19 


6 00 
630 

7 00 
7 30 


4727.00 
4722.61 
4717.86 
4712.76 


32 00 

32 30 

33 00 
33 30 


4045.57 
4023.79 
4001.69 

3979.30 


58 00 

58 30 

59 00 
59 30 


2543.05 
2507.70 
2472.16 
243642 


8 00 

8 30 

9 00 
9 30 


4707.32 


34 00 

34 30 

35 00 
35 30 


3956.59 

3933-59 
3910.28 
3886.67 


60 00 

60 30 

61 00 
61 30 


2364.34 
2338.02 
2291.51 


10 00 
10 30 
IX 00 
u 30 


4667.32 
465943 


36 00 
3630 

37 00 
37 30 


3862.76 

3814.06 
3789.26 


62 00 

62 30 

63 00 
63 30 


2254.82 
2217.04 

2143.66 


12 00 

12 30 

13 00 
13 30 


4651.20 
4642.63 

4633-71 
4624.44 


38 00 

38 30 

39 00 
39 30 


3764.X8 
3738A) 

3687.18 


64 00 

64 30 

65 00 
65 30 


2106.26 
2068.68 
2030.94 
X993.04 


14 00 

14 30 

15 00 
"5 30 


4614.82 
4604.87 

4583^92 


40 00 

40 30 

41 00 
41 30 


366a95 
3634-42 
3607.62 

3580.54 


66 00 

66 30 

67 00 
67 30 


1954.97 
'?*^75 


16 00 

16 30 

17 00 
17 30 


4561.61 
4549.94 
4537.93 


42 00 

42 30 

43 00 
43 30 


3553."7 
3525.54 
3497.62 
3469.44 


68 00 

68 30 

69 00 
69 30 


1801.16 
X 762.33 
1723.38 
1684.24 


18 00 

18 30 

19 00 
19 30 


4525.59 
4512.QO 


44 00 

44 30 

45 00 
45 30 


3440.98 
3412.26 

3383.27 
3354.01 


70 00 

70 30 

71 00 
71 30 


1645-00 
1605.62 
1566.10 
1526.46 


20 00 

20 30 

21 00 
21 30 


4472.81 
4458.78 
4444.41 
4429.71 


46 00 

46 30 

47 00 
47 30 


332449 

3264.68 
3234.39 


72 00 

72 30 

73 00 
73 30 


X446ii 
1406.81 
X366.69 


22 00 

22 30 
•23 00 

23 30 


44x4.67 
4399.30 
4383.80 
4367.57 


48 00 

48 30 

49 00 
49 30 


3203.84 
3x73.04 
3x41.99 
3xia69 


74 00 

74 30 

75 00 
75 30 


132646 

I28dl2 

1245.68 
1205.13 


24 00 

24 30 

25 00 

25 30 


4351.21 
4334.52 
4317.51 
4300.17 


50 00 

50 30 

51 00 
51 30 


3079.15 
3047.37 

2983^08 


76 00 

76 30 

77 00 
77 30 


1 16449 
1x23.75 
1082.91 

1041.99 



Smitnsonian Tables. 



144 



Digitized byLjOOQlC 



AREAS OP QUADRILATERALS OF EARTH'S SURFACE OF V 
^ LATITUDE AND LONGITUDE. 

[DeiivatioD of table ezpbiocd oo pp. 1-liL] 



Tabu 26. 
EXTENT IN 



Middle latitude 
of quadrilateraL 


Area in 
square miles. 


Middle latitude 
of quadrilateral. 


Area in 
square miles. 


Middle latitude 
of quadrilateral. 


Area in 
square miles. 


78^00' 

78 30 

79 00 

79 30 

80 00 

80 30 

81 00 • 
81 30 


iooa99 
959-90 
918.73 
877.49 

836.18 
794.79 
753.34 
7".83 


82O0O' 

82 30 

83 00 

83 30 

84 00 

84 30 

85 00 
85 30 


67a27 
628.64 
586.97 
545-24 

??^ 

419.81 
377.93 


86*>oo' 
8630 
87 00 

87 30 

88 00 

88 30 

89 00 
89 30 


336.02 
294X>8 
252.x I 
2iai2 

168.12 
126.10 
84/7 
42.04 



••■niMeiiMN Tabvu. 



US 



Digitized by 



GooqIc 



Tabuc 27. 

AREAS OF QUADRILATERALS OP EARTH'S SURFACE OF SC EXTENT IN 
LATITUDE AND LONGITUDE. 

[DenYatum of table explained oo pp» HiL] 



Middle latitude 
of quadrilateral. 


Area in 
square miles. 


Middle latitude 
of quadrilateral. 


Area in 
square miles. 


Middle latitude 
of quadrilateral. 


Area in 
square miles. 




d°oo' 
o IS 
30 
45 


1 188.10 
Ii88x)8 
ii88u)S 
ii88xx> 


13° 00' 
13 15 
13 30 
13 45 


115844 
1157.29 
1 1 56.1 2 
"S4-93 


26° 00' 
26 IS 

26 45 


I07a64 
1068.40 
1066.14 
1063.86 




I 00 
I »5 

I 45 


1187.92 
1187^2 
1187.70 
1187.56 


14 00 
M 15 
14 30 
14 45 


1153-72 
115248 
1151.23 
1149.95 


27 00 
27 15 . 
27 30 
27 45 


1061.56 
1059.24 
1056^ 
1054.54 




2 00 
2 IS 
a 30 
a 45 


"87.39 
1187.20 
1186.99 
1186.76 


15 00 
15 15 
15 30 
15 45 


1148.65 
"4733 
"45-99 
1144.63 


28 00 
28 IS 
28 30 
28 45 


1052.16 
1049.76 
1047.34 
1044.90 




3 00 
3 IS 

3 30 
3 45 


1186.S1 
1186.24 

1185.62 


16 00 
16 IS 
16 30 
16 45 


"43.25 
1 141.84 
1 140.41 
1138.96 


29 00 
29 15 
29 30 
29 45 


104244 
1039.97 
103747 
1034.9s 




4 00 
4 15 
4 30 
4 45 


1185.28 
1184.92 
»i|4.53 
1184.13 


17 00 
17 15 
17 30 
17 45 


"37.50 
1136.00 
"34.49 
1132.9S 


30 00 
30 15 
30 30 
30 45 


103241 
1029.85 
1027.27 
1024.68 




5 «> 
5 15 
5 30 
5 45 


1183.70 
"83.24 

1182.28 


18 00 
18 15 
18 30 
18 45 


1131.^1 

1120^3 

1128.24 
1126.63 


31 00 
3" 15 
31 30 
3» 45 


lOt2J06 

101943 

1016.77 
IOI4.IO 




6 00 
6 IS 
6 30 
6 45 


1 181.76 
1 181.22 
1180.66 
ii8ox)8 


19 00 
19 15 
19 30 
19 45 


1124.98 
1123.32 

II2I.64 

" 19.93 


32 00 
32 15 
32 30 
32 45 


IOII40 
1008.69 
1005.90 
1003.20 




7 00 
7 15 
7 30 
7 45 


"7948 
1178^5 
1178.20 
"7753 


20 00 
20 IS 

20 30 
20 45 


11 18.21 

111647 
III4.7I 

1 1 12.92 


33 00 
33 15 
33 30 
33 45 


100043 
997.64 
994.83 
992.00 




8 00 

f '5 
8 30 
8 45 


1176.84 
1 176.13 
"75-39 
"74^3 


21 00 
21 IS 
21 30 

21 45 


IIII.II 
1109.28 

1107.44 
1105.57 


34 00 
34 15 
34 30 
34 45 


98341 
980.50 




9 00 
9 15 
9 30 
9 45 


1173.86 
"73-06 
1172.23 
"71-39 


22 00 
22 IS 
22 30 
22 45 


1103.68 
1101.77 

1099.84 
1097.88 


35 00 
35 15 
35 30 
35 45 


977.58 
974.64 

968,70 




10 00 
IP 15 
10 30 
10 45 


1160.63 


23 00 
23 15 
23 30 

23 45 


1095.91 
1093-92 

IOOI.QO 
108957 


36 00 
36 15 
36 30 
36 45 


^5-70 
962.68 

959.65 
956.60 




II 00 
II IS 
II 30 
" 45 


1166.84 
1165.86 
116^.86 
1163.85 


24 00 
24 15 
24 30 
24 45 


1087.81 
1085.74 
1083.64 
1081.52 


37 00 
37 15 
37 30 
37 45 


953.52 
95043 
947.32 
944.21 




12 00 
12 IS 
12 30 
12 4S 


1 162.81 
1161.75 
1 160.67 
1159.56 


25 00 
25 15 
25 30 
25 45 


1079.39 
1077-23 
1075.05 
1072.85 


38 00 
38 IS 
38 30 
38 45 


941. o< 
937.88 
934.71 
931-51 





Smithmnian Tables. 



146 



Digitized byLjOOQlC 



Tablc 27. 

AREAS OF QUADRILATERALS OP EARTH'S SURFACE OF 3<y EXTENT IN 
^ LATITUDE AND LONGITUDE. 

[Derivation of table explained on pp. 1-lii.] 



Middle latitude 
of quadrilateral. 


Area in 
square miles. 


Middle latitude 
of quadrilateral. 


Area in 
square miles. 


Middle latitude 
of quadrilateral. 


Area in 
square miles. 


39-00' 
39 15 
39 30 
39 45 


928.29 
925.06 
921.80 
9»8-53 


52*^ oo' 
52 IS 
52 30 
52 45 


737.65 
733-57 
729.47 
725.36 


6foo' 
65 15 
65 30 
65 45 


507.74 

493.51 


40 00 
40 15 
40 30 
40 45 


915.25 
911.94 
908.61 
905.27 


53 00 
53 15 
53 30 
53 45 


721.23 
717.08 

11^^ 


66 00 
66 5 
66 30 
66 45 


488.75 

483.97 
479.19 
474.40 


41 00 
41 IS 
41 30 
41 45 


895.14 
891-73 


54 00 
54 IS 
54 30 
54 45 


704.57 
700.38 
696.16 
691.94 


67 00 
67 15 
67 30 
67 45 


469.60 
464.78 
459-96 
455.13 


42 00 
42 15 
42 30 
42 45 


888.30 
881.39 

877-9« 


55 00 
55 15 
55 30 
55 45 


687.70 
683.44 
679.17 
674.89 


68 00 
68 15 
68 30 
68 45 


450.29 

445-45 
440.59 
435.72 


43 00 
43 »5 
43 30 
43 45 


874.41 
870.90 


56 00 
56 15 
56 30 
56 45 


670.60 
666.29 


69 00 
69 15 
69 30 
69 45 


430^4 
425.96 
421.06 
416.16 


44 00 
44 15 
44 30 
44 45 


860.25 
856.67 
853.07 
84946 


57 00 
57 15 
57 30 
57 45 


64^*93 
644.55 
640.17 


70 00 
70 IS 
70 30 
70 45 


411.25 
406.34 
401.41 
39647 


45 00 
45 15 
45 30 
45 45 


|45^2 

842.18 


58 00 
58 15 
58 30 
58 45 


635.77 

^'/^ 
626.93 

622.49 


71 00 
71 15 
71 30 
71 45 


381.62 
376.65 


46 00 
46 15 
46 30 
46 45 


831.13 

823.18 
819.94 


59 00 

59 15 

.59 30 

59 45 


618.05 

613.59 
609.11 
604.62 


72 00 

72 IS 
72 30 
72 45 


36^70 
361.71 
356.71 


47 00 
47 15 
47 30 
47 45 


816.18 

8x2.40 

808.60 
804.79 


60 00 
60 15 
60 30 
60 45 


6oai3 
595.62 


73 00 
73 15 
73 30 
73 45 


336^65 


48 00 
48 15 
48 30 
48 45 


800.97 
797.13 
79327 
789.39 


61 00 
61 15 
61 30 
61 45 


582.01 
568.30 


74 00 
74 15 
74 30 
74 45 


331.62 
326.58 

316^48 


49 00 
49 »5 
49 30 
49 45 


^78?:S 

777.68 
773.74 


62 00 
62 15 
62 30 
62 45 


563.71 
559." 

549^ 


75 00 
75 15 
75 30 
75 45 


306.36 
301.28 
296.21 


50 00 
50 15 
50 30 
50 45 


769.79 
765.83 
761.85 

757.85 


63 00 
63 15 
63 30 
63 45 


545-23 
540.58 
535.92 
531.25 


76 00 
76 15 
76 30 
76 45 


291.12 
286.04 
280.04 
275.84 


51 00 
5» IS 
51 30 
51 45 


7S3.84 
749.82 
745.78 
741.72 


64 00 
64 15 
64 30 
64 45 


517.17 
51246 


77 00 
77 15 
77 30 
77 45 


265.62 
260.50 
255-38 



SliiTHaoNMN Tables. 



147 



Tabu 27. 

AREAS OP QUADRILATERALS OF EARTH'S SURFACE OF 30" EXTENT IN 
LATITUDE AND LONGITUDE. 

[DerivatioD of table explained oo pp. HiL] 



Middle latitude 
of quadrilateral. 


Area in 
square miles. 


Middle latitude 
of quadrilateral. 


Area in 
square miles. 


Middle latitude 
of quadrilateral. 


Area in 
square miles. 


78^00' 
78 IS 
78 30 
78 45 


2sa25 
245.12 
239.98 
23i83 


♦ 82^00' 
82 15 
82 30 
82 45 


167.57 
162.37 
157.16 
151.9s 


86*>oo' 
86 IS 
86 30 
8645 


84.01 
78.76 


79 00 
79 '5 
79 30 
79 45 


229.68 
224.53 
219.37 
214.21 


83 00 
83 IS 
83 30 
83 45 


146.74 
141.53 
136.31 
'31*09 


87 00 
87 15 
87 30 
87 45 


63^3 
57.78 

47.28 


80 00 
80 15 
80 30 
80 45 


203.88 
198.70 
193-52 


84 00 
84 15 
84 30 
84 45 


125.87 
I2a64 
115.42 
1 10.18 


88 00 
88 45 


26.27 


81 00 
81 15 
81 30 
81 45 


188.34 
183.11 
177.96 
172.77 


85 00 
85 15 
8s 30 
85 45 


104.95 
99-72 


89 00 
89 15 
89 30 
89 45 


21.02 
15.76 

laSi 
5.26 



SnrrNaoHiAii Tables. 



14S 



Digitized by 



GooqIc 



Digitized by 



GooqIc 



Table 28. 

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 1B^ EXTENT IN 
LATITUDE AND LONGITUDE. 

[Derivadoii ol table esplaioed on pp. 1-liL] 



Middle latitude 
of quadrilateral. 


Area in 
square miles. 


Middle latitude 
of quadrilateral. 


Area in 
square miles. 


Middle latitude 
of quadrilateral. 


Area in 
square miles. 


o°07'3o" 

15 00 
22 30 
30 00 


297^2 

297X>2 

297.02 
297.01 


6° 3/30" 
6 45 00 

6 52 30 

7 00 00 


295.09 
295.02 

294.95 
294.87 


13" 07-30" 
13 15 00 
13 22 30 
13 30 00 


28947 
289x53 


37 30 
45 00 

52 30 

1 00 00 


297.01 
297.00 


7 07 30 
7 15 00 
7 22 30 
7 30 00 


294.79 
294.71 

294.63 

294.55 


13 37 30 
13 45 00 

13 52 30 

14 00 00 


288^ 
288.7J 
288.58 
288.43 


I 07 30 
I 15 00 
I 22 30 
I 30 00 


296.94 
296.93 


7 37 30 
7 45 00 

7 52 30 

8 00 00 


294.47 
294.39 
294.30 
294.21 


14 07 30 
14 15 00 
14 22 30 
14 30 00 


288.28 
288.12 


I 37 30 
I 45 00 
I 52 30 
3 00 00 


SOI 


8 07 30 
8 15 00 
8 22 30 
8 30 00 


294-12 
294.03 
293-94 
293.85 


14 37 30 
14 45 00 

14 52 30 

15 00 00 


287.65 
28749 
287.33 
287.17 


2 07 30 
2 15 00 
2 22 30 
2 30 00 


296.82 
296.80 
296.77 
296.75 


8 37 30 
8 45 00 

8 52 30 

9 00 00 


293-66 
293.56 
293.47 


15 07 30 
15 15 00 
15 22 30 
15 30 00 


287^00 

28d83 
28667 
286.50 


2 37 30 
2 45 00 

2 52 30 

3 00 00 


^72 

296.66 
296.63 


9 07 30 
9 15 00 
9 22 30 
9 30 00 


29337 
293.27 
293.16 
293.06 


15 37 30 
15 45 00 

15 52 30 

16 00 00 


28633 
286.I6 


3 07 30 
3 15 00 
3 22 30 
3 30 00 


296.56 
296.53 
29649 


9 37 30 
9 45 00 

9 52 30 
10 00 00 


292.05 
292.85 

292.74 
292.63 


16 07 30 
16 15 00 
16 22 30 
16 30 00 


285.64 
*!546 
285.28 
285.10 


3 37 30 
3 45 00 

3 52 30 

4 00 00 


29645 

296.36 
296.32 


10 07 30 
10 15 00 
10 22 2f> 
10 30 00 


292.52 
29241 
292.30 
292.19 


16 37 30 
16 45 00 

16 52 30 

17 00 00 


284.92 
284.38 


4 07 30 
4 15 00 
4 22 30 
4 30 00 


296.28 
296.23 
296.1I 
296.13 


10 37 30 
10 45 00 

10 52 30 

11 00 00 


292.07 
291.05 
291^3 
291.71 


17 07 30 
17 15 00 
17 22 30 
17 30 00 


284.19 
284.00 
283.81 
283.62 


4 37 30 
4 45 00 

4 52 30 

5 00 00 


296.08 
296.03 
295.98 
295.93 


II 07 30 
II 15 00 
II 22 30 
II 30 00 


291.59 
29147 
291.34 

291.22 


17 37 30 
17 45 00 

17 52 30 

18 00 00 


28343 
283.24 


5 07 30 
5 15 00 
5 22 30 
5 30 00 


295.87 
295.81 
295.75 
295.69 


" 37 30 
II 45 00 

11 52 30 

12 00 00 


29I.Og 

290.70 


18 07 30 
18 15 00 
18 22 30 
18 30 00 


282.66 
28246 
282.26 
282.06 


5 37 30 
5 45 00 
5 52 30 
00 00 


295-63 
29557 
295.51 

29544 


12 07 30 
12 15 00 
12 22 30 
12 30 00 


290-57 
290.44 
290.30 
290.17 


18 37 30 
18 45 00 

18 52 30 

19 00 00 


281.86 
281.66 

28145 
281.25 


6 07 30 
6 15 00 
6 22 30 
6 30 00 


295-37 
295-31 
295.24 
295.17 


12 37 30 
12 45 00 

12 52 30 

13 00 00 


289.75 
289.61 


19 07 30 
19 15 00 
19 22 30 
19 30 00 


281.04 
280.83 
280.62 
28041 



Smithsonian Tables. 



150 



Digitized by VjUUV It: 



Table 28. 

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 1B^ EXTENT IN 
^ LATITUDE AND LONGITUDE. 

[Dertvmtion of table explained oo pp. 1-Ui.] 



Middle latitude 
of quadrilateral. 


Area in 
square miles. 


Middle latitude 
of quadrilateral. 


Area in 
square miles. 


Middle latitude 
of quadrilateral. 


Area in 
square miles. 


19^ 37' 30" 
19 45 00 

19 52 30 

20 00 00 


280.20 
279-99 
279-77 
279-55 


26<>o7'3o'' 
26 15 00 
26 22 30 
26 30 00 


267.38 
267.10 
266.82 
266.54 


32° 37' 30" 
32 45 00 

32 52 30 

33 00 00 


251.15 
25a8o 

250.45 
250.11 


20 07 30 
20 15 00 
20 22 30 
20 30 00 


279-34 
273.12 


26 37 30 
26 45 00 

26 52 30 

27 00 00 


266.25 
265.39 


33 07 30 
33 15 00 
33 22 30 
33 30 00 


249.76 
249.41 
249.06 
248.71 


20 37 30 
20 45 00 

20 52 30 

21 00 00 


278.46 
278.23 
278xx> 
277.78 


27 07 30 
27 15 00 
27 22 30 
27 30 00 


265.10 
264.81 
264.52 
264.23 


33 37 30 
33 45 00 

33 52 30 

34 00 00 


248.36 
248.00 

247.65 
247.29 


21 07 30 
21 15 00 
21 22 30 
21 30 00 


277.55 
277-32 


27 37 30 
27 45 00 

27 52 30 

28 00 00 


|r4 

263.34 
263.04 


34 07 30 
34 15 00 
34 22 30 
34 30 00 


246.93 
246.57 
246.21 

245-85 


21 37 30 
21 45 00 

21 52 30 

22 00 00 


276.63 
276.39 
276.16 
275.92 


28 07 30 
28 15 00 
28 22 30 
28 30 00 


262.74 
262.44 
262.14 
261.84 


34 37 30 
34 45 00 

34 52 30 

35 00 00 


245-49 
245-»3 
244.76 
244.40 


22 07 30 
22 15 00 
22 22 30 
22 30 00 


275.68 

275-44 
275.20 
274.96 


28 37 30 
28 45 00 

28 52 30 

29 00 00 


261.53 
261.23 

260.61 


35 07 30 
35 15 00 
35 22 30 
35 30 00 


243.29 
242.92 


22 37 30 
22 45 00 

22 52 30 

23 00 00 


274.72 
27447 
274.22 

273-98 


29 07 30 
29 15 00 
29 22 30 
29 30 00 


260.30 

259-99 
259.68 

259.37 


35 37 30 
35 45 00 

35 52 30 

36 00 00 


242.55 
242.18 
241.80 
241.43 


23 07 30 
23 15 00 
23 22 30 
23 30 00 


273-73 
273.48 
273-23 
272.^ 


29 37 30 
29 45 00 

29 52 30 

30 00 00 


250.05 

258.74 
258.42 
258.X0 


36 07 30 
36 15 00 
36 22 30 
36 30 00 


241.05 
240.67 
240.29 
239-91 


23 37 30 
23 45 00 

23 52 30 

24 00 00 


272.72 
272,47 
272.21 
271.95 


30 07 30 
30 15 00 
30 22 30 
30 30 00 


257.78 
257.46 

257.14 
256.82 


36 37 30 
36 45 00 

36 52 30 

37 00 00 


239.53 
239.15 

238.38 


24 07 30 
24 15 00 
24 22 30 
24 30 00 


271.69 
271.44 
271.17 
270.91 


30 37 30 
30 45 00 

30 52 30 

31 00 00 


256.49 
256.17 
255.84 
255.52 


37 07 30 
37 15 00 
37 22 30 
37 30 00 


237.99 
237.61 
237.22 
236.83 


24 37 30 
24 45 00 

24 52 30 

25 00 00 


TJOM 

270.38 

27a 1 1 

269.85 


3« 07 30 
31 15 00 
31 22 30 
31 30 00 


254.53 
254.19 


37 37 30 
37 45 00 

37 52 30 

38 00 00 


236.44 
236.05 
235.66 
235.26 


25 07 30 
25 15 00 
25 22 30 
25 30 00 


269.58 
269.31 


31 37 30 
31 45 00 

31 52 30 

32 00 00 


25386 
253-53 
25319 
252.85 


38 07 30 
38 15 00 
38 22 30 
38 30 00 


234.87 
234-47 

233-68 


25 37 30 
25 45 00 

25 52 30 

26 00 00 




32 07 30 
32 15 00 
32 22 30 
32 30 00 


252.51 
252.17 

251-83 
251.49 


38 37 30 
38 45 00 

38 52 30 

39 00 00 


233.28 
232.88 
23248 
232.07 



SnrrNaoNiAN Tables. 



151 



Tablk 28. 

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF IS' EXTENT IN 
LATITUDE AND LONGITUDE. 





[Derivatioo of table ex 


plained OQ pp. 1-ifi.] 




Middle latitude 


Area in 
square miles. 


Middle latitude 
of quadrilateral. 


Area in 
square miles. 


Middle latitude 
of quadrilateral. 


Area in 
square miles. 


39^0/30" 
39 '5 00 
39 22 30 
39 30 00 


231.67 
231.27 
230^ 
230^5 


45° 3/30" 
45 45 00 

45 52 30 

46 00 00 


200.17 
208.71 
208.25 
207.78 


S2*>07'30" 
52 15 00 
52 22 30 
52 30 00 


183.90 

182.37 


39 37 30 
39 45 00 

39 52 30 

40 00 00 


230.04 
229.63 
220.22 
228^1 


46 07 30 
46 15 00 
46 22 30 
46 30 00 


206.39 
205.92 


52 37 30 
52 45 00 

52 52 30 

53 00 00 


180.82 
180.31 


40 07 30 
40 15 00 
40 22 30 
40 30 00 


228.40 
227.99 
227.57 
227.15 


46 37 30 
46 45 00 

46 52 30 

47 00 00 


205.45 
204.99 
204.52 
204.05 


53 07 30 
53 15 00 
53 22 30 
53 30 00 


179-79 
179.27 

178.75 
178.23 


40 37 30 
40 45 00 

40 52 30 

41 00 00 


226.73 
226.32 
225.90 
225.48 


47 07 30 
47 15 00 
47 22 30 
47 30 00 


203.57 
203.10 
202.63 
202.15 


53 37 30 
53 45 00 

53 52 30 

54 00 00 


177.71 

176.67 
176.14 


4» 07 30 
41 15 00 
41 22 30 
41 30 00 


225.06 
224.64 
224.21 
223.79 


47 37 30 
47 45 00 

47 52 30 

48 00 00 


201.67 
201.20 
200.72 
20a 24 


54 07 30 
54 15 00 
54 22 30 
54 30 00 


175.62 
175.10 

174.57 
174^ 


41 37 30 
41 45 00 

41 52 30 

42 00 00 


223.36 
222.93 
222.50 
222.08 


48 07 30 
48 15 00 
48 22 30 
48 30 00 


199.76 
198.32 


54 37 30 
54 45 00 

54 52 30 

55 00 00 


173.51 
172.99 
17246 

171-93 


42 07 30 
42 15 00 
42 22 30 
42 30 00 


221.65 
221.21 
220.78 
22a35 


48 37 30 
48 45 00 

48 52 30 

49 00 00 


197.83 
196.38 


55 07 30 
55 «5 00 
55 22 30 
55 30 00 


170M 

170.33 
169.79 


42 37 30 
42 45 00 

42 52 30 

43 00 00 


219.91 
21948 
210.04 
218.60 


49 07 30 
49 15 00 
49 22 30 
49 30 00 


195.89 
195.40 

194.91 
194.42 


55 37 30 
55 45 00 

55 52 30 

56 00 00 


169.26 
168.72 
168.19 
167.65 


43 07 30 
43 »5 00 
43 22 30 
43 30 00 


218.16 

217.73 
217.28 
216.84 


49 37 30 
49 45 00 

49 52 30 

50 00 00 


193-93 
193-44 
192.94 

192.45 


56 07 30 
56 15 00 
56 22 30 
56 30 00 


167. II 

166.03 
16549 


43 37 30 
43 45 00 

43 52 30 

44 00 00 


216.40 
215.96 
215,51 
2tsJo6 


50 07 30 
50 15 00 
SO 22 30 
50 30 00 


191.95 
I9M6 
190.96 
19046 


56 37 30 
56 45 00 

56 52 30 

57 00 00 


163^ 
163.32 


44 07 30 
44 15 00 
44 22 30 
44 30 00 


214.61 
214.17 
213.72 
213.27 


50 37 30 
50 45 00 

50 52 30 

51 00 00 


189.96 
18Q.46 
188.96 
188.46 


57 07 30 
57 15 00 
57 22 30 
57 30 00 


162.78 
162.23 
161.68 
161.14 


44 37 30 
44 45 00 

44 52 30 

45 00 00 


212.82 
212.37 
211.9Z 
211.46 


51 07 30 
51 »5 00 
51 22 30 
51 30 00 


187.96 
187.46 
186.95 
186.45 


57 37 30 
57 45 00 

57 52 30 

58 00 00 


160.59 

i6ao4 

159.49 
158.94 


45 07 30 
45 15 00 
45 22 30 
45 30 00 


2tI.OO 
210.55 
210.09 
209.63 


51 37 30 

51 45 00 
51 52 30 
52^ 00 00 


185.94 
185.43 
184.92 
18441 


58 07 30 
58 15 00 
58 22 30 
58 30 00 


158.39 
157^4 
157.29 

156^73 



Smithsonian Tanlcs. 



152 



Digitized byLjOOQlC 



Table 28. 

AREAS OF QUADRILATERALS OP EARTH'S SURFACE OF 16' EXTENT IN 
LATITUDE AND LONGITUDE. 

[Derivation of table explained on pp. 1-lii.] 



Middle latitude 
of quadrilateral. 



Area in 
square miles. 



Middle latitude 
of quadrilateral. 



Area in 
square miles. 



Middle latitude 
of quadrilateral. 



Area in 
square miles. 



58** 37' 30'' 

58 45 00 

58 52 30 

59 00 00 

59 07 30 

59 15 00 

59 22 30 

59 30 «> 

59 37 30 

59 45 00 
39 52 30 
00 00 00 

60 07 30 
60 15 00 
60 22 30 
60 30 00 

60 37 30 

60 45 00 

60 52 30 

61 00 00 

61 07 30 

61 15 00 

61 22 30 

61 30 00 

61 37 30 

61 45 00 

61 52 30 

62 00 00 

62 07 30 

62 15 00 

62 22 30 

62 30 00 

62 37 30 

62 45 00 

62 52 30 

63 00 00 

$3 07 30 

63 15 00 

63 22 30 

63 30 00 

53 37 30 

63 45 00 

63 52 30 

64 CO 00 



64 
64 



07 30 

15 00 

22 30 

30 00 

37 30 

45 00 

52 30 



65 00 00 



156.18 
155.62 
155-07 
154.51 

15396 
153-40 
152.84 
152.28 

151.72 
151-16 
150.60 
.150-03 

14947 
148.91 
148.34 
14777 

147.21 
146.64 
146.07 
145.50 

144-93 
14430 
143-79 
143.22 

142.65 
142.08 
141-50 
140.93 

140.35 
I39-78 

13C62 

13804 
137.47 
136.89 

136.31 

135.73 
»35-iS 
134.56 
133-98 

133-40 
132.81 

132.23 
131.64 

131-06 

'3°-47 
129.88 
129.29 

128.70 
128.12 

127-53 
126.94 



65** 07' 30" 

65 15 00 

65 22 30 

65 30 00 

65 37 30 

65 45 00 

65 52 30 

66 00 00 

66 07 30 

66 15 00 

66 22 30 

66 30 00 

66 37 30 

66 45 00 

66 52 30 

67 00 00 

67 07 30 

67 15 00 

67 22 30 

67 30 00 

67 37 30 

67 45 00 

67 52 30 

68 00 00 

68 07 30 

68 15 00 

68 22 30 

68 30 00 

68 37 30 

68 45 00 

68 52 30 

69 00 00 

69 07 30 

69 15 00 

69 22 30 

69 30 00 

69 37 30 

69 45 00 

69 52 30 

70 00 00 

70 07 30 

70 15 00 

70 22 30 

70 30 00 

70 37 30 

70 45 00 

70 52 30 

71 00 00 

71 07 30 

71 15 00 

71 22 30 

71 30 00 



26.34 

25.75 
25.16 

24.57 

2397 
23.38 
22.78 
22.19 

21.59 
20.99 
2040 
19.80 



19.20 
18.60 
18.00 
1740 

16.80 
16.20 

15.59 
14.99 

14.39 
13.78 
13.18 
12.57 

11.97 
11-36 
10.76 
10.15 

09.54 
493 
08.32 
07.71 

07.10 

fsM 

05-27 

04.65 
04.04 

03.43 
02.81 

02.20 

0159 
00.97 
00.35 

99-74 
99.12 

97.88 

96.65 
96.03 
95.41 



710 37' 30- 
71 45 00 

71 52 30 

72 00 00 

72 07 30 

72 15 00 

72 22 30 

72 30 00 

72 37 30 

72 45 00 

72 52 30 

73 00 00 

73 07 30 

73 15 00 

73 22 30 

73 30 00 

73 37 30 

73 45 00 

73 52 30 

74 00 00 

74 07 30 
74 15 00 
74 22 30 
74 30 00 

74 37 30 

74 45 00 

74 52 30 

75 00 00 

75 07 30 

75 15 00 

75 22 30 

75 30 00 



75 37 30 

75 45 00 

52 30 

00 00 



^ 



76 07 30 

76 15 00 

76 22 30 

76 30 00 

76 37 30 

76 45 00 

76 52 30 

77 00 00 

77 07 30 

77 15 00 

77 22 30 

77 30 00 

77 37 30 

77 45 00 

77 52 30 

78 00 00 



94.78 
94.16 

93-54 
92.92 

f.M 

91.05 
90.43 

89.80 
89.18 
88.55 
87.93 

87.30 
86.67 
86.05 
85.42 

84-79 
84.16 

8353 
82.91 

82.28 
81.65 
81.01 
80.38 

79.75 
70.12 

7849 
77.86 

77.22 
76.59 
75-95 
75.32 

74.69 
74.05 
7342 
72-78 

72-14 
71.51 
70.87 
70.24 

69.60 
68.96 
(8.32 
67.& 

67.04 
66.41 
65.77 
65.13 

63-85 
63.20 
62.56 



SiimMONiAN Tables. 



153 



Tam^ 28. 

AREAS OP QUADRILATERALS OP EARTH'S SURPACE OP 16' EXTENT IN 
LATITUDE AND LONGITUDE. 





a 


»eriTmtion ol taUe txplaiMd on pp. 1-liL] 




Middle latitude 
of quadrilateral. 


Area in 
square miles. 


Middle latitude 
of quadrilateral. 


Area in 
square miles. 


Middle latitude 
of quadrilateraL 


Areafai 
square milts. 


78^07' 30" 
78 15 00 
78 22 30 
78 30 00 


61.92 
61.28 
60.64 
6aoo 


8/>o7'30" 
82 15 00 
82 22 30 
82 30 00 


41.24 
40.59 
39.94 
39-29 


86^ 07' 30" 
86 15 00 
86 22 30 
86 30 00 


20.35 
19.69 


78 37 30 
78 45 00 

78 52 30 

79 00 00 


59-35 

58.06 
57^ 


82 37 30 
82 45 00 

82 52 30 

83 00 00 


38.64 
37.99 


86 37 30 
86 45 00 

86 52 30 

87 00 00 


17.72 
17.07 
1641 
15.76 


79 07 30 
79 15 00 
79 22 30 
79 30 00 


56.78 
56.13 
55-49 
54-84 


83 07 30 
83 15 00 
83 22 30 
83 30 00 


36.03 
35-38 

34.08 


87 07 30 
87 IS 00 
87 22 30 
87 30 00 


15.10 
14-44 
13.79 
13.13 


79 37 30 
79 45 00 

79 52 30 

80 00 00 


54.20 

53.55 
52.91 

52.26 


83 37 30 
83 45 00 

83 52 30 

84 00 00 


3342 
32.77 
32.12 

3*47 


87 37 30 

87 45 00 
IJ 52 30 

88 00 00 


Il!82 

11.16 
ia5i 


80 07 30 
80 15 00 
80 22 30 
80 30 00 


51.62 
50.97 


84 07 30 
84 15 00 
84 22 30 
84 30 00 


30.81 
30.16 


88 07 30 
88 15 00 
88 22 30 
88 30 00 


1^85 


80 37 30 
80 45 00 

80 52 30 

81 00 00 


47.08 


84 37 30 
84 45 00 

84 52 30 

85 00 00 


28.20 
26.24 


f! 37 30 
88 45 00 

88 52 30 

89 00 00 


7.»a 
6-S7 
S-?i 


81 07 30 
81 15 00 
81 22 30 
81 30 00 


4644 
4579 
45.14 

44-49 


85 07 30 
85 15 00 
85 22 30 
85 30 00 


25.58 
24.93 
24.27 
23.62 


89 07 30 
89 15 00 
89 22 30 
89 30 00 


4.60 

2.63 


81 37 30 
81 45 00 

81 52 30 

82 00 00 


43.84 
43.19 

41^9 


85 37 30 
85 45 00 

85 52 30 

86 00 00 


22.97 

21.00 


89 37 30 
89 45 00 

89 52 30 


1.97 



•■mMOMAN Taslm. 



154 



Digitized by 



GooqIc 



Digitized by 



GooqIc 



Table 29. 

AREAS OF QUADRILATERALS OP EARTH'S SURFACE OF lO" EXTENT IN 
LATITUDE AND LONGITUDE. 





[Derivatkxi of table expUined on pp. l-UL] 




Middle latitude 
of quadii]ateral. 


Area in 
square miles. 


Middle latitude 
uf quadrilateral. 


Area in 
square mUes. 


Middle latitude 
of quadrilateral. 


Area in 1 
square miles. 


0^05' 
15 
25 
35 


132.01 
132.01 
132.01 
132.00 


8-45' 

8 55 

9 OS 
9 15 


130.SJ 
130.46 
13040 
130.34 


17^ 25^ 
17 35 
17 45 
17 55 


126111 
126100 
125.88 
125.77 


45 

55 

1 OS 

> IS 


132.00 
i3'-99 


9 25 
9 35 
9 45 
9 55 


I3a28 
I3a22 

130.15 
130.09 


18 OS 
18 IS 
18 2S 
18 35 


125.65 

125.54 
125.42 

125.30 


I 25 
« 35 
I 45 
I 55 


131-97 
131.96 

131-95 
i3«-94 


10 OS 
10 IS 
10 2S 
10 35 


130.02 
129.06 
129.89 
129.82 


18 45 

18 5S 

19 OS 
19 IS 


125.18 
125.06 
124.94 
124.81 


2 OS 
2 IS 

2 2S 

« 35 


i3»-93 
13^-91 


10 45 

10 S5 

11 OS 
II IS 


129.76 

129.61 
129.54 


19 2S 
19 35 
19 45 
19 55 


124.69 
124.56 
124.44 
124.31 


« 45 

2 55 

3 OS 
3 >5 


131-86 

131-84 
131.82 
131-80 


II 2S 

" 35 
" 45 
" 55 


129.47 

129.39 
129.32 
129.24 


20 OS 
20 IS 

20 2S 

20 35 


124.18 
124.05 
123.92 
123.79 


3 25 
3 35 
3 45 
3 55 


131.78 
131.76 

i3'-74 
i3'-7i 


12 OS 
12 IS 
12 25 
12 35 


129.16 
129.08 
129.00 
128.92 


20 45 

20 55 

21 OS 
21 IS 


123.66 
123.52 
123-39 
123.25 


4 OS 
4 15 
4 25 
4 35 


131.68 
131.66 
131-63 
131.60 


12 45 

12 ss 

13 OS 
13 15 


128.84 
128.76 
128.67 
I28.S9 


21 2S 

21 35 
21 45 
21 SS 


123.12 
122.98 

I22i4 
12270 


4 45 

4 55 

5 OS 
5 15 


131-57 
131-54 
131.SO 

i3«-47 


13 25 
13 35 
13 45 
13 55 


128.50 
128.41 
128.33 
128.24 


22 OS 
22 IS 

22 2S 

22 35 


122.56 
122.42 
122.28 
122.13 


5 25 
5 35 
5 45 
5 55 


131-44 
131.40 
131.36 
131.33 


14 OS 
14 15 
14 2S 
M 35 


128.14 
1 28.0 J 
127.06 
12737 


22 45 

22 55 

23 OS 

23 15 


121.09 

121.84 
121.69 

121.5s 


6 OS 

6 2S 
6 35 


131.29 

131.25 
131.21 
131. 16 


14 45 

14 55 

15 OS 
15 »5 


127.77 
127.67 
127.S8 
127.48 


23 2S 

23 35 
23 45 
23 55 


121.40 
121.25 

I2I.I0 

I2a94 


6 45 

6 55 

7 OS 
7 15 


131.12 
131.07 
131.03 
130.98 


IS 2S 

15 35 
»5 45 
»5 55 


127.38 
127.28 
127.18 
127.08 


24 OS 
24 15 
24 25 
24 35 


I2a79 
I2a64 
I2a48 
'2a33 


7 2S 
7 35 
7 45 
7 55 


130.84 
130.79 


16 OS 
16 IS 
16 2S 
16 35 


126.08 
126.87 
126.77 
126.66 


24 45 

24 55 

25 05 
25 15 


120.17 
120.01 
"9-85 
119.69 


8 OS 

f '5 
8 2S 

8 35 


130.63 
130.57 


16 45 

16 SS 

17 OS 
17 IS 


126.SS 
126.44 
126.33 
126.22 


25 2S 

25 35 
25 45 
25 55 


"9-53 
"9.37 
1 19.21 

119.04 










•igitizea Dy ^ 





156 



Tablk 29« 

AREAS OP QUADRILATERALS OP EARTH'S SURPACE OP lO" EXTENT IN 
^ LATITUDE AND LONGITUDE. 

[Derinuion of table explained on pp. 1-liL] 



Middle latitude 
of quadrilateral. 


Area in 
square miles. 


Middle latitude 
of quadrilateral. 


Area in 
square miles. 


Middle latitude 
of quadrilateral. 


Area in 
square miles. 


26^05' 
26 15 
26 25 
26 35 


118.87 
.118.71 
118.54 
118.37 


34^45' 

34 55 

35 05 
35 IS 


108.94 
108.73 
108.51 
108.29 


43^*25- 
43 35 
43 45 
43 55 


96.50 
96.24 
95.98 
9571 


26 45 

26 55 

27 OS 
27 1$ 


1 18.21 
118.04 

"7^7 
117.69 


35 25 
35 35 
35 45 
35 55 


108.07 
107.85 
107.63 
107.41 


44 05 
44 15 
44 25 
44 35 


95.45 
95.19 
94.92 
94.65 


27 25 
27 35 
27 45 
27 55 


117.52 
"7-35 
117.17 
116.99 


36 OS 
36 IS 
36 25 
36 35 


106.74 

106.51 


44 45 

44 55 

45 05 
45 IS 


94.38 
94.11 
93.84 
93.58 


28 05 
28 IS 
28 25 
28 35 


116^2 
116.64 
116.46 
116.28 


3645 

36 55 

37 05 
37 IS 


106.29 
106.06 

105.83 

105.60 


45 25 
45 35 

45 45 
45 55 


93.30 
9303 
92.78 
9248 


28 45 

28 55 

29 05 
29 15 


116.10 
115.92 
"5-73 
"5-55 


37 25 
37 35 
37 45 
37 55 


105-37 
105.14 


46 05 
46 15 
46 25 
46 35 


92.21 
91.38 


29 25 
29 35 
29 45 
29 55 


"5.37 
115.18 

114.99 
114^1 


38 05 
38 IS 
38 25 
38 35 


10444 
104.21 

103.97 
103.74 


46 45 

46 55 

47 OS 
47 IS 


91.10 
9a82 

90.55 
90.27 


30 OS 
30 IS 
30 25 
30 35 


114.62 

114-43 
114.24 

H4.04 


3845 

38 55 

39 OS 
39 15 


103.50 

103.26 
103.02 
102.78 


47 25 

47 35 
47 45 
47 55 


89.99 
89.70 
89.42 
89.14 


30 45 

30 55 

31 05 
31 15 


"347 
113.27 


39 25 
39 35 
39 45 
39 55 


102.54 
102.30 
102.06 
101.82 


48 05 
48 15 
48 25 
48 35 


88.85 
88.00 


31 25 
31 35 
3« 45 
31 55 


HIS 

112.68 
112.^8 


40 OS 
40 15 
40 25 
40 35 


101.57 
101.33 

101.08 
100.83 


48 45 

48 55 

49 OS 
49 15 


87.71 
87.42 


32 05 
32 15 
32 25 
32 35 


112.28 
112.08 
1 1 1.87 
1 1 1.67 


40 45 

40 55 

41 OS 
41 15 


100.59 

ioa34 
100.09 
99.84 


49 25 
49 35 
49 45 
49 55 


till 


32 45 

32 55 

33 05 
33 15 


111.47 
1 1 1.26 
111.06 
110.85 


41 25 
41 35 
41 45 
41 55 


99.59 
99.33 

9^:83 


50 05 
50 15 
50 25 
SO 35 


85.39 

8+80 
84.50 


33 25 
33 35 
33 45 
33 55 


110.64 

110.43 
110.22 
iiaoi 


42 05 

• 42 15 

42 25 

42 35 


98.57 

98.06 

97.80 


50 45 

50 55 

51 05 
51 15 


84.21 

83.31 


34 OS 
34 15 
34 25 
34 35 


109.80 
109.59 

109.37 
109.16 


42 45 

42 55 

43 05 
43 15 


97.55 
97.29 

97.03 
96.77 


51 25 

51 35 
51 45 
51 55 


83.01 
82.71 
82.41 
82.11 



SMrrNSONiAN Tasixs. 



157 



Tam^ 29. 

AREAS OF QUADRILATEIIALS OP EARTH'S SURFACE OF lO" EXTENT IN 
LATITUDE AND LONGITUDE. 









Middle latitude 
afqaadrilateral. 


Area in 
square miles. 


Middle latitude 
of quadrilateral. 


Area in 
square miles. 


Middle latitude 
of quadrilateral. 


Area in 
square miks. 


52^05- 
52 15 

52 2S 

52 35 


81.81 
81.51 
81.20 
8a90 


60^45- 

60 55 

61 05 
61 IS 


f5-i7 
64.84 

^^ 
64.16 


69^25- 
69 35 
69 45 
69 55 




52 45 

52 55 

53 OS 
S3 15 


8060 
8a20 
79.98 


61 25 
61 35 
61 45 
61 55 


63.82 
6348 
63.14 
62.80 


70 05 
70 15 
70 25 
70 35 


45.51 

44-78 
44.42 


S3 25 
53 35 
S3 45 
S3 55 


79.37 
7Q.06 

7|75 
78^ 


62 05 
62 15 
62 25 
62 35 


62.46 
62.12 
61.78 
61.44 


70 45 

70 55 

71 OS 
71 15 


445s 
4^69 

43-32 
42.9s 


54 OS 
54 15 
54 2S 
54 35 


7813 
77.82 

77.51 
77.19 


62 45 

62 55 

63 05 
63 15 


61.10 
60.75 
60.41 
60.06 


71 25 
71 35 
71 45 
71 55 


42.58 
42.22 
41.85 
41.48 


54 45 

54 55 

55 OS 
55 IS 


7^88 

76.57 
76.25 

75-94 


63 25 
^3 35 
63 45 
63 55 


59.72 
59.37 


72 05 
72 15 
72 25 
72 35 


41.11 
40.74 
40.37 


55 25 
55 35 
55 45 
55 55 


75.62 
7530 
74.99 
74.67 


64 OS 
64 15 
64 25 
64 35 


58.33 
57.99 
57.64 
57.29 


72 45 

72 55 

73 05 
73 15 


38.52 


56 OS 
56 IS 

56 2S 

56 35 


74.35 
74.03 

73.71 
73-39 


64 45 

64 55 

65 05 
65 15 


56.94 
56.59 
56.24 
55.89 


73 25 
73 35 
73 45 
73 55 


38.15 
37.78 
37.41 
37.03 


56 45 

56 55 

57 05 
57 15 


7307 
72.75 
72.43 
72.10 


65 25 
65 35 
65 45 
65 55 


55-54 
55-19 
54-83 
54.48 


74 OS 
74 15 

74 25 
74 35 


36^ 
36.29 
35.91 

35-54 


57 25 
57 35 
57 45 
57 55 


71.78 
71.46 

7113 
7a8o 


66 05 
66 15 
66 25 
66 35 


54-13 
53.78 
53.42 
53.06 


74 45 

74 55 

75 05 
75 15 


35-17 
34-79 
34-42 
3404 


58 OS 

58 15 
58 25 

58 35 


70.48 

69.82 
69.49 


66 55 

67 OS 
67 15 


52.71 

52.35 
52.00 

51.64 


75 25 
75 35 
75 45 
75 55 


33-66 
3329 
32.91 
32.53 


58 45 

58 55 

59 OS 
59 15 


68.51 
68.18 


67 25 
67 35 
67 45 
67 55 


51.28 
50.93 
50.57 
50.21 


76 05 
76 15 
76 25 
76 35 


32.16 
3>-78 
31.40 
31-03 


59 25 
59 35 
59 45 
59 55 


67.84 

f7-5' 
67.18 

66.85 


68 OS 
68 IS 
68 25 
68 35 


49.85 
49-49 
49-13 
48.77 


76 45 

76 55 

77 05 
77 15 


30.65 
30.27 
29.89 
29.51 


60 05 
60 15 
60 25 
60 35 


66.51 
66.18 
65.84 
65.51 


^ ^5 

68 55 

69 05 
69 15 


48.41 
48.05 
47.69 
47.33 


77 25 
77 35 
77 45 
77 55 


mi 

28.37 
27.99 



Smithsonian Taslcs. 



158 



Digitized byLjOOQlC 



Table 29. 

AREAS OF QUADRILATERALS OF EARTH'S SURFACE OF 10" EXTENT IN 
LATITUDE AND LONGITUDE. 





[Derimtion of uble explaioed on pp. 1-lii.] 




Middle latitude 
of quadrilateral. 


Area in 
square miles. 


Middle latitude 
of quadrilateral. 


Area in 
square miles. 


Middle latitude 
of quadrilateral. 


Area in 
square miles. 


yfos- 
78 15 

78 35 


27.62 
27.24 
26.85 
26.47 


82° OS' 
82 15 
82 25 
82 35 


18.43 
18.04 
17.65 
17.27 


86^05' 
86 15 
86 25 
8635 


Q.14 

h 

7-97 


78 45 

78 55 

79 05 
79 15 


26.09 
25.71 

25-33 
24.95 


82 45 

82 55 

83 OS 
83 15 


16.88 
16.50 
16.11 
15-73 


8645 

86 55 

87 05 
87 15 


7.59 
7.20 
6^1 
6.42 


79 25 
79 35 
79 45 
79 55 


24.18 
23.80 
2342 


83 25 
83 35 
83 45 
^3 55 


15-34 
14.95 

14-57 
14.18 


87 25 
87 35 
87 45 
87 55 


6.03 
5.64 


80 05 
80 15 
80 25 
80 35 


23.04 
22.65 
22.27 
21.89 


84 05 
84 15 
84 25 
84 35 


'3-79 
13.40 
13.02 
12.63 


55^5 
88 15 
88 25 
88 35 


447 

4-09 
3-70 
3-31 


80 45 
80 55 
8i 05 
8i 15 


21.50 
21.12 

20.73 
20.35 


84 45 

84 55 

85 OS 

85 15 


\ts6 
11.47 
11.08 


5! *5 

88 55 

89 05 
89 15 


2.92 

2.53 
2.14 
1-75 


81 25 
81 35 
81 45 
81 55 


1997 
19-58 
19.20 
18.81 


8s 25 
85 35 
85 45 
85 55 


ia69 

10.30 

9.92 

^53 


89 25 
89 35 
89 45 
89 55 


1.36 
0.19 



SMrTNaoNiAN Tables. 



IS9 



Digitized by 



GooqIc 



Table 30. 

DETERMINATION OP HEIGHTS BY THE BAROMETER. 
Formula of Babinot. 

Bo + B 
C(in feet) = 52494 [i + ?a±I=l§4l — English Measures. 

C (in metres) = 16000 I i H '^^^^^ I — Metric Measures. 

In which Zss Difference of height of two stations in feet or metres. 

^o, i9= Barometric readings at the lower and upper stations respectively, corrected for 
all sources of instrumental error. 
tot /= Air temperatures at the lower and upper statbns respectively. 



Values of C. 



ENGLISH MEASURES. 



METRIC MEASURES. 



H'o+O- 


logC. 


C. 


F. 




Feet. 


icy> 


4.69834 


49928 


'5 


.70339 


505" 


20 


.70837 


5*094 


25 


.71330 


51677 


30 


.71818 


52261 


39 


4.7*300 


52844 


40 


.72777 


53428 


45 


.73248 


54OII 


50 


.73715 


54595 


55 


.74177 


55178 


eo 


4.74633 


55761 


65 


.75085 


56344 


70 


'75532 


56927 


75 


.75975 


575" 


80 


.76413 


58094 


85 


4.76847 


58677 


90 


.77276 


59260 


95 


.77702 


59844 


100 


.78123 


60427 



*fe+0. 


logC 


C. 


c 




Metres. 


— icy> 

— 8 

— 6 

— 4 

— 2 


4.18639 

.19000 

.19357 
.19712 

.20063 


'5360 

15616 
15744 
15872 




+2 

t 
8 


4.20412 
.20758 

.21 lOI 
.21442 
.21780 


16000 
16128 
16256 
16384 
16512 


10 

12 

18 


4.2211 C 

.22448 
.22778 
.23106 
.23431 


16640 
16768 
16896 
17024 
17152 


ao 

22 

'A 

28 


4.23754 
.24075 

.24393 
.24709 
.25022 


17280 
17408 

17792 


30 

32 

J8 


4.25334 
.25843 
.25950 
.26255 


18176 
18304 



8iirrN«oiiiAN Taslks. 



160 



Digitized by 



Google 



MEAN REFRACTION. 



Table 31 • 






Refraction. 



P 



Refraction. 






Refraction. 



CO -t^ 



Refraction. 






Refraction. 



lO 

20 
40 



10 
20 
30 
40 

50 



30 
40 



10 
20 

30 
40 



4 o 



ID 
20 

30 
40 



10 
20 
30 

-2L 



60 



10 
20 

30 
40 

7 o 



34 $4-1 



3249.2 

30523 

29 3-5 
27 22.7 

25 49-8 



2424.6 



23 6.7 
21 55.6 
20 50.9 
51.9 
58.0 



8-^:6 



723.0 
640.7 

6 0.9 
5234 
4 47-8 



4146 



343-7 
3'S-o 
248.3 
223.7 
2 0.7 



l^± 



I 18.3 
058.6 
039.6 
021.2 
o 3-1 



«i 



94^.5 



930.9 
916.0 

848.4 
835.6 



IlU 



8 1 1.6 
8 0.3 
7 49-5 
7 39^ 
729.2 



719.7 



134-9 
1 16.9 
108.8 
100.8 
9»-9 
85.a 
77-9 
71. 1 
64.7 
59.0 
53-9 



7 o 



10 
20 
30 
40 
JO 



8 o 



45-6 
4>.3 
39-8 
37-5 
35-6 
33.a 
30.9 
a8.7 
36.7 
34.6 
33.0 

31.8 
30.6 

19.7 

19.0 

18.4 

17.9 
16.8 

15.6 

14.9 
14. 1 

X3.5 

13.8 
13.3 

11.7 

it.3 
ie.8 
10.3 

XOiA 

95 



10 
20 

30 
40 

J2- 



90 



10 
20 
30 
40 



10 
20 
30 
40 



10 

20 
30 
40 

50 



10 
20 
30 
40 

J^ 



13 o 



10 
20 

30 
40 

J2. 



14 o 



7 '9-7 



710.5 

653.3 
645.1 

637.2 



629.6 



622.3 
615.2 
6 8.4 
6 1.8 



549:1 



543.3 
537.6 
532.0 
526.5 



516.2 



511.2 
5 6.4 
5 1.7 

457.2 
452.8 



448.5 



444-3 
4 4a2 

436.3 
4324 
428.7 



425c 



421.4 
4 18.0 
414.6 

4 "3 
4 8.1 



4 4-9 



4 1.8 
358.8 
3 55-9 
353.0 
IiO:2 



347-4 



14 o 



20 

40 



347.4 
342.1 

1 .37-0 



20 
40 



16 o 



20 
40 



17 o 



20 
40 



20 
40 



20 
40 



20 o 
20 

40 



21 O 



20 
40 



20 
40 



23 



20 
40 



24 O 



20 
40 



20 
40 



26 O 



40 



27 o 



20 

40 



28 o 



3 32-1 



327-4 
322.9 



318-6 



314.5 
Ijoj 



6.6 



3 2.9 

2 59:3 



155:8 



252.5 
2 49-3 



246.1 



243.1 
240.2 



237.3 
234.5 



^29.3 



226.8 

2_2_4i3 
2 21.9 



2 19.6 
2174 



i^ 



213.0 
2 10.9 



2 8.9 



2 7.0 



2 14 
'59.6 



157.8 



I 56.1 
I 52.8 



I 51.2 
'49.7 



148.2 



28 o 



20 

29 o 



20 
40 



30 o 



20 

40 



20 
40 



il. 



20 
40 



33 o 



20 
40 



JHJ 



20 

40 



35 o 
20 
40 



36 o 



20 
40 



iZ_ 



20 
40 



380 



20 

— ±'1 
390 



20 
40 



40 o 



20 

40 



4' o 



20 
40 



42 o 



48.2 



46.7 
^3:3 



43-8 
42.4 
41.0 



397 



38.4 



iii 



34.5 

22± 



3O.J 
29.8 



28.7 
27.6 
26.5 

25-4 
24.3 

12:3 
22.3 

21.3 
20.3 

19.3 
18.3 
174 



26,5 
15.6 
14.7 
13^ 
12.9 
12.0 



10.3 

_SJ 

JiZ 

7.9 

7-1 

5.5 
4.7 
4.0 



64.0 
61.8 



59.7 
57.7 

53.8 
51.9 

CO. 2 



i2 



51 
52 

54 

5Z 



^^ 33.3 



33.3 
32.0 
30.7 
294 
28.2 
26.9 

£iZ. 



El 



45.1 

43-5 
41.9 
40.4 



36.1 



24.5 

23.3 
22.2 



21.0 



17.7 
7S5" 
15-5 
14-S 



134 
12.3 
1 1.2 



ia2 



I:; 

4-1 
ao 



1.9 

t.9 

t.7 
1.8 

t-7 
t.6 
1.6 
1.6 
-5 
.5 



.0 
4.0 
4.« 



SiimiaoiiiAN Tablkb. 



161 



Digitized by 



GooqIc 



Tablc 32. 



FOR CONVERSION OP ARC INTO TIME. 



o 



h. m. 






h. m. 





h. m. 





h. m. 





h. m. 





h. m. 


/ 


m. s. 


*f 


s. 




60 


4 


120 


8 


180 


12 


240 


16 


300 


20 











oooo 




I 


It 


61 


ti 


121 


5 i 


181 


12 4 


241 


16 4 
16 8 


301 


20 4 
20 8 


I 


4 


I 


ao67 




2 


62 


122 


8 8 


182 


12 8 


242 


302 


2 


8 


2 


0133 




^ 


012 


63 


412 


123 


812 


183 


12 12 


243 


16 12 


,303 


2012 


3 


012 


3 


a2oo 




4 


016 


64 


416 


124 


816 


^ 


12 16 


244 


1616 


i^ 


2016 


4 


016 


4 


0.267 




5 


020 


65 


420 


125 


820 


1220 


245 


1620 


2020 


5 


020 


5 


0-333 




6 


024 


66 


424 


126 


824 


186 


1224 


246 


1624 


306 


2024 


6 


024 


6 


a40o 




I 


028 


% 


428 


127 


828 


\'^ 


1228 


247 


1628 


307 


2028 


I 


028 


\ 


0.467 




032 


432 


128 


S32 


1232 


248 


1632 


308 


2032 


032 


0.600 




II 


036 


69 


436 


129 


836 


189 
190 


1236 


249 


1636 


W 


20 3C 


-rl 


036 


9 




040 


70 


440 


130 


840 


1240 


250 


1640 


310 


2040 


040 


10 


0.007 




044 


7> 


444 


131 


844 


191 


1244 
1248 


2SI 


1644 
1648 


3" 


2044 


II 


044 


II 


0-733 




12 


048 


72 


448 


132 


848 


192 


252 


312 


2048 


12 


048 


12 


0.800 




13 


052 


73 


452 


133 


5sf 


193 


1252 


253 


1652 


313 


2052 


«3 


052 


13 


0^67 




U 


056 
I 


^5 


4 5^ 

5 


I'S 


856 
9 


1% 


1256 
13 


2^ 


1656 
17 


^'5' 


2056 
21 


1'^ 


056 
I 


il 


0-933 
1.000 




i6 


\i 




5 4 


•36 


9 4 


196 


'3 i 


256 


'7 i 
17 8 


316 


lit 


16 


\i 


16 


1^)67 




\l 


77 


5 8 




9 8 


\t^ 


13 8 


257 


3'7 


\l 


«7 


1.133 




1 12 


78 


S'2 


138 


912 


13 12 


2S8 


17 12 


318 


21 12 


1 12 


18 


1.200 




19 


116 


79 


5^6 


139 


916 


199 


13 16 


259 


17 16 


319 


21 16 
21 20 
2124 


-^ 


116 
I 20 


^ 


1.267 




20 

21 


I 20 
124 


80 


520 


140 


920 


200 


1320 


2&) 

261 


17 20 
1724 


320 

321 


1-333 




81 


S24 


141 


924 


201 


1324 


21 


\U 


21 


1.400 




22 


128 


82 


528 


142 


928 


202 


1328 


262 


1728 


322 


2128 


22 


22 


1.467 




23 


132 


53 


532 


143 


932 


203 


1332 


263 


1732 


323 


21 32 


23 


132 


23 


1.600 




24 


136 


«4 


536 


144 


9 3<> 


^ 


^33^ 


264 


1736 


324 


2136 


^ 


136 


ii 




25 


140 


85 


540 


145 


940 


1340 


265 


1740 


325 


21 40 


140 


25 


1.667 




26 


144 


86 


S44 


146 


9':^ 


206 


1344 


266 


1744 


326 


2144 


26 


144 


26 


1-733 




27 


148 


|g 


548 


'47 


207 


1348 


267 


'748 


327 


2148 


27 


148 


27 


1.800 




28 


I S2 


552 


148 


952 


208 


«3 52 


268 


'752 


328 


2152 


28 


152 


7& 


1.867 




29 


156 


89 


556 


1 49 


956 

10 


209 


1356 


269 


1756 
18 


330 

331 


21 56 

22 
22 4 


29 


156 


29 


'•933 
2.000 




30 


2 


90 


6 


150 


210 


14 


270 


30 

31 


2 


30 




31 


2 4 


91 


6 4 


'5* 


10 4 


211 


14 4 
14 8 


271 


'5 i 


2 i 


31 


2.067 




32 


2 8 


92 


6 8 


152 


10 8 


212 


272 


18 8 


332 


22 8 


32 


2 8 


32 


2-133 




33 


2 12 


93 


612 


I S3 


10 12 


213 


14 12 


273 


18 12 


333 


2212 


33 


2 12 


33 


2.200 




^ 


216 
220 


^ 


616 
620 


1'^ 


10 16 
1020 


214 
215 


14 16 
1420 


27^5' 


18 16 
1820 


^ 


22 16 
2220 


i^ 


216 
220 


^ 


2.267 
2.333 




36 


224 


96 


624 


156 


1024 


216 


1424 


276 


1824 


336 


2224 


36 


lU 


36 


2.400 




37 


228 


97 


628 


'57 


1028 


^^l 


1428 


277 


1828 


337 


2228 


37 


^l 


2.467 




38 


232 


98 


632 


IS8 


1032 


218 


1432 


278 


1832 


3.38 


2232 


,38 


232 


38 


2.600 
2.667 
2-733 




_39 
40 


236 


99 


636 


159 


1036 
1040 
1044 


219 
220 


M3<' 
1440 


279 

280 

281 


1836 

1840 


^ 


223b 
2240 
2244 


39 
40 


236 


39 




240 


100 

lOI 


640 


160 


240 


40 




41 


244 


644 


161 


221 


1444 


1844 


.341 


41 


244 


41 




42 


248 


102 


648 


162 


1048 


222 


1448 


282 


1848 


342 


2248 


42 


248 


42 


2.800 




43 


252 


103 


652 


163 


10 52 


223 


1452 


283 


1852 


343 


2252 


43 


252 


43 


2.867 




44 


2S6 


104 


656 


164 


1056 


224 


1456 


284 


1856 


.344 


22 56 


44 


256 


44 


2-933 




45 


3 


105 


7 


165 


II 


225 


IS 


2B5 


19 


345 


23 


45 


3 


45 


3.000 




46 


3 4 


106 


7 i 


166 


II 4 


226 


'5 4 


286 


19 4 


346 


"3 4 


46 


3 i 


46 


3.067 




47 


3 « 


107 


7 8 


167 


II 8 


227 


15 8 


^SZ 


19 8 


347 


23 8 


47 


3 8 


47 


3133 




48 


312 


108 


712 


168 


II 12 


228 


IS12 


288 


19 12 


348 


2312 


48 


312 


48 


3.200 




49 
50 


316 


109 


716 
720 


169 


II 16 


229 


15 16 


289 


19 16 
1920 
1924 


349 
350 

351 


23 16 
2320 
2324 


49 
50 

'5' 


316 
320 
324 


49 3-267 

50 3.333 




320 


110 

III 


170 

171 


II 20 
II 24 


230 

23* 


1520 
1524 


290 

291 




SI 


324 


51 


3.400 




S2 


328 


112 


728 


172 


II 28 


232 


1528 


292 


1928 


352 


2328 


52 


328 


52 


3-467 




S3 


332 


"3 


732 


^73 


II 32 


233 


1532 


293 


'932 


353 


2332 


53 


332 


53 


3.600 




^5' 


336 


114 


736 


174 


II 36 


2^^ 


1536 


2^15' 


1936 


3^5^ 


233^ 


^ 


33^ 


^5^ 




340 


115 


740 


175 


II 40 


IS40 


1940 


2340 


340 


3.667 




S6 


344 


116 


7 44 


176 


1144 


236 


1544 


296 


1944 


356 


2344 


56 


344 


56 


3-733 






34« 


"7, 


748 


177 


II 48 


237 


1548 


297 


1948 


357 


2348 


57 


348 


57 


3.800 




58 


3S2 


118 


752 


178 


1152 


238 


1552 


298 


1952 


35« 


2352 


58 


352 


58 


3.867 




59 
60 


356 


119 


756 


179 


11 56 

12 


239 

240 


1556 


299 


J9J? 
20 


359 
360 


23 S^' 

24 


59 
60 


4 


59 
60 


3i933_ 
4.000 




4 


120 


8 


IBO 


16 


300 































Smithsonian Tables. 



162 



Digitized byLjOOQlC 



Tabu 33. 



FOR CONVERSION OP TIME INTO ARC. 



Hours of Time into Arc. 


Time. 


Arc. 


Time. 


Arc 


Time 


Arc 


Time. 


Arc 


Time. 


Arc 


Time 


Azc 


krs. 





hrs. 





Ars. 





hrs. 





hrs. 





hrs. 





1 


15 


5 


75 


9 


135 


13 


195 


17 


255 


21 


315 


2 


30 


6 


90 


10 


:is 


14 


210 


18 


% 


22 


330 


3 


45 


7 


105 


11 


15 


225 


19 


23 


SI 


4 


60 


8 


120 


12 


180 


16 


240 


20 


300 


24 


Minut 


es of Time int 


Arc. 


Seconds of Time into Arc. 


Dl. 


' 


m. 


' 


m. 


/ 


s. 


f /f 


s. 


/ tf 


8. 


f tt 


1 


015 


21 


5»S 


41 


10 15 


1 


015 


21 


515 


41 


10 15 


2 


030 


22 


530 


42 


1030 


2 


030 


22 


530 


42 


1030 


3 


04s 


23 


VI 


43 


1045 


3 


045 


23 


\'l 


43 


1045 


4 


I 


24 


44 


II 


4 


I 


24 


44 


II 


5 


I 15 


25 


6 IS 


45 


II IS 


5 


I 15 


25 


615 


45 


" 15 


6 


»30 


26 


630 


46 


II 30 


6 


130 


26 


630 


46 


II 30 


I 


MS 
2 


% 


645 
7 


% 


"45 
12 


\ 


145 
2 


% 


645 
7 


% 


11 45 

12 


9 


215 


29 


715 


49 


12 15 


9 


215 


29 


715 


49 


12 15 


10 


230 


30 


730 


50 


1230 


10 


230 


30 


730 


50 


1230 


II 


2 45 


31 


I'l 


5' 


1245 


II 


2 45 


31 


VI 


5» 


1245 


12 


3 


32 


52 


13 


12 


3 


32 


52 


13 


13 


315 


33 


V^ 


53 


13 '5 


13 


3*5 


33 


v^ 


53 


13 15 


14 


330 


34 


830 


54 


1330 


14 


330 


34 


830 


54 


1330 


15 


3 45 


35 


845 


55 


1345 


15 


3 45 


35 


845 


55 


1345 


i6 


4 


36 


9 


56 


14 


16 


4 


36 


9 


56 


14 


15 


415 


37 


915 




14 15 


^7 


415 


37 


9»S 




14 15 


430 


3» 


930 


58 


1430 


18 


430 


3» 


930 


1430 


19 


4 45 


39 


9 45 


59 


1445 


19 


4 45 


39 


9 45 


59 


1445 


20 


5 


40 


10 


60 


15 


20 


5 


40 


10 


60 


15 




Hundr 


edths of a Sec 


ond of 


Time into Arc. 


Hundredths 






















of a Sec- 


.00 


.01 


.02 


.03 


.04 


.05 


.06 


.07 


.08 


.09 


ond of Time. 






















s. 


// 


// 


// 


tf 


f* 


// 


// 


tf 


tt 


tt 


0.00 


0.00 


0.IS 


?iS 


0.45 


0.60 


0.75 


a9o 


1.05 


1.20 


ai 


.ID 


1.50 


1.6S 


1.95 


2.10 


2.25 


2.40 


2-55 


2.70 


.20 


3-00 


3.15 


l^ 


3-45 


3.60 


3-75 


3-90 


4.05 


4.20 


t^i 


•30 


4.50 


4.65 


4.95 


6!6o 


6.75 


&90 


5-55 


5.70 


.40 


6.00 


6.15 


6.30 


6.45 


7.05 


7.20 


7.35 


0.50 


7.50 


7.65 


7.80 


7.95 


8.10 


8.25 


8.40 


8.55 


8.70 


8.85 


.60 


9.00 


9.15 


9-30 
laSo 


9-45 


9.60 


9.75 


9.90 


10.05 


10.20 


11^5 


■^ 


10.50 


10.65 


10.95 


II. 10 


11.25 


11.40 


"55 


11.70 


12.00 


12.15 


13-80 


1245 


12.60 


12.75 


12.90 


1305 


13.20 


13-35 
14^5 


^ 


»3-5o 


1365 


1395 


14.10 


14-25 


14.40 


M-55 


14.70 



8iirrH«ONiAii Taslcs. 



163 



Digitized byLjOOQlC 



Take 84. 



CONVERSION OP MEAN TIME INTO SIDEREAL TIME. 





m 


m 


m 


m 












8 





I 


2 


3 














h m s 


h m t 


h m t 


h m • 


s 


m s 


s 


m s 




O 


000 


6 S15 


12 10 29 


18 1544 


oxx> 





a5o 


3 3 




I 


065 


6 II 20 


12 1634 


18 21 49 


aoi 


4 


0.51 


3 6 




2 


12 10 


61725 


12 2240 


182754 


0.02 


7 


0.52 


310 




3 


018 16 


62330 


122845 


'8 33 59 


0^3 


Oil • 


0.53 


3 '4 




4 


02421 


62936 


"34 50 


1840 5 


ao4 


018 
022 


0.54 


3 '7 




1 


03026 
03631 


^35 4« 
64146 


124055 
1247 I 


18 46 10 
18 52 15 


ao6 


a56 


321 




I 


04237 


6475J 


1253 6 


185820 


0.07 


026 


0.57 




04842 


65356 


12 59 II 


19 426 


ao8 


029 


0.58 


332 




9 


054 47 


702 


'3 5«6 


19 10 31 


0.09 


033 


0.59 


3 35 




10 


I 052 


7 6 7 


13 II 21 


19 16 36 


0.10 


037 


0.60 


3 39 




II 


I 658 


7 12 12 


13 17 27 


19 22 41 


0.1 1 


040 


0.61 


Vd 




12 


'*3 3 
1 19 8 


7 18 17 


13 23 32 


192847 


ai2 


044 


0.62 




«3 


72423 
73028 


13 29 37 


'93452 


0.13 


047 


0.63 


350 




14 


I 25 13 


13 35 42 


19 40 57 


ai4 


051 


0.64 


354 




15 


131 19 


1$'^ 


13 41 48 


1947 2 


0.16 


058 


0.65 
0.66 


3 57 




i6 


I 3724 


13 47 53 
135358 

14 3 


'9 53 7 


4 I 




\l 


14329 
14934 


74844 

7 54 49 

8 054 


'9 59 '3 
20 5 18 


0.17 
ai8 


I 2 

I 6 


0.67 
0^ 


U 




«9 


I 5540 


14 6 9 


20 1 1 23 
20 17 28 


ai9 


I 9 


a69 


412 




20 


2 I 45 


8 659 


1412 14 


0.20 


' '3 


0.70 


416 




21 


2 750 


813 5 


14 18 19 


202334 


0.21 


' '7 


0.7' 


4 '9 




22 


2135s 


8 19 10 


142424 


202939 


0.22 


1 20 


0.72 


423 




23 


2 20 I 


82515 


143030 


203544 


a23 


I 24 


0.73 


427 




24 


226 6 


83120 


'43635 


20 4' 49 


0.24 


I 28 


0.74 


430 




^ 


*3J" 


83726 


14 42 40 


204755 


tU 


'3' 


a76 


434 




23816 


8433' 


144845 


2054 


'35 


438 




S 


24422 


84936 


14 54 5" 


21 5 


a28 


'39 


0.78 


441 




25027 


85541 


15 056 


21 6 10 


142 


4 4S 




29 


2S6^2 


9 147 


IS 7 I 


21 12 16 


0-29 


146 


0.79 


449 




30 


3 237 


9 752 


15 13 6 


21 18 21 


0.30 


I 50 


OJtiO 


452 




3« 


3 843 
3M48 


9 '3 57 


151912 


21 24 26 


0.31 


' 53 


0^1 


456 




32 


920 2 


15 25 17 


21303' 


0.32 


'57 


0^2 


4 59 




33 


l^^ 


926 8 


15 31 22 


21 36 37 


0.33 


2 I 


a83 


5 3 




34 


9 32*3 
938 «» 


153727 


21 42 42 


0.34 


^ i 


o|4 


5 7 




11 


3 33 3 


154333 
154938 


21 48 47 


a^ 


2 8 


0^5 
0^ 


S'o 




3 39 9 


94423 
9 50 28 


21 5452 


2 II 


5 '4 




? 


3 45M 


16 I 48 


22 058 


a38 


215 


0^7 


518 




3 5« 19 


95634 


22 7 3 

2213 8 


219 


0^ 


521 




39 


3 57 24 


10 239 


16 7 54 


0.39 


2 22 


0^ 


525 




40 


4 330 


10 844 


16 13 59 


22 19 13 


0.40 


226 


a90 


529 




41 


4 9 35 


10 14 49 


16 20 4 


22 25 19 


041 


230 


0.91 


5 32 




42 


41540 


10 20 55 


1626 9 


22 31 24 


042 


233 


a92 


536 




43 


42145 


1027 


16 32 14 


223729 


0-43 


237 


0-93 


540 




44 


42751 


1033 5 


16 38 20 


22 43 34 


0^ 


241 


0.94 


5 43 




*d 


43356 
440 I 


10 39 10 
10 45 16 


164425 
165030 


22 49 39 

22 55 45 


t^ 


ajt 


0.95 
a95 


5 47 
5 5' 




47 


446 6 


10 51 21 


165635 


23 ' 50 


047 


252 


a97 


5Si; 




48 


45212 


10 57 26 


*7 24' 


23 7 55 


o^8 


255 


0.98 


1^ 




49 


45817 


" 331 


17 846 


23 '4 


0.49 


2 59 


0.99 




«;o 


5 422 


" 9 37 


17 14 51 


2320 6 


0.50 


3 3 


1.00 


6 5 




5> 


51027 


II 1542 


17 20 56 


23 26 II 












52 


5>6 33 
52238 


II 21 47 


1727 2 


23 32 '6 


Exa 


iiiiple : Let 


the given 
32'.S6. 


L mean 




S3 


II 27 52 


1733 7 


233821 


time 1 


bt 14^ 57- 






54 


52843 
53448 


"3358 


17 39 '2 


234427 


The 


i table give 


» 






II 


II 40 3 
II 46 8 


17 45 17 


235032 


first f 


or 14^54- 


51" 2-2 


7* 




54054 


17 5' 23 

17 57 28 

18 938 


23 56 37 


thenf 


or 2 


41 < 


344 




p 


54659 


II 52 13 


*4 2^2 






2 2 


7-44 




5 53 4 


II 5819 


24 848 


Th« 


( sum 








59 


5 59 9 


12 424 


24 '4 S3 


"i^ 


32'.56+2- 
required & 


ide^lfdi 


15* OP OP 
ne. 




60 


6 515 


12 10 29 


18 15 44 


242058 





Smithsonian Tanlks. 



164 



Digitized byLjOOQlC 



Tablk 86. 



CONVERSION OP SIDEREAL. TIME INTO MEAN TIME. 





m 


m 


m 


m 










8 





I 


2 


3 












h m s 


h m t 


h m s 


h m s 


• 


m s 


s 


m • 


O 


000 


6 615 


12 12 29 


18 1844 


0.00 





0.50 


3 3 


I 


066 


6 12 21 


12 18 35 


18 24 50 


0.01 


4 


0.51 


3 7 


2 


12 12 


61827 


122442 


18 30 56 


0.02 


7 


0.52 


310 


3 


018 19 


•6 24 33 


123048 


1837 2 


0.03 


II 


0.53 


l\t 


4 


02425 


63040 


123654 


1843 9 


0.04 


^^5 
018 


0.54 


1 


03031 


63646 


1243 


184915 


0.05 
0.00 


0.56 


321 


03637 


64252 


1249 7 


18 55 21 


022 


325 


7 


04244 


64858 


12 55 13 


19 1 27 


0.07 


026 


0.57 


329 


8 


048 50 


655 4 


13 1 19 


19 7 34 


0.08 


29 


0.58 


332 


9 


05456 


7 I II 


13 725 


19 13 40 


0.09 


033 


0.59 


336 


lO 


I I 2 


7 7 17 


131331 


19 19 46 


0.10 


037 


0.60 


340 


II 


1 7 9 


7 1323 


13 19 38 


19 25 52 


0.11 


040 


0.61 


343 


12 


I 13 IS 


71929 


132544 


19 31 59 


0.12 


044 


0.62 


3 47 


13 


I 19 21 


72536 


13 31 SO 


1938 5 


0.13 


048 


0.63 


351 


14 


12527 


73142 


13 37 56 


194411 


0.14 


051 


0.64 


3 54 


;i 


I 31 34 


73748 


1344 3 


19 50 17 


0.15 
0.16 


055 


0.65 
0.66 


358 


13740 


7 43 54 


1350 9 


19 56 23 


059 


4 2 


"2 


14346 


750 I 


13 56 15 


20 230 


0.17 
0.18 


I 2 


^•57 


4 5 


i8 


14952 


756 7 
8 2 13 


14 2 21 


20 836 


I 6 


0.68 


4 9 


19 


» 55 59 


14 828 


20 14 42 


0.19 


I 10 


0.69 


413 


20 


2 2 s 


8 8 19 


141434 


20 20 48 


0.20 


1 13 


0.70 


416 


21 


2 8 II 


8 1426 


14 20 40 


20 26 55 


0.21 


1 17 


0.71 


4 20 


22 


2 14 17 


82032 


14 26 46 


2033 1 


0.22 


I 21 


a72 


424 


23 


22024 


82638 


14 32 53 


2039 7 


0.23 


^^i 


0.73 


427 


24 


22630 


83244 


143859 


20 45 13 


0.24 


I 28 


0.74 


431 


y 


23236 


83851 


1445 5 


20 51 20 


0.26 


132 


0.76 


:p 


23842 


84457 


14 51 11 


20 57 26 


135 


^ 


24449 


851 3 


14 57 18 


21 332 


0.28 


139 


0.78 


442 


25055 


857 9 


15 324 


21 938 


146 


446 


29 


257 I 


Q ^16 


IS 9.10 


21 1545 


0.29 


0.79 


449 


lo 


H ^ 7 


9 922 


MIS 36 


21 21 51 


0.30 


I 50 


0.80 


4 53 


31 


3 914 


91528 


152143 


21 27 57 


0.31 


154 


0.81 


4 57 


32 


31520 


921 34 


15 27 49 


2134 3 


0.32 


157 


0.82 


5 


33 


321 26 


92741 


15 33 55 


21 40 10 


0.33 


2 I 


0.83 


5 i 


34 


32732 


9 33 47 


'540 I 


21 46 16 


0.34 


u 


0.84 


5 8 


P 


33338 


9 39 53 


1546 8 


21 52 22 


0.36 


0.85 
0.86 


511 


3 39 45 


9 45 59 


15 52 14 


21 5828 


2 12 


515 


37 


3 45 5* 


952 5 


155820 
16 426 


22 4 35 


0.37 


2 16 


^8? 


519 


38 


3 5* 57 


95812 


22 10 41 


0.38 


219 


5 22 


39 


358 3 


10 4 18 


16 10 33 


22 16 47 


0.39 


223 


0.89 


526 


40 


4 410 


10 10 24 


16 16 39 


22 22 53 


0.40 


226 


0.90 


530 


41 


4 10 16 


10 16 30 


16 22 45 


. 22 29 


0.41 


230 


0.91 


5 33 


42 


4 1622 


10 22 37 


1628 51 


2235 6 


0.42 


234 


0.92 


5 37 


43 


42228 


10 28 43 


163457 


2241 12 


0.43 


237 


0.93 


541 


44 


42835 


103449 


16 41 4 


22 47 18 


0.44 


241 


0.94 


5^ 


:i 


43441 


10 40 55 


16 47 10 


22 53 24 


0.45 
0.46 


It^ 


0.95 


548 


44047 


1047 2 


16 53 16 


22 59 31 


0.96 


552 


% 


44653 


1053 8 


16 59 22 


23 5 37 


047 


252 


0.97 


5 55 


4 53 


10 59 14 


17 529 


23 11 43 


0.48 


256 


0.98 


6 3 


4Q 


4 59 6 


II 5 20 


17 II 35 


23 17 49 


0.49 


259 


0.99 


SO 


5 512 


II II 27 


17 17 41 


23 23 56 


0.50 


3 3 


1. 00 


6 6 


5« 


5 II 18 


11 17 33 


17 23 47 


2330 2 










52 
S3 
S4 

^1 


51725 
52331 
52937 
5 35 43 
541 50 


11 2339 
II 2945 
113552 
II 41 58 
II 48 4 


172954 
1736 
1742 6 
17 48 12 

175419 


2336 8 
23 42 14 
23 48 21 

23 54 27 

24 033 


Exs 

Th« 

first £< 

theni 


anple: Gi 
: table giv< 
5r 14*57" 
or 2 


ven 15*0 

i8* 2- 

i? _ 


27- 
0.44 


57 


54756 


II 5410 


18 025 


24 639 




5 diftereno 


2 i 


7-44 


S3 


554 2 
608 


12 17 


18 631 


241246 


TTm 


t 




59 


12 623 


18 12 :^7 


24 18 52 


iq^O-C 
uthe 


)• — 2-27'.. 
required e 


♦4 = 14*5 


)7-32".S6 


60 


6 615 


12 12 29 


18 18 44 


24 24 58 


tiean time 


. 



8mith«omian Tables. 



16s 



Digitized byLjOOQlC 



Table 36. 

LENGTH OF ONE DEGREE OP THE MERIDIAN AT DIFFERENT 

LATITUDES. 

[DeriTftdon of table expbbaad on pp. xM-slvm.] 



Latitude. 


Metres. 


Statute 
MUes. 


I'of theEq. 


L«titB<fe 


Metres. 


Statute 
Miles. 


Gegg^hic 

i' of the Eq. 


I 


110568.5 
I 10568 J 


68.703 
68.704 


59-594 
59-594 


49» 
46 


111132.1 
111151.9 


P 


59.898 
59.908 


2 

3 


1 10569.8 
110571.5 


68.705 
68.706 


59-595 
59.598 


% 


111171.6 
111191.3 


69-079 
69-091 


59.9«9 
59-929 


4 


"05739 


68.707 


59-597 


49 


Iii2ia9 


69.103 


59-940 


5 


110577.0 
1 10580.7 


68.709 


59.598 
59.600 


50 


1 1 1230.5 


69.115 


59.951 


6 


68.711 


51 




69.127 


59.961 


I 


110585.1 
1 10590.2 


68.714 
68.717 


^^ 


52 
53 


1112^13 


69.139 
69.163 


59^9^2 


9 


1 10595.9 


68.721 


59.609 


54 


"1307-3 


59.992 


10 


1 10602.3 


68.725 


59.612 


55 


111326.0 


^•'25 


60.002 


II 


1 10609.3 


68.729 


59.616 


56 


1 1 1344.5 


69.18I 


6aoi2 


12 


110617.0 


68.734 


59.620 


P 


"1362.7 


69.198 


60.022 


13 


1 10625.3 


68.739 


59.625 


" 1380.7 


69.209 


6ox>32 


14 


1 10634.2 


68.745 


59.629 


59 


111398.4 


69.220 


6ao4i 


15 

16 


iiHi 


68.751 


59-634 
59.640 


60 

61 


111415.7 
111432.7 


69.230 
69.241 


00.G00 


17 


59.646 


62 


1 1 14494 


69.261 


60.069 


18 


1 10675.7 


68.770 


59.652 


!3 


1 1 1465.7 


^ 


19 


1 10687.5 


68.778 


59.658 


64 


II 1481.5 


69.271 


20 


1 10699.0 
1 107 1 2.8 


68.786 


59.665 


65 


1 1 1497.0 


69.281 


60.094 


21 


68.794 


59.672 


66 


111512.0 


69.290 


60.102 


22 


1 10726.2 


68.862 




% 


1 1 1526.5 


^^ 


60.110 


23 


ii074ai 


68.810 


59.6S6 


"1 540.5 


60.118 


24 


1 10754.4 


68.819 


59-694 


69 


111554.1 


69.316 


6ai25 


25 


110769.2 


68.829 
68.838 


59.702 


70 


111567.1 


69-324 


6ai32 


26 


110784.5 


59.710 


71 


" 1579.7 


69-332 


60.139 


27 


1 10800.2 


68.848 


59-719 


72 


111591.6 
1 1 1603.0 


69.340 


60.145 


28 


110816.3 
1 10832.8 


68.858 


59-727 


73 


69.347 


60.151 


29 


68.868 


59736 


74 


111613.9 


69.354 


60.157 


30 


1 10849.7 


68.879 


59.745 


75 


111624.1 


69.360 


60.163 
6ai68 


31 


110866.9 


68.889 


59-755 
59-764 


76 


" 1633.8 


69.366 


32 


1 10884.4 


68.900 


77 


1 1 1642.8 


69.372 


60.173 


33 


1 10902.3 


68.911 


59-774 
59.784 


78 


111651.2 


69.377 


6ai77 


34 


1 10920.4 


68.923 


79 


1 1 1659.0 


69.382 


6ai82 


35 

36 


H0938.8 
110957.4 


iss 


59-794 
59.804 


80 

81 


1 1 1666.2 
1 1 1672.6 


69.386 
69.390 


60.186 
60.189 




1 10976.3 


lis 


59.814 


82 


1 1 1688.1 


69.394 


60.192 


"0995-3 


59.824 


53 


69.397 


60.195 


39 


111014.5 


68.981 


59-834 


84 


69.400 


6ai97 


40 


IH033.9 


68.993 


59-845 


85 


111691.9 


69402 


60.199 


41 


1 1 1053.4 


69.005 


tl^ 


86 


11 1695.0 


69.404 


6a20i 


42 


111073.0 


69.017 


§7 


1116974 


69.405 


6a202 


43 


111092.6 


69.029 


59^76 


88 


1 1 1699.2 


69.407 


60.203 


44 


III 1 12.4 


69.042 


59^7 


89 


1 1 1700.2 


69.407 


6a204 


45 


II 1 132.1 


69.054 


59^ 


90 


1 1 1700.6 


69.407 


6a204 



8lllTM«0IIIAN TaBUCS. 



166 



Digitized by 



Google 



Table 37. 

LENGTH OP ONE DEGREE OF THE PARALLEL AT DIPPBRENT 

LATITUDES. 







[Deriiration of taUe explained on 


p.xUx.1 






Latitude. 


Metres. 


Statute 
MUes. 


Geo^phic 
I' of the Eq. 


Latitude. 


Metres. 


Statute 
Miles. 


I' of the Eq. 


OP 


111321.9 


69.171 


60.000 


45» 


'^s 


48.995 


42.498 


I 


111305.2 


69.162 


59.991 


46 


48.135 
47.261 
46.372 


41.753 


2 

3 


1 1 1254.6 
111170.4 


69.130 
69.078 


59.964 
59.018 
59-855 


% 


76050.2 
74628.5 


40.994 
40.223 


4 


1 1 1052.6 


69.005 


49 


73«74.9 


45.469 


39.440 


5 


110901.2 


68.911 


59.773 


50 


71698.0 
702oa8 


44.552 
43.621 


38.644 


6 


1 107 16.2 


f?-7§^ 


59673 
59.550 


51 


37.837 
37X>i8 


I 

9 


1 10497.7 

1 1 0245.8 

109960.5 


68.660 


52 


68681.1 


42.676 


& 


ir4? 


53 
54 


& 


41.719 
40.749 


36.187 
35.346 


10 


109641.9 


68.128 


li 


55 


63997.1 


^t 


34.493 
33.630 


iz 


109290.1 
108905.2 


67.670 


56 


62395.7 


12 


58.697 


P 


60775.1 


37.764 


32.757 


13 


108036.6 


67.411 


58.472 


59«35.7 
57478.1 


36.745 


31.873 


14 


67.131 


58.229 


59 


35.715 


30.979 


15 


107553.1 


66.830 


57.969 


60 


55802,8 


34.674 


30.076 


i6 


1070370 
1064^8.5 


66.510 


57.690 


61 


54110.2 


33.622 


20.164 
28.243 


17 


66.169 
65.808 


57.395 
57.082 


62 


52400.9 


32-560 


i8 


105907.7 


63 


50675.4 


31.488 


27.313 


19 


105294.7 


65.427 


56.751 


64 


48934.3 


30.406 


26.374 


20 


104649.8 


65.026 


56.404 


65 


47178.0 


20.315 
28.215 


25.428 


21 


103973.2 


64.606 


56.039 


66 


45407.1 


24473 


22 


103265.0 


64.166 


55.657 


^l 


43622.2 


27.106 


23.511 


23 

24 


102525.4 
IOI754-6 


63.706 
63.227 


55.259 
54.843 


68 
69 


41823.8 
400124 


24!862 


If^ 


25 


100953.0 


62.729 


54411 


70 


38188.6 


23.729 


40.583 


26 


iooi2a6 


62.212 


53-963 
53.498 
53016 


71 


3635^.0 


22.589 


»7.597 


^ 


& 


61.676 
61.121 


72 
73 




21.441 
20.287 


29 


97441.9 


6a548 


52.519 


74 


3078a9 


19^126 


16.590 


30 


96489.3 


59.956 


52.006 


75 


28903.6 


'^960 


15.578 


3« 


95507.3 


59-345 
58.717 


51.476 


76 


27017.4 
25122.8 


16^788 


14.562 


32 


94496.2 


50.931 


11 


15.611 


13-541 


33 


93456.3 
92387.9 


58.071 


50.371 


232204 
21310.8 


14.428 


\m 


34 


57.407 


49.795 


79 


13.24a 


35 


QOi66!i 
89014.8 
87835.6 


56.726 


48.598 


80 


19394.6 


12.051 


10.453 


36 


56.027 


81 


174724 


10.857 


nil 

7.337 


P 


55-3" 
54.578 
53.829 


47.977 
47.341 


82 
83 


15544-7 
13612.2 


& 


39 


86629.6 


46.691 


84 


11675.5 


7.255 


6.293 


40 


85397.0 
84138.4 


53.063 


46.027 


85 


9735-1 


6.049 


5.247 


41 


52.281 


45-349 


86 


7791-7 


4.841 


4.200 


42 


82854.0 


51-483 


44.656 


u 


»3 


3.632 


3.«5i 


43 


81544.2 


50.669 


43.950 


2422 


2.101 


44 


80209.4 


49.840 


43.231 


89 


1949.4 


1.211 


1.051 


45 


78850.0 


48.995 


42.498 


90 


0.0 


0.000 


aooo 



6iiiTM«oiiiAN Tables. 



167 



Digitized by 



Google 



Tabu 88. 

INTERCONVER8ION OP NAUTICAL AND STATUTE MILES. 

I nudcal inile*=6o8o.37 feet 



Nautical Miles. 


Sutute Milea. 


Statute Miles. 


Nautical MUes. 


1 

2 

3 

4 

5 
6 

i 

9 


1.1516 
2.3031 

5-7578 
6.9093 
8.0609 
9.2124 
ia3640 


1 
2 
3 

4 

5 
6 

I 

9 


0.8684 
1-7368 
2.6052 
3-4736 

4.3420 

&0788 
6.0472 
7.8155 



8iiiTNaoNiAii Tabucs. 



» Aa ddined hf the Umted States Coast and Geodetic Survey. 



Table 39. 

CONTINENTAL MEASURES OP LENGTH WITH THEIR METRIC AND 
ENGLISH EQUIVALENTS. 

The asterisk (^ indicates that the measure is obsolete or seldom need. 



Measure. 



£1, Netherlands 

Fathom, Swedish = 6 feet 

Foot, Austrian,*^ 

old French* 

Russian 

Rheinlandisch or Rhenish (Prussia, 

Denmark, Norway) * 

Swedish* 

Spanish *=:^ vara 

*Klafter, Wiener (Vienna) 

*Line, old French =r\x 'oot 

Mile, Austrian post* =24000 feet. . . . 

German sea 

Swedish ^ 36000 feet 

Norwegian = 36000 feet 

Netherlands (mijl) 

Prussian (law of 1868) 

Danish 

Palm, Netherlands 

♦Rode, Danish 

*Ruthe, Prussian, Norwegian ...... 

Safene, Russian 

♦Toise, old French = 6 feet 

♦Vara, Spanish 

Mexican 

Werst, or versta, Russian = 500 sagene 



Metric Equiyalent. 


English Equivalent. 


I 


metre. 


3.2808 feet 


1.7814 


i« 


5.8445 " 


0.31608 


u 


1.0370 " 
1.0657 " 


0.32484 


u 


0.30480 


u 


I 


^Vf^ 


u 
« 


1.0297 « 
0.9741 " 


0.2786 


<i 


0.9140 " 


1.89648 


M 


6.2221 " 


0.22558 


cm. 


0.0888 inch. 


7-58594 
1.852 


km. 
it 


4.714 statute miles. 
1.1508 " 


10.69 


<4 


6.642 " 


11.2986 


U 


7.02 " " 


I 


M 


0.6214 " « 


7.500 


U 


4.660 ** 


7.5324 


M 


4.6804^ « 


0.1 


metre. 


0.3281 feet. 


3.7662 


<i 


12.356 « 


37662 


u 


12.356 " 


2.1336 


« 


7 


1.9490 
0.83W 
0.8380 


« 

ti 


6.3943 « 
2.7424 " 




2.7293 " 


1.0668 


km. 


3500 



Smithsonian Tables. 



z68 



Digitized by 



Google 



Tablk 40. 
ACCBLBRATION ig) OP GRAVITY ON 8URPACE OF EARTH AND 
DERIVED FUNCTIONS. 

r= 9.77989 + o»o5«« «in«4 

= 9.80599— o4)a6io 00* a^ OMlm.* 
4 = seogimphical latitude. 



f 


g 


log^ 


logi 


logVi? 


5^ 




AUirws. 








Mtin*. 


oP 


9.7798 


0^9033 


8.70864-10 


0.64568 


0-99090 


S 


.7803 


035 


863 


569 


095 


10 


.7814 


040 


8S7 


57* 


106 


'S 


.7834 


049 


848 


576 


127 


20 


.7859 


060 


837 


582 


152 


25 


.7893 


075 


832 


589 


186 


30 


•7929 


091 


806 


597 


222 


35 


.7969 


109 


788 


€06 


264 


40 


.8014 


129 


768 


616 


309 


45 


.8060 


149 


748 


026 


355 


. SO 


.8105 


169 


738 


636 


401 


55 


^150 


189 


708 


646 


447 


60 


.8191 


207 


690 


655 


488 


65 


.8227 


223 


674 


663 


525 


70 


.8261 


238 


659 


670 


559 


75 


.8286 


249 


648 


676 


• 584 


80 


^306 


258 


639 


680 


60s 


85 


^317 


263 


634 


683 


616 


90 


^322 


26s 


632 


684 


621 



8MiTMaoNiAii Tables. 

• From Tke Solar ParaUojc and its R§laUd C^iisUmts, hf Wm. HarimoM, Prof eitor of 
WaaliiiiKtoo : GoTernment Printing Office, 1891. 
t This it length 61 leoondi pendulum. 

169 



U.S.N.; 



Digitized by 



GooqIc 



Table 41 . 



LINEAR EXPAN8ION8 OP PRINCIPAL METAL8. IN MICRON8 PER 
METRE (OR MILLIONTH8 PER UNIT LENGTH). 



Name of metal. 



Aluminum . . 
Brass .... 
Copper .... 
Glass .... 
Gold .... 
Iron, cast . . . 
Iron, wrought 
Lead .... 
Platinum . . . 
Platinum-iridium ^ 
Silver .... 
Steel, hard . . 
Steel, soft . . . 

Tin 

Zinc 



Expansion per 
aegree C. 



20 
19 
17 
9 
'S 
II 
12 
28 



19 
12 
II 

19 
29 



Expansion per 
degree F. 



ii.i 
10.5 
9-4 

6.1 
6.7 

4^ 

6.1 
16.1 



tMITHSONIAN TaBLCS. 



1 Of Intenatioial Pi otatj pe Metm. 



Tabu 42. 

FRACTIONAL CHANGE IN A NUMBER CORRESPONDING TO A CHANCE 

IN ITS LOGARITHM. 

Computed from the formula, 
0k = modulus of common logarithms = 0^3439448- 



For 

AlogiV 

s= I unit in 


AAT 
AT 


For 

AlogA^ 
= 4 units in 


AAT 

N 

(in round numbers) 


4th place 
Sth " 
6th « 
7th '* 


Twin 


4th place 
Sth " 
6th « 
7th " 


tAtf 





Smithsonian Tanlcn. 



170 



Digitized by 



GooqIc 



APPENDIX. 



CONSTANTS. 



Numerical Constants. 


NsMbw. 


LiUfMim. 




Base of natural (Napierian) logarithms, 


= tf = 2.7182818 


04342945 




Log /, modulus of common logarithms, 


= M-= 0434294s 


9.6377843- 


-10 


Circumference of circle in degrees. 


360 


2.5563025 




« « « in minutes. 


a 21600 


4.3344538 




" " « in seconds. 


= 1296000 


6. 1 1 26050 




Circumference of circle, diameter unity, 


= w = 3.14159265 


04971499 




Nimbtr. LsftrHhm. 








2» = 6.2831853 a798i799 


i/«a = 01013212 


9.0057003- 


-10 


— = 1^71976 00200286 
!=» 0.3183099 9,5028501 — 10 


V» = 1-7724539 


02485749 




^=0.5641896 


9.7514251- 


-10 


«a =3 9-8696044 0-9942997 


V 7=14142136 


01505150 






V 7-1.7320508 


02385607 




The arc of a circle equal to its radius is 








in degrees, p^ » i8o/v 


= 57-29578* 


1.7581226 




in minutes, p' ^6op^ 


- 3437.7468' 


3.5362739 




in seconds, p" =» 60 p' 


- 206264^" 


5.3144251 




For a circle of unit radius, the 








arcofi« =i/p*» 


-ox)i74533 


8.2418774- 


-10 


arc of i' « i/p' 




64637261 - 


-10 


arc (or sine) of r= i/p'' 


>boxxxx)0485 


4.6855749- 


-10 


Qaodetieal Constants. 








Dimensions of the earth (Clarke's ^heroid, 186Q and derived quantities. 




Equatorial semi-axis in feet, 


s= a B 20926062. 


7.320687s 




in miles. 


-«- 3963.3 


3-5980536 




Polar semi-axis in feet. 


»^n 20855121. 


7.3192127 




in miles, 


-*- 3949.8 


3.5965788 




(Eccentricity)*-'*"";^ 


^ = 000676866 


7.8305030- 


•10 


Flattening-*^* 


-/= 1/294.9784 


7.5302098- 


•10 


Perimeter of meridian ellipse. 


s 24859.76 miles. 




Circumference of equator. 


«= 24901.96 ' 


< 




Area of earth's surface. 


« 196940400 square miles. 




Mean density of the earth (Ha&kniss) 


=»5.576± 0.016. 






Surface density " « " 


«= 2.56 ±0.16. 






Acceleration of gravity (Harknbss) : 








^ (cm. per second) = 98060 (i —0002662 


cos 2^) for latitude ^ and sea level 




^, at equator = 977-99 5 ^. at Washington 


= 980.07;.^, at Paris = 


980.94; 




^, at poles = 983.21 ; ^, at Greenwich 


« 981.17. 






Length of the seconds pendulum (Harkness) 


: 






/a. 39.01 2540 + 0.2082688m* finches « 


0.990910 + 0005290 8in> ^ metres. 





SiirrHSONiAii Tabus. 



171 



Digitized by V^OOQIC 



APPENDIX. 
CON8T ANT8. -ContiniMd. 



Attronomioal Constants (HAXKims). 
Sidereal jesr s= 565.256 357 8 mean solar days. 
Sidereal day — 25* 56^ 4.^100 mean solar time. 
Mean solar day = 24A 3M 56^546 sidereal time. 
Mean distance of the earth from the smi » 92 800 000 miles. 

Physical Constants. 
Velocity of light (Harkness) » 186 537 miles per second » 299 878 km. per second. 
Velocity of sound through dry air -^ 1090 \/i + ojoojffj fi C. feet per second. 
Weight of distilled water, free from air, barometer 30 inches : 

Wdgbt ia gnuBs. W«ght in gnauBai. 

Volume. 6aO^. 4® C. 6a*>^. 4® C. 

I cubic inch (determination of 1890) 252.286 252.568 16.3479 16.3662 

I cubic centimetre (1890) 15*3953 154125 0.9976 019987 

I cubic foot (1890) at 62^ F. 62.2786 lbs. 

A standard atmosphere is the pressure of a vertical column of pure mercury whose 
height is 760 mm. and temperature o^ C under standard gravity at latitude 45° 
and at sea level. 
I standard atmosphere = 1033 gnunmes per sq. cm. »= 14.7 pounds per sq. inch. 
Pressure of mercurial column i inch high = 34.5 grammes per sq. cm. ss 0491 
pounds per sq. inch. 
Weight of dry air (containing aooo4 of its weight of carbonic add) : 

I cubic centimetre at temperature 32° F. and pressure 760 mm. and under the 
standard value of gravity weighs aooi 293 05 gramme. 
Density of mercury at o^ C. (compared with water of maximum density under atmos> 

pheric pressure) » I3«5956l 
Free2ing point of mercury = — 38.''5 C (Rxgnault, 1862.) 

CoefBcient of expansion of air (at const, pressure of 760MM) for i^ C. (do.) : aoo367a 
Coefficient of expansion of mercury for Centigrade temperatures (Bkoch) : 

A^ Ao(i —0.000181792/ — aooo 000 000 175/3 — .000000000035 116 i*). 
Coefficient of linear expansion of brass for i^ C, /3 = aooooi74 to aooooi90. 
Coefficient of cubical expansion of glass for i^ C, 7 = ojooo 021 to 0.000 028. 

Ordinary glass (Recknagel) : at lo*^ C, 7 = aoooo255 ; at loO®, 7 = oxxx) 0276k 
Specific heat of dry air compared with an equal weight of water : 

at constant pressure, A> = 0.2374 (from o^ to 100° C*., Regnault). 
at constant volume, Kv = 0.1689. 
Ratio of the two specific heats of air (Rontgen) : A> fKv = 1*4053. 
Thermal conductivity of air (Geabtz) : k = 0.000 0484 (i + aooi 85 f*, C.) g""^ 

[The quaadty of heat that paaiet hi anit tune through unit area of a plate of unit tfaJdcoeas, when ita 
opposite faces differ in lemperatnre bj one degree.] 

Latent heat of liquefaction of ice (Bunsen) == 804)25 mass degrees, C. 

Latent heat of vaporization of water =: 606.5 — o*^5 ^ ^- 

Absolute zero of temperature (Thomson, Heat, Encyc, Brit.) : — 273.% C. = — 459^^4 F. 

Mechanical equivalent of heat : * 

I pound-degree, F, (the British thermal unit) = about 778 foot-pounds. 

I pound-degree, C. == 1400 foot-pounds. 

I calorie or kilogramme-degree, C » 3087 foot-pounds = 426.8 kilogram- 
metres =* 4187 joules (for ^ «= 981 cm.). 



SiirrHSONiAN Tables. _ i r\nkr%\c> 

Digitized by VorOOv IC 
* Baaed on Praf. RowUmd^s detenmnationa. (Proc. Am, Acad. ArU amd Set., x88o.) ^ 

172 



APPENDIX. 

8YNOPTIC CONVERSION OF ENGLI8H AND METRIC UNIT8. 

Englith to Matrio. 



Units of length. 
I inch. 
I foot 
I yau-d. 
I mile. 

Units of arsa. 
I square inch. 
I square foot. 
I square yard. 
I acre. 
I square mile. 



2.54000 
a3048oi 
0.914402 
1-60935 



929.034 
0.836131 
4687 



2.59000 
259.000 



Unite of 

I cubic inch. 16.3872 

I cubic foot 0.028317 

I cubic yard. 0.764559 

Units of eapaoity. 

I gallon (U. S.) s 231 cubic inches. 

I quart (U. S.). 

I Imperial gallon (British). 

277-463 cubic inches (i89o]|. 
I bushel (U. S.) = 215042 cubic inches. 
I bushel (British). 



centimetres, 
metre. 

u 

kilometres. 



645163 square centimetres. 



square metre. 

hectares. 

square kilometres. 

hectares. 



cubic centimetres, 
cubic metres or steres. 
cubic metres or steres. 



3.78544 litres. 
0.946^6 litres. 
4.54603 litres. 

35-2393 litres. 
36.3477 htres. 



0404835 
9484016 — 10 
9.961 137 — 10 
0.206 650 



0.800669 
2.968 032 
9.922 274 — 10 
9.607 120 — 10 
0413300 
M13300 



1.214 504 
8-452 047 — 10 
9^883411 — 10 



a 578 116 
9.976056—10 
0-657 709 



1.547027 
1.560477 



Unite of mass. 

I grain. 64.7990 milligrammes. 

I pound avoirdupois. 0453593 kilogrammes. 

I ounce ayoirdupois. 28.3496 grammes. 

I ounce troy. 3i*ioj5 grammes. 

I ton (2240 lbs.). ix>i6o5 tonnes. 

I ton (2000 lbs.). a907io6 tonnes. 

Unite of velocity. 
I foot per sec ^0.6818 miles per hr.) s= 0.30480 metres per sec < 
I mile per hr. (1.4667 feet per sec) «= 044704 metres per sec 3 

Unite of force. 
I poundal. 

weight of I grain (for^= 981 cm.). 
Weight of I pound av. (for ^«= 981 cm.). 



' 10973 
1.6093 



1.811 568 

9.656066—10 

1452546 

1492 810 

0.006914 

9-957696—10 



km. per hr. 
km. per hr. 



4.140682 
1.803 ^37 
5-648335 



]^^Z 



S.624698 



13825.5 dynes. 

63.57 dynes. 

4.45 X io» dynes. 

Units of stress— In gnvKitlM matsura. 
I pound per square inch — 70.^07 grammes per sq. centimetre. 
I pound per square foot = 4^24 kilogrammes per sq. metre. 

Units of work— in ibtolirts maatufs. 
I foot-poundal. 421 403 ergs. 

^in grivitiUon msMWS. 
I foot-pound (for ^=s 981 cm.) = 1356.3 X 10* ergs = a 138255 kilogram-metres. 

Units of activity (rate of doing workX 
I foot-pound per minute (for>f = 981 cm.) = ao226o5 watts. 
I horse-power (33 000 foot-pounds per mm.) — 746 wa 8 » 1.01387 force de chevaL 

Units of heat 
I pound-degree, F. 
I pound<degree, C. 



B 252 small calories or 
ss lis pound-degrees, 



(,C. 



Smithsonian Tables. 



173 



APPENDIX. 



SYNOPTIC CONVERSION OP ENGLISH AND METRIC UNITS. 

Metric to English. 



Units of lengtii. 


cngim aquvinnii. 


UgniWims. 




I metre (ic^ microns). 


39-3700 


inches. 


1.595 165 




« 


3.28083 


feet. 


0.515984 




M 


1. 09361 


yards. 


0^)38863 




I kilometre. 


a62i37 


miles. 


9-793350—10 




Units of area. 










I square centimetre. 


0.15500 


square inches. 


9-19033' — 10 




I square metre. 


10.7639 


square feet. 


1.031 968 




(( «4 


I-I9599 


square yards. 


ao77 726 




I hectare. 


2.47104 


acres. 


a392 88o 




I square kilometre. 


0.38610 


square miles. 


9.586701 — 10 




Units of voiume. 










I cubic centimetre. 


ao6i0234 cubic inches. 


8.785496—10 




I cubic metre or stdre. 


35-3145 


cubic feet. 


1-547 953 




(t <l M 


1.30794 


cubic yards. 


aii6589 




Units of capacity. 










I litre (61.023 cubic inches). 


0.26417 


gallons (U. S.). 


9421 884 — 10 




u 


1.05668 


quarts (U. S.). 


0.023944 




u 


0.21993 


Imp. gallons (British). 


9.342291 — 10 




I hectolitre. 


2^3774 


bushels (U. S.). 


0452973 




« 


2.751 21 


bushels (British). 


0.439523 




Units of mass. 










I gramme. 


15-4324 


grains. 


1.188433 




I kilogramme. 


2.20462 


pounds avoirdupois. 


0.343334 




u 


35-2739 


ounces avoirdupois. 


1-547454 




u 


32.1507 


ounces troy. 


1.507 190 




I tonne. 


a9842i 


tons (2240 lbs.). 


9.993086—10 




•( 


1.10231 


tons (2000 lbs.). 


ao42 304 




Units of velocity. 










I metre per second. 


3.2808 


feet per second. 


0.515984 




tf « M 


2.2369 


miles per hour. 


0.349653 




I km. per hr. (a2778 m. per sec.). 


0.62137 


miles per hour. 


9-793350 — 10 




Units of force. 










I dyne (weight of (981)-^ grammes, for ^= 981 cm.) = 7.2330 X icr^ poundals. 




UnKs of stress ~" in gmvHitloii moasure. 








I gramme per square centimetre. 


0.014223 pounds per sq. inch. 






I kilogramme per square metre. 


0.204817 pounds per sq. foot. 






I standard atmosphere. 


14.7 


pounds per sq. inch. (See def. p. 172.) 














I erg. 


23730 X 10-* foot poundal.s. 






I megalerg = loP ergs ; i joule = lo^ ergs. 








-in gnvitBtkn mnaau 


re. 








I kilogramme-metre (for ^ = 981 cm 


.) = 981 X 10^ ergs = 7-2330 foot-pounds. 




Units of activity (rate of doing work). 








I watt = I joule per sec. (= 44-2385 


foot-pounds per mmute, for ^ = 981 cm.) = aioi94 




kilogramme-metre per sec., for ^^^ 981 cm. 








I force de cheval = 75 kilogranune-metres per sec. — 735} watts = 0.98632 horse-power. | 




Units of heat. 










I calorie or kilogramme-degree = 3.968 pound-degrees, K = 2.2046 pound-degrees, C 




I small calorie or therm, or gramme-degree = aooi calorie or kilogramme-degree. 





SiirrHaoNiAN Tables. 



174 



APPENDIX. 

DIMENSIONS OF PHYSICAL QUANTITIES. 

L == length ; M » mass i T — time. 



Area. 


M 


Volume. 


ivq 


Mass. 


[M] 


Density. 


[ML-*] 


Velocity. 


[LT-i] 


Acceleration. 


ILT-«1 


Angle. 


[0] 


Angular Velocity. 


rr-»i 



Qiimtity. 
MomentuDL 
Moment of Inertia. 
Force. 

Stress (per unit area). 
Work or Energy. 
Rate of Working (Power). 
Heat 
Thermal Conductivity. 



[L M T-i] 
[ML2] 
[LMT-«] 
[L-i M T-^ 
[L2MT-*] 
[L^MT-*] 
[L2 M T-2] 
[L-A M T-i] 



In Electrostatics. 

Quantity of Electricity. 

Surface Density: quantity per unit area. 

Difference of Potential: quantity of work required 
to move a quantity of electricity ; (work done) -7- (quan- 
tity moved). 

Electric Force, or Electro-motive Intensity: 
(quantity) -r- (distance^). 

Capacity of an accumulator : e-r- £. 

Specific Inductive Capacity. 

In Magnetics. 
Quantityof Magnetism, or Strength of Pole. 
Strength or Intensity of Field: 

(quantity) -7- (distance^). 
Magnetic Force. 

Magnetic Moment: (quantity) X (length). 
Intensity of Magnetization: magnetic moment per 

unit volume. 
Magnetic Potential: work done in moving a quantity 

of magnetism ; (work done) -i- (quantity moved). 
Magnetic Inductive Capacity. 



SymlMl. electrwtatlc sjfstom. 

e [L* M* T-i] 

a [L-* M» T-i] 

£ [L* M* T-i] 



Cot q 
k 



m 
S 

« 
ml 

I 



[L-*M»'r-i] 

[L] 

[o] 



electro-magnetlG 
syttMR. 

£L» M* T~i] 

[L-* M* T-i] 

[L-»M»T-i] 
£L» M* T-i] 
[L-* M» T-i] 



In Eieetro-magnetics. SymlMl. 

Intensity of Current i 

Quantity of Electricity conveyed by current : e 

(intensity) X (time). 
Potential, or di£Eerence of potential: (work 

done) -=- (quantity of electricity upon which 

work is done). 
Electric Force: the mechanical force act- 
ing on electro-magnetic unit of quantity; 

(mechanical force) -7- (quantity). 
Resistance of a conductor: E-r-i. R 

Capacity: quantity of electricity stored up q 

per unit potential-difference produced by it 
Specific Conductivity: the intensity of 

current passing across unit area under the 

action of unit electric force. 
Specific Resistance: the reciprocal of r 

specific conductivity. 



Vox a [L»M*T~i] 

Dlmanilons in Name sf 

electro-magnetic practical unit 



[L* M* T-i] Ampdre. 
£L* M*] Coulomb. 



E [Ll M* XT 



£ [L» M* T-«l 



[LT-i] 
[L-iT«] 



Volt 



OhnL 
Farad. 



[LaT-i] 



igitized by 



Go 



Smithkihiah Tabu.. 



>7S 



Digitized by 



GooqIc 



INDEX. 



FAGB 

Acceleration, dimensions of 175 

of gravity, formula for 171 

table of values of 169 

Air, cubical expansion, specific heat, thermal 

conductivity, and weight of 172 

Airy, Sir George, treatise cited xcviii 

Albrecht, Dr. Th., treatise cited Ixzx 

Algebraic formulas ziii-xv 

Alignment curve Ivi 

Aluminum, linear expansion of 170 

Ampere, dimensions of 175 

Angles, equivalents in arcs xviii 

sum of, in spheroidal triangle Ivii 

Angular velocity, dimensions of 175 

Annulus, circular, area of xxx 

Antilogarithms, explanation of use of xcix 

4-place table of 26, 27 

Appendix 171-175 

Arcs, equivalents in angles xvii 

of meridians and parallels xlvi-l 

table of lengths of meridional 7S-80 

table of lengths of parallel 81-33 

table of time equivalents. 162 

Are xli 

Area, of circle xxx 

table of values of 23 

of surface of earth 1-lii 

Areas, of continents Ixv 

of oceans Ixv 

of plane and curved surfaces xxix-xxxi 

of zones and quadrilaterals of the 

earth's surface 1-lii 

tables of values of 142-159 

of regular polygons xxx 

Arithmetic means, progression, and series, .xiii 

Astronomical constants 172 

co-ordinates Ixvii 

latitude xliv 

time Ixxii 

Astronomy Ixvii-bcxxii 

references to works on Ixxxii 

Atmosphere, mass of earth's Ixvi 

standard pressure of 172 

weight of unit of volume of 172 

Average error, definition of Ixxxiv 

Azimuth, astronomical and geodetic Ivii 

computation of differences of Iviii-lxi 

determination of ixxix 



Babinet, barometric formula of 160 

Barometer, heights by 160 

Binomial series xiv 

Brass, linear expansion of 170 

Briinnow, F , treatise cited Ixxidi 

Bushel, Winchester zxzv 

equivalent in litres 2 

Cable length xxxviii 

Calorie, value of 172 

Capacity, measures of, British xxxviii 

Metric xli 

Centare xli 

Chauvenet, Wm., treatise cited Ixxxii 

Circumference, of circle xxviii 

table of values of 23 

of earth xlix, 171 

of ellipse xxix 

C. G. S. system of units xlii 

Clarke, General A R., spheroid of xliii 

treatise cited Ixvi 

Coefficient, of cubical expansion of air and 

mercury 172 

of linear expansion of metals 170 

of refraction ..... v Ixiii 

Compression, of earth xliii 

Computation, of di£Eerences of latitude, lon- 
gitude, and azimuth Iviii 

of mean and probable errors xcv 

Conductivity, thermal, of air 172 

Cone, surface of xxxi 

volume of xxxii 

Constants, astronomical 172 

geodetical 171 

numerical 171 

of earth's spheroid xliv 

Continental measures (table of British and 

Metric equivalents) 168 

Continents, areas of Ixv 

average heights of Ixv 

Conversion, of arcs into angles and angles 

into arcs xvii 

of British and Metric units. . .2, 3, 173, 174 

Co-ordinates, astronomical Ixvii 

for projection of maps liii-lvi 

table of, scale 1/250000 84-91 

table of, scale 1/125000 92-101 

Digitized byLjOOQlC 



X78 



INDEX. 



Co-ordinates {conHnued). 

table of, scale 1/126720 I02>i09 

table of, scale 1/63360 1 10-121 

table of, scale 1/200000 122-131 

table of, scale 1/80000 132-141 

of generating ellipse of earth's spheroid . . xliv 

Copper, linear expansion of 170 

Cord (of wood), volume of zzxix 

Correction, for astronomical refraction, table 

of mean values of 161 

to observed angle for eccentric position 

of instrument bdii 

to reduce measured base to sea level. . .bdv 

Cosines, table of natural 28, 29 

use of table explained c 

Cotangents, table of natural 30> 3' 

use of table explained c 

Coulomb, dimensions of 175 

Cubature, of volumes xxxii 

Cubes, table of 4-22 

Cube roots, table of 4-22 

Cylinder, surface of xxxi 

volume of xxxii 



Day, sidereal and solar Ixxii, 172 

Degrees, number of, in unit radius xviii 

of terrestrial meridian xlvi, 166 

of terrestrial parallel xlix, 167 

Density, mean, of earth Ixv 

mean, of superficial strata of earth Ixv 

of mercury 172 

Departures (and latitudes), uble of 32-47 

mode of use of table explained c 

Depths, average, of oceans Ixv 

Determination,, of azimuth Ixxix 

of heights, by barometer 160 

by trigonometric leveling Ixi 

of latitode Ixxvii 

of time Ixxiv 

Difference, between astronomical and geo- 
detic azimuth Ivii 

of heights, by barometer 160 

by trigonometric leveling Ixi 

Differences, of latitude, longitude, and azi- 
muth, on earth's spheroid Iviii 

table for computation of 70*77 

Differential formulas xxi 

Dimensions, of earth xliii, 171 

of physical quantities 175 

Dip, of sea horizon , Ixiii 

Distance, of sea horizon Ixiii 

of sun from earth 172 

Doolittle, Prof. C. L., treatise cited Ixxxii 



Earth, compression of xliii, 171 



Earth (continued). 

density of Izv 

dimensions of xliii, 171 

ellipticity of xliii, 171 

energy (of rotation) of Ixvt 

equatorial perimeter of xliii, 171 

flattening of xliii, 171 

mass of Ixvi 

meridian perimeter of xlix, 171 

moments of inertia of Ixvi 

shape of xliii 

surface area of Hi 

volume of Ixv 

Eccentricity, of ellipse xliii 

of earth's spheroid xliv, 171 

El, value of 168 

Electric quantities, dimensions of 175 

Electro-magnetic quantities, dimensions of . 175 

Ellipse, area of xxz 

equations to xliv 

length of perimeter of xxiz 

Ellipsoid, volume of (see Spheroid) xxxiii 

Ellipticity, of earth xliii, 171 

Energy, dimensions of 175 

oi rotation of earth Ixvi 

Equations, of ellipse xliv 

of Prototype Kilogranmies xl 

of Prototype metres xl 

Error, in ratio of English yard to Metre, .zxxvii 

Errors, probable, mean, average . .Ixxxiv, Ixxxviii 

table of, for interpolated quantities. .Ixxxvi 

theory of IxxxiU 

Everett, J. D., treatise cited xlii 

Excess, spherical or spheroidal Iviii 

Expansion, cubical, for air and mercury .... 172 
linear, of principal metals 170 



Farad, dimensions of 175 

Fathom, length of xxxviii 

Swedish 168 

Flattening, of earth xliii, 171 

Foot, Austrian 168 

British xxxvii 

French, Rhenish, Spanish, Swedish. . . . 168 

Force, dimensions of 175 

Formulas, algebraic xiii-xv 

for differentiation xxi 

for integration xxiii 

for solution of plane triangles xviii 

for solution of spherical triangles xx 

trigonometric xv 

Freezing point of mercury 172 

Functions, trigonometric, of one angle xv 

of two angles xvi 

special values of xv 

values in series xvii 



Digitized by V^OOQ IC 



INDEX. 



179 



Gallon, British and wine zzxviii 

Gauss's formulas for spherical triangles nd 

Geocentric latitude zliv 

Geodesy zliii-lzvi 

references to works on Izvi 

Geodetic azimuth Ivii 

Geodetic differences of latitude, longitude, 

and azimuth Iviii 

Geodetic line Ivii 

Geodetical constants 171 

Geographical latitude xliv 

Geographical positions, computation of.lviii-lxi 

Geoid, definition of xliii 

Geometric means, progression xiii 

Glass, linear expansion of 170, 172 

Gold, linear expansion of 170 

Gravity, acceleration of, formula for 171 

table of values of 169 

Gunter's chain, length of xxxviii 



Harkness, Proi Wm., memoir dted 

Ixv, 169^ 171, 172 

Heat, dimensions of 175 

latent, of liquefaction of ice 172 

of vaporization of water 172 

mechanicad equivalent of 172 

Hectare xli 

Heights, average, of continents Ixv 

determination of, by barometer 160 

trigonometrically bd 

Hdmert, Dr. F. IL, treatise on geodesy 

dted Ixvi 

treatise on theory of errors dted . . . .xcviii 
Horizon, dip of sea bdii 



Imperial pound and yard xxxiv 

Integrals, definite xxvi 

indefinite xxxiii 

Interconversion, of English and Metric 

onits «f 3.i73i»74 

of sidereal and solar time • Ixxiii 

tables for 164, 165 

Iron, linear expansion of 170 



Joule, value of 1 74 



Kilogramme, Prototype 

equations of xl 

relation to pound • zzxvi, xli 

Kinetic energy, dimensions of 175 

of rotation of earth Ixvi 

Klafter, Wiener, in terms of foot and 
metre 168 



Latitude, astronomical, geocentric, and re- 
duced xliv 

determination of Ixxvii 

Latitudes and departures, table of • -32-47 

mode of use of table explained c 

Lead, linear expansion of 170 

Least squares, method of Ixxxvi 

references to works on xcviii 

Legendre's theorem for solution of sphe- 
roidal triangles Ivii 

Length, of arc of meridian .xlvi 

of arc of parallel xlix 

of equator of earth 171 

of meridian circumference of earth 171 

of perimeter of ellipse xxix 

of Prototype Metres Nos. 21 and 27 xl 

of seconds pendulum, formula for 171 

table of values of 169 

Leveling, trigonometric M 

Line (French), value of 168 

Lines, lengths of xxviii 

on a spheroid Ivi 

Linear measures, British xxxvii 

Metric xli 

tables for interconversion of . .2, 3, 175, 174 

Litre xli 

Logarithms, anti-, 4-place table of 26b 27 

explanation of use of xcix 

4-plaoe table of common 24, 25 

of natural numbers, table of 4-22 

relations of different xv 

series for xiv 



Maclaurin's series xxii 

example of xxiii 

Magnetic quantities, dimensions of 175 

Maps, co-ordinates for projection of (see 

Co-ordinates for projection of maps) .liii 

projection of di 

Mass, of earth Ixv 

of earth's atmosphere .Ixvi 

of Prototype Kilogrammes Nos. 4 and 

20 xl 

Mayer's formula for transit instrument • . . .Ixxv 

Mean, arithmetic and geometric xiii 

Mean distance of earth from sun 172 

Mean error, definition of Ixxxiv 

computation of xcv 

Mean time Ixxii 

table for conversion to sidereal tune 164 

Measures xxxiv 

of capacity, British xxxviii 

Metric xli 

of length, British xxxvii 

Continental 168 

Metric xli 



Digitized byLjOOQlC 



i8o 



IlfDBX. 



Measures {camtinuid), 

of surface, British zzzviit 

Metric zli 

tables for interconversion of . .2, 3, 173, 174 

Mechanical equivalent of heat 172 

Mechanical units, dimensions of 175 

Mensuration zxviii-zzxiii 

Mercury, density and cubical expansion of. . 172 

Meridian, arcs of terrestrial xlvi 

Uble uf lengths of 7^-^ 

drcuniference of earth zliz, 171 

Method of least squares Izzxvi 

Metre, Prototype xxziv 

equations of Nos. 21 and 27 xl 

relation to British yard xxxvi, xli 

Metric system xl 

Bfile, Austrian 168 

British (sUtnte) xxxvii 

Danish, German sea, Netherlands, Nor- 
wegian, Prussian, Swedish 168 

Nautical 168 

Modulus of common logarithms xv 

Moivre's formula xvi 

Moment of inertia of mass, dimensions of . . . 175 

Moments of inertia of earth Ixvi 

Momentum, dimensions of 175 

Napierian base (of logarithms) xiv, 171 

Napierian logarithms xiv 

Napier's analogies xx 

Natural logarithms xiv 

Nautical mile, table of equivalents in statute 

miles 168 

Numerical constants 171 

Ohm, dimensions of 175 

Palm, length of, English xxxviii 

Netherlands 168 

Parallel, arcs of terrestrial xlix 

table of lengths of 81-83 

Pendulum, length of seconds 171 

table of lengths of 169 

Perch (of masonry) volume of xxxix 

Perimeter, of circle xxviii 

of ellipse xxix 

of regular polygon xxviii, xxx 

Physical constants 172 

Physical geodesy, salient facts of Ixv 

Physical quantities, dimensions of • • • I75 

Platinum, linear expansion of 170 

Platinum iridium, linear expansion of 170 

Polyconic projection of maps liii 

graphical process of, explained cii 



Polygons, regalar, areas of 

lengths of lines of 

Potential (electric), dimensions of 175 

Pothenot's problem bdy 

Pound, imperial, avoirdupois xxxiv 

Power, dimensions of 175 

Pressure, of atmosphere 172 

Prism, volume of xxxii 

Probable error, definition of Ixxxiv 

computation of zcy 

Projection of maps liii, cii 

Prototype Kilogrammes and Metres xxziv 

equations of xl 

Quadrilaterals, of earth's surface, areas of . ... .1 

tables of areas of 142-159 

Quantity, of electricity, dimensions of 175 

Radii, of curvature xiv 

Radius of curvature, of meridian, table of 

logarithms of 48-56 

of section normal to meridian, table of 

logarithms of 57*^5 

of section oblique to meridian, table of 

logarithms of 66, 67 

Radius vector of earth's surface I 

Rate of working (power), dimensions of . . . . 175 

Ratio, of pound to kilogramme xxxvi 

of specific heats of air 172 

of yard to metre xxxvi 

Reciprocals, of natural numbers, table of. .4-22 

Reduced latitude xiiv 

Reduction to sea level of measured base line. Ixiv 

References, to works on astronomy Ixxxii 

to works on geodesy Ixvi 

to works on the theory of errors xcviii 

Refraction, astronomical, table of 161 

example of computation of dv 

coefficients of terrestrial Ixiii 

Right ascension Ixxii 

Rode, Danish 168 

Ruthe, Prussian, Norwegian 168 

Sagene, Russian 168 

Sea level (see Geoid)^ reduction of measured 

base line to bdv 

Sea surface, area of Ixv 

Secondary triangulation, differences of lati- 
tude, longitude, and azimuth in 1x 

Series, binomial xiv 

logarithmic xiv 

of Madaurin and Taylor xxii 

trigonometric xvii 

Sidereal day and year, length of 172 

Digitized byLjOOQlC 



INDEX. 



l8l 



Sidereal time Izxii 

table for conversion to mean time.. 165 

Signs, of trigonometric functions zv 

Silver, linear expansion of 170 

Sines, table of natural 28, 29 

explanation of use of c 

Solar time •• Ixxii 

table for conversion of mean solar 

to sidereal 164 

Solution, of plane triangles zviii 

of spherical triangles xx 

of spheroidal triangles Ivii 

Span, length of xxxviii 

Specific heat of air 172 

Sphere, equal in surface with earth Hi 

equal in volume with earth Hi 

Slurface of xxxi 

volume of xxxii 

Spherical excess (see Spheroidal excess) . . . .Iviii 

Spheroid, representing the earth xliu 

surface of xxxi 

volume of xxxiii 

volume of earth's Ixv 

Spheroidal excess Iviii 

example of computation of ci 

Spheroidal triangle Ivii 

Square roots, table of 4-22 

Squares, table of 4-22 

Standards, of length and mass xxxiv 

Steel, linear expansion of 170 

St^re xH 

Stress, dimensions of 175 

units of 173, 174 

Sums, of arithmetic and geometric progres- 
sion, and special series xiii 

Surfaces (see Areas) xxix 

Surface measures, British xxxviii 

Metric xli 

tables forinterconversion of . . .2, 3, 173, 174 

Surface, of continents Ixv 

of earth's spheroid Hi 

of oceans Ixv 

of sphere and spheroid xxxi 

Surveyor's chain, length of xxxviii 

Table for conversion of arc into time 162 

conversion of mean into sidereal time . . 164 
conversion of sidereal into mean time. . 165 

conversion of time into arc 163 

determination of heights by barometer. . 160 
interconversion of British and Metric 

units 2, 3, 1 73» 1 74 

interconversion of nautical and statute 

miles 168 

Table of acceleration of gravity and derived 
quantities 16^ 



Table of {contimud). 

antilogarithms, 4-place 2^ 27 

areas of quadrilaterals of earth's surface 
of lo^* extent In latitude and longi- 
tude 142 

i^ extent in latitude and longi- 
tude 144,145 

30' extent in latitude and longi- 
tude 146-148 

15^ extent in latitude and longi- 
tude 150-154 

lo' extent in latitude and longi- 
tude 156-159 

areas of regular polygons xxx 

circumference and area of circle 23 

constants, astronomical 172 

geodetical 171 

numerical 171 

for interconversion of English and 

Metric units 2, 3»i73» ^74 

Continental measures of length 168 

co-ordinates for projection of maps — 

scale 1/250000 84-91 

scale 1/125000 92-101 

scale 1/X26720 102-109 

scale 1/63360 1 10-121 

scale 1/200000 122-131 

scale 1/80000 132-141 

departures and latitudes 32-47 

dimensions of physical quantities 175 

errors of interpolated values from nu- 
merical tables Ixxxvi 

expansions (linear) of principal metals. . 170 
formulas for solution of plane triangles, .xix 
fractional change in number due to 

change in its logarithm 170 

latitudes and departures 32-47 

lengths of arcs of meridian 78-80 

of arcs of parallel 81-83 

of 1° of meridian 166 

of i^ of parallel 167 

linear expansions of metals 170 

logarithms, 4-place 24, 25 

anti-, 4-place 26, 27 

of factors for computing spheroidal 

excess 68,69 

of factors for computing differences 
of latitude, longitude, and azi- 
muth 70-77 

of meridian radius of curvature. •48-55 
of radius of curvature of normal 

section 56~65 

of radius of curvature of obHque 

sections 66^ 67 

mean astronomical refraction 161 

measures and weights — 

British, of capacity. xxxix 

Digitized by V^OOQIC 



l82 



INDEX. 



Table of (conHnMed), 

British, of length . . . • • zzzviii 

British, of surface xxxviii 

British, of weight zzxix 

Metric xli 

tables for interconversion of 

natural cosines 28, 29 

natural tangents 3^ 3^ 

radii of curvature, logarithms of, for 

meridian section 4^55 

for normal section 5^*^5 

for oblique section 66, 67 

reciprocals, squares, cubes, square roots, 
cube roots, and logarithms of natural 

numbers 4-22 

refraction, mean astronomical 161 

signs of trigonometrical functions xy 

values for computing areas and dimen- 
sions of regular polygons zxx 

for computing perimeter of ellipse zxix 
of log i (i — 2«) and log (i — m) 
used in trigonometric leveling . . .Ixii 
weights and measures (see Table of 

measures and weights) 2, 3, 173, 174 

Table, traverse (see TVaverse table) 33*47 

Tangents, natural, table of 30, 31 

use of table explained c 

Taschenbuch, Des Ingenieurs xdx 

Taylor's series xxil 

Temperature, absolute zero of 172 

of freezing mercury 172 

Theory of errors Ixxxiii-xcviii 

references to works on xcviii 

Thermal conductivity, dimensions of 175 

of air 172 

Three-point problem Ixiv 

Time, determination of Ixxiv 

equivalents in arc, table of 163 

example of use of table civ 

interconversion of sidereal and solar, 

tables for 164, 165 

Tin, linear expansion of 170 

Toise, value in feet and metres 168 

Ton, long and short xxxix 

Tonne 173, 174 

Tonneau xli 

Trapezoid, area of xxix 

Traverse table 32-47 

explanation of use of c 

Triangles, plane, solution of xviii 



Triangles {ccnHnuict), 

spherical, solution of zx 

spheroidal, solution of .* Ivii 

Triangulation, primary and secondary, differ- 
ences of latitude, longitude, and azimuth 
in Iviii-lx 

Trigonometric functions, of one angle xv 

of two angles xvi 

series for xvii 

Trigonometric leveling Ixi 

Units, British System xxxvii 

C. G. S. System xlii 

Metric System xl 

standards of length and mass xxxiv 

tables for interconversion of British and 
Metric 2, 3. » 73. 1 74 

Useful formulas xiii-xxvii 

Vara, Mexican and Spanish 168 

Velocity, dimensions of 175 

of light and sound 173 

Versta, Russian 168 

Vertical section curve on spheroid Ivi 

Volt, dimensions of 175 

Volume, of earth Ixv 

of solids xxxii 

Weight, of distilled water 172 

Weights and measures (see Measures and 
weights)^ tables for interconversion of 

British and Metric 2, 3, 173, 174 

Werst, Russian 168 

Work, dimensions of 175 

Wright, Prof. T. W., treatise cited xcviii 

Yard, imperial xxxiv 

ratio of, to metre xxxvi, xxxvii 

Zachariae, G., treatise cited xlvi 

Zenith distances, use of, in trigonometric 

leveling Ixi 

Zenith telescope, use of Ixxix 

Zero, of absolute temperature 172 

Zinc, linear expansion of 170 

Zones, of earth's surface, area of 1 



Digitized by 



Google 



Digitized by 



GooqIc 



Digitized by 



GooqIc 



Digitized by VjOOQIC 



Digitized by 



GooqIc 



Digitized by 



GooqIc 



Digitized by VjOO^IC 



Digitized by VjOOQIC 



Digitized by VjOOQIC 



Th-ifl book should he returned to 
th€ Library on or before the l»et date 
fitamped below. 

A flue of five oente a day ia mcmred 
by re taming it beyond the specifled 
time. 

Please return promptly. 



IJL>i 




-> 




Digitized by 



Goo< 





Eng 

Cabot SOMW* CnS4D2&65 

iiiii'i!iiri!iii'|||||||i||||||||||i|||)|j~ " 



• ■» 



3 2044 091 845 412 






% ^ 



w 



m ^ 



I 

•